Raymond L. Lee, Jr.

Meteorology Department
Pennsylvania State University

503 Walker Building

University Park, Pennsylvania 16802

Colorimetric Calibration of a
Video Digitizing System:
Algorithm and Applications

In principle, digitized color video images should be rich
and convenient sources of colorimetric information. In prac-
tice, these advantages are offset by the difficulty of reliably
translating the video camera’s output into colorimetric vari-
ables. A solution to this problem is outlined here, one which
exploits the fact that spectral reflectances of many natural
materials vary slowly in the visible. A characteristic vector
analysis of reflectances for a set of such materials leads to
an algorithm that gives colorimetrically accurate spectral
reflectances from the red-green-blue output of a video dig-
itizing system. Prior knowledge about the illumination leads
to chromaticity and luminance information, which can be
comparable in quality to that obtained from a spectrora-
diometer. Some sample retrievals are shown for the algo-
rithm. Since it is designed to correct color biases that are
unknown initially, the algorithm has the advantage that
images from many sources can be analyzed.

Introduction

Obtaining accurate colorimetric information about color
samples may seem to be a hopeless task unless we have
access to elaborate spectroradiometers and sophisticated il-
lumination standards. However, it is possible to obtain good
estimates of chromaticity values even if we use broad-band
devices such as color video cameras, provided that we have
a reliable way of estimating their color and luminance biases. '
Our technique was developed using the CIE 1931 standard
observer, but clearly it could be adapted to other colorimetric
systems.

Maloney and Wandell’s study? of color constancy in hu-
man and machine vision provides a theoretical basis for our
work. However, our algorithm differs from theirs in some
of its assumptions. In particular, we initially assume only
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an approximate knowledge of the digitizing system’s (cam-
era plus digitizer) color bias. The calibration procedure then
improves this estimate of the system’s spectral transfer func-
tion. Maloney and Wandell considered at length the general
case in which both the lighting and spectral reflectances are
unknown. We simplify this problem by assuming that the
spectral illumination is known, a constraint that is unlikely
to be troublesome in many cases. Finally, they are interested
in the general issue of how visual systems achieve color
constancy, while we want to examine this problem in a
particular type of system. Despite these differences in ap-
proach, the goal of our calibration is essentially the same
as that outlined in Maloney and Wandell’s work: to allow
accurate recovery of spectral reflectances or transmittances
(and thus colorimetric data) from samples viewed under a
variety of illuminants.

Theory and Notation

We may be tempted to assume that red-green-blue (RGB)
pixel values are proxies for colorimetric tristimulus values.
This assumption amounts to requiring that the two trichro-
matic systems be related linearly. Describing the conse-
quences and mathematical nature of this linear relationship
is an old issue in color reproduction, and it is referred to
as the Maxwell-Ives criterion.? Maloney has recently reex-
amined this issue and demonstrated that if a digitizing sys-
tem’s spectral sensitivities are not a linear transform of the
human color-matching functions, then stimuli that are me-
tameric for one of these visual systems need not be meta-
meric for the other.* Mathematically, the absence of a linear
transform means that if we use linear equations to relate the
two systems’ spectral transfer functions, we can only esti-
mate how the systems will respond to identical stimuli.
Physically, the lack of a linear transform means that the
digitizing system will be blind to some color differences
that are perceptible to humans, and vice versa. We will call
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this failure to agree on color matches eye-versus-camera
metamerism.

Despite this difficulty, if we know that the digitizing
systemn can make color distinctions over a wide range of
chromaticities and luminances, then we can be confident
that the system is a useful analog of human vision.® In our
work, we have addressed the transform problem by empir-
ically modifying a linear relationship between the spectral
response of the digitizer and the human visual system. This
approach sidesteps the thorny problem that each link in the
optical and electronic chain of the digitizer makes its own,
usually unknown, contribution to the overall system bias.

We start by noting that each RGB pixel in a digitized
image has a value proportional to a weighted integral over
the visible spectrum, an integral that depends on three spec-
tral variables. These are the spectral irradiance of the illu-
minant [denoted E(\), where A indicates wavelength], the
spectral reflectance S(\) at some point in the image, and
the spectral response of the kth channel in the digitizing
system, Rx(\). In our case, k varies from 1 to 3 (red through
blue). If we denote a pixel value for the kth color channel
as py, then:

pi < [S(A) E(N) Ry(N) d A (D

is the fundamental relationship between pixel values and
spectral quantities which Maloney and Wandell describe,
and it is analogous to the CIE definitions of tristimulus
values.® However, in the CIE definitions, the digitizer’s
response is replaced by the corresponding spectral transfer
functions for the human eye, the color-matching functions.

Our next step is to approximate the three integrais above
as summations over wavelength, using the weighted-ordi-
nate method. If we subsume the proportionality factor in
the R(\), we can construct the matrix equation:

p=SER. )

In our case, p is a 1-by-3 row vector (the RGB pixel
values at a given location in the image). S is a 1-by-m row
vector whose elements are the surface reflectances at m
equally-spaced wavelengths across the spectrum. E is an
m~by-m diagonal matrix whose nonzero entries are the E(\),
and R is an m-by-3 matrix representing the digitizing sys-
tem'’s spectral transfer function.

We may think of the right side of Eq. 2 in two ways. It
may consist of the known 1-by—m vector SE (the combined
effects of the illuminant and reflectances) and the unknown
R. Alternatively, if we know the spectral illumination and
the transfer function, then the m~by-3 matrix ER is a given
and the unknown quantity is the surface reflectance S.

In principle, if we know elements of two of the arrays
on the right side of Eq. 2 and the corresponding RGB pixel
values on the left side, we can solve for the unknown array.
Since we assume only an approximate knowledge of the
matrix R at the outset, our tack will be to: (1) specify the
system transfer function R more accurately by analyzing
color samples with known reflectances; (2) use this new
information to find the unknown spectral reflectances of
other samples that are illuminated by the same light source,
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From this knowledge of spectral reflectances, it is a straight-
forward matter to calculate colorimetric variables such as
chromaticity and luminous reflectance.

Description of the Calibration Procedure and
Algorithm

One obvious difficulty with this approach is that for all
m > 3, Eq. 2 is underdetermined. As matters stand, we
cannot uniquely retrieve reflectances at more than three lo-
cations across the visible spectrum. However, S(\) varies
smoothly in the visible for many pigments and naturally
occurring materials (see Ref. 6, Section 1.4 and Ref. 4,
Chapter 2). This suggests that we can accurately represent
the spectral reflectances of a set of color standards with the
first few components of a characteristic vector analysis.” In
effect, this analysis allows us to reduce the dimensionality
of S and thus solve Eq. 2. Consistent with Cohen’s findings,?
our own analysis of the chips on a Macbeth ColorChecker
chart® shows that upwards of 98% of the variance in their
spectral reflectances can be accounted for by the mean vector
and weighted combinations of the first three characteristic
vectors. Our choice of the ColorChecker (or any other sta-
tistical sample drawn from the population of color standards)
clearly imposes a bias on the characteristic vector analysis.
However, if the resulting basis vectors ultimately yield spec-
tral reflectances that are colorimetrically accurate over a
wide range of chromaticities, then the ColorChecker will
be satisfactory for our purposes.

First we need to determine the system’s spectral transfer
function. We start with an approximate transfer function R1
(an m-by-3 matrix), defined by the spectral sensitivity of
each channel in the color camera. Next we digitize an image
of the color chart, which is illuminated by the same light
source that will be used when we evaluate unknown color
samples. This image gives us a g—by-3 matrix of RGB
values, where g is the number of ColorChecker chips
(g = 24). We denote this matrix as P. Since we know the
illumination E, the set of g reflectances S, and R1, we can
form the g—by—3 matrix SER1 which combines all of them.
This leads to:

P = SER1 R2, )

where R2 is an unknown 3-by-3 matrix. A least-squares
solution of Eq. 3 for R2 leads to an improved estimate of
the system’s spectral transfer function. That is, when we
multiply R1 by R2 to form a new R, we have included an
approximation of the digitizer’s color bias. All subsequent
references to R will be to this improved estimate. Despite
our calculation of a new linear basis for the system’s spectral
sensitivities, we have not in any way changed those sen-
sitivities. Put another way, eye-versus-camera metamers re-
main metamers until we change the system hardware, either
optically or electronically.

The next step in the algorithm is to rewrite Eq. 2 in terms
of characteristic vectors. We define the mean vector of the
ColorChecker reflectances as Syean (@ 1-by-m vector), and
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from the first three characteristic vectors of our analysis,
we form the b—by-m matrix Spasis (b = 3, the number of
characteristic vectors used). When we multiply Spasis by the
appropriate 1-by—b vector of basis weights (denoted B) and
add the result to Spmean, W€ can reconstruct any spectral
reflectance S in our original set of colors. (For sake of
clarity, we will refer to the algorithm’s reflectances as re-
constructed, and those determined independently as mea-
sured.) In other words, the reconstructed reflectances are
given by:

S = Smean + B Sbasis‘ (4)
Now we may rewrite Eq. 2 as:
B = (P - Smean ER) (Sbasis ER)-I, (5)

where ER is as noted above. Equation § is at the heart of
the algorithm. We solve it by inserting into p the digitized
RGB values. The solution B is then used in Eq. 4 to calculate
the spectral reflectance vector S.

As our solution to Eq. 3 implies, if we use the least-
squares estimate of R to reconstruct the reflectances of the
color chips, some reflectances will yield significantly larger
chromaticity errors than others. (We define chromaticity
error as the Cartesian distance between a reconstructed chro-
maticity and one calculated from the corresponding mea-
sured S(\)). In addition, the integrated values of the mea-
sured and reconstructed spectra will differ, and we want to
correct this error as well. To improve the reconstructed
spectra, we do not introduce correction factors directly into
R, but rather apply them as multipliers to the observed RGB
values for the color chips (matrix P). We denote this g—
by-3 matrix of empirically determined correction factors as
C. In other words, when we multiply corresponding ele-
ments from the ith row of C and the ith row of P, we obtain
a triplet of values p that is used to solve Eq. 5. From this,
we can reconstruct spectral reflectances that are colorimet-
rically accurate.

We calculate the elements of the correction matrix C in
the following way. First we perform a binary search for
those multiplicative factors that minimize chromaticity er-
rors under the given illumination. This initial C still leaves
us with errors in the integrated reflectances. We define these
reflectance errors as the ratio of the sum of the reconstructed
S(\) to the sum of the measured S(A), and we call this ratio
F. We could just as easily define F as the ratio of the
integrated luminous reflectances, and this would give us a
more rigorously defined estimate of relative luminance er-
ror. However, our work indicates that the two definitions
of F differ very little in terms of correcting average spectral
reflectance errors. Noting that F' changes for each color chip,
we correct the reflectance errors by dividing each row of C
by the appropriate value of F. In changing the magnitudes
of the elements of C, we often increase the chromaticity
errors of the reconstructed S(A). However, if our chromat-
icity error tolerance is very small in the first round of cal-
culations, any additional error introduced at this stage is
usually acceptable. If not, the offending row of C is recal-
culated, using its current elements as a starting point.
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With this approach, we can obtain good fits to the chro-
maticities and integrated reflectances of our original
ColorChecker chips. That is, we have a way to correct the
color and relative luminance bias of the digitizing system
for this particular illumination. The remaining problem is
to extend our reflectance retrieval technique to other RGB
values from new images.

Our solution is to calculate interpolated correction factors
that are based on matrix C. We start with the plausible
assumption that the same interpolation scheme which gen-
erates a new RGB value in RGB space should also generate
the appropriate correction factor from matrix C. In addition,
we want the interpolation scheme to vary smoothly over the
domain of P (the RGB values of the color chips), based on
the assumption that gradual changes in these RGB values
are the result of gradual changes in spectral reflectance curves.
One method that works well is to determine the Cartesian
distance of the new RGB value from each element of P,
We call the new color’s distance from the ith color chip
D[RGB(i)], and we use the negative exponential of this
distance to calculate the ith element of a 1-by~¢ vector of
inverse-distance weights (vector W). Specifically, the ith
element of W is:

W(i) = exp{h - D[RGB(i))/D[maximum]}, (6)

where h is a constant less than zero, and D[maximum)] is
the distance between the minimum and maximum RGB
values that can be generated by the digitizer. The value of
h determines how rapidly the weights decrease as we move
away from the original ColorChecker RGB values
(h = 1n(107®) in our work). If 4 is made more negative,
the weights are more sharply peaked about that Color-
Checker swatch which is closest in RGB space to the new
color. In essence, Eq. 6 scales RGB distances so that if a
ColorChecker chip is sufficiently different from the new
color, the chip’s effect on the retrieval is nil.

If we normalize the 1-by—g weighting vector W by its
sum and multiply the result by our matrix of empirical
corrections (the g—by-3 matrix C), we obtain a smoothly
interpolated correction factor (the 1-by-3 vector ¢). How-
ever, matrix C was calculated on the tacit assumption that,
at the ith ColorChecker swatch, all elements of W are zero
except the ith element, which equals one. Our interpolation
scheme approximates this by making the ith element of W
the largest, but it does not equal one, nor are the other
elements equal to zero.

We can solve this new problem by forming the g-by—q
matrix W2, whose ith row is the vector W that results from
calculating the inverse-distance weights for the ith row of
the ColorChecker RGB data (matrix P). This allows us to
define a new correction matrix C2 (g-by-3) which will yield
the original correction factors C when multiplied by W2;

C2 = W2 C, ©))
Now we may redefine the vector of corrections ¢ as:
c=WC2, )

where the elements of ¢ are applied to the RGB vector which
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RED TEST SAMPLE
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FIG. 1. Spectral reflectances measured with a spectrora-

diometer (solid line) and reconstructed by the algorithm (dashed
line) for a red test sample. RMS spectral reflectance differ-
ence 5.05%.

generated the elements of W. In practice, the kth value of
the RGB vector p at any pixel is modified so that:

9

It is these altered p, that we use in solving Eq. 5 and in
recovering the spectral reflectance S that generated the pixel.

Pr.modified = Pk Ck-

Sample Retrievals

To date, tests of the algorithm show that it can do well in
estimating reflectances and chromaticities. The color sam-
ples used in these tests are pieces of uniformly-colored paper
which are illuminated by a known source of light (we used
artist’s papers and an ordinary slide projector). Care needs
to be taken that all spectral measurements and digitized
images are made in the same part of the projector’s illu-
mination field, which varies appreciably in luminance. First
we measure the spectral reflectances of the paper samples
with a spectroradiometer. These spectral reflectance data
give us standards for assessing the accuracy of the retrieval
algorithm. As before, we distinguish between these mea-
sured reflectance standards and the algorithm’s recon-
structed reflectances.

The papers tested are fairly chromatic samples of red,
green, blue, and orange. Their measured spectral reflec-
tances are shown in Figs. 1-4. To test the algorithm, we
digitize video images of these papers, averaging each sam-
ple’s RGB values over both area and time. Next, the
ColorChecker card’s color chips are similarly averaged, and
we form the data matrix P. Using this, we calculate the
improved spectral transfer function R. Now we can deter-
mine the empirical corrections (matrix C2) that further im-
prove the algorithm’s fit to the known ColorChecker spectral
reflectances.

In Figs. 5-6, we show reconstructed reflectances for both
the worst and one of the best fits to the ColorChecker sam-
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GREEN TEST SAMPLE
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FIG. 2. Measured and reconstructed spectral reflectances
for a green test sample. RMS spectral reflectance difference
8.66%.

ples. One of our criteria for goodness of fit is the distance
between the measured and reconstructed chromaticities. An-
other is the root mean square (RMS) percentage difference
between the reconstructed and measured spectral reflec-
tances. Note that our constraints in calculating C2 did not
rule out spectral reflectances less than 0% or greater than
100%, but merely required that the integrated reflectances
differ as little as possible between the measured and recon-
structed cases. The additional constraint of minimizing chro-
maticity errors usually precludes such nonphysical reflec-
tances, but not always. As we might expect from our
constraints, chromaticity and reflectance errors for the
ColorChecker are small, averaging 0.00076 and 3.55%,
respectively. Typical chromaticity distance errors are shown
in Fig. 7. For sake of illustration, the chromaticity of the
illuminant is also included. Note that this yellowish light
source shifts the entire gamut of ColorChecker chromatic-

BLUE TEST SAMPLE
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FIG. 3. Measured and reconstructed spectral reflectances
for a blue test sample. RMS reflectance difference 5.14%.
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FIG. 4. Measured and reconstructed spectral reflectances
for an orange test sample. RMS reflectance difference 12.2%.

ities toward longer wavelengths, although it affects their
positions with respect to each other only slightly.

When we turn to chromaticity distance errors in the test
samples (Fig. 8), the agreement is still good. The average
error for all four samples is 0.0047, and the maximum error
is less than 0.0092 (the red sample). This largest error is
roughly seven times the length of the minor semiaxis of the
nearest measured MacAdam ellipse.'® These results are en-
couraging, but we need to ask whether we are really inter-
polating between chromaticities from the color chart, or
whether we have fortuitously chosen test samples that nearly
coincide with that data. Figure 9 shows that we are indeed
interpolating (apparently accurately) between the chromat-
icities of the ColorChecker chips. Further, if we interpolate
linearly between the RGB values of matrix P and plot the
resulting chromaticities, we see that smooth (but not nec-
essarily straight) lines connect the ColorChecker chromat-
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FIG. 5. Measured and reconstructed spectrai reflectances
for the ColorChecker chip designated “Yellow”. RMS reflec-
tance difference 1.38%; chromaticity distance 0.0004.
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FIG. 6. Measured and reconstructed spectral reflectances
for the ColorChecker chip “Bluish Green”, RMS reflectance
difference 6.66%; chromaticity distance 0.0005.

icity coordinates (Fig. 10). This is another of our goals in
designing the algorithm: gradual changes in digitized RGB
values should result in gradual changes in chromaticity.
The RMS reflectance differences for our test samples
average 7.77%, a figure which is slightly more than double
that for the calibration data. However, individual errors in
spectral reflectances can be noticeably larger, as is evident
in Figures 1—4. In particular, the nonphysical reflectances
for the green and orange test samples show that we cannot
regard a video camera that uses our algorithm as the equiv-
alent of a spectroradiometer. However, we neither claim
nor aim to do so. We are principally interested in obtaining
accurate chromaticity data and in estimating the integrated
values of the spectral reflectances. Tests show that the range
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FIG. 7. CIE 1931 chromaticity diagram (2° standard ob-
server), showing measured and reconstructed chromaticities
for most of the ColorChecker chips.
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FIG. 8. Measured and reconstructed chromaticities for four
test samples not included in the calibration data. The chro-
maticity distance errors are: Red = 0.0091; Green = 0.0005;
Blue = 0.0077; Orange = 0.0017. The largest error is ap-
proximately seven times the length of the minor semiaxis of
t-a nearest measured MacAdam ellipse.

of physically realistic reflectances calculated by the algo-
rithm is roughly defined by the gamut of ColorChecker
chromaticities. Within limits, increasing this gamut would
expand the range of reliably reconstructed reflectances.
However, for many naturally occurring materials, this range
may be sufficient. Even without altering the color card, we
see that the reconstructed reflectance curves are nearly me-
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FIG. 9. Salient features of Figs. 7 and 8 are combined. This
figure shows that the reconstructed chromaticities result from
interpolation rather than fortuitous selection of test colors.
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FIG. 10. Chromaticity curves resulting from linear interpo-
lation in RGB space between known RGB values for some
of the ColorChecker chips.

tameric for chromaticities and can approximate the mea-
sured curves’ tristimulus values.

Given the constraints derived from the calibration data,
it is unlikely (but not impossible) that the estimated curves
will depart radically from the shapes of the true transmit-
tances or reflectances. Clearly there are some radiant energy
spectra that can be measured reliably only with a spectro-
radiometer. As we have demonstrated, though, there are
many cases where such elaborate instrumentation is unnec-
essary. Equally important is the fact that it may not be
available. Often a video or still camera will be our only
data-gathering equipment when we are confronted with a
colorimetrically interesting scene. Then by definition each
part of the captured image contains only three pieces of
information, whether RGB values or film dye densities.
Using a spectroradiometer to analyze this kind of image
would likely offer no additional information. We had this
common situation in mind when we wrote the colorimetric
calibration routine.

Capabilities and Caveats

Clearly, one has a potentially powerful image analysis tool
with this scheme for recovering spectral reflectances. Our
impetus for developing it was to perform colorimetric anal-
ysis of phenomena in meteorological optics such as rainbows
and halos. However, the technique can extend far beyond
this range, into a variety of scientific and commercial ap-
plications.

One asset of this scheme is that it can account for bias
not only in the camera and digitizer, but also in any other
links in the optical chain, such as camera optics. If we
incorporate any new links in the optical chain and repeat
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the calibration procedure with the color chart, we should
attain nearly the same degree of accuracy. In fact, even if
we use storage media such as color transparencies or video
tape in making digitized images, it is possible to compensate
for their color biases too.

While we have claimed that an accurate knowledge of
the spectral illumination is a prerequisite for calibration, it
seems reasonable that slight errors in these data are unlikely
to seriously affect the accuracy of the recovery. This is
because illumination errors are accounted for in R and the
empirical corrections C2. Provided that the same illumi-
nation holds for test images, the interpolation scheme still
requires that reconstructed reflectances vary between known
spectral reflectances. Naturally, errors in our knowledge of
the spectral quality of the illumination will affect calculation
of chromaticities. Another potential complication is changes
in the spectral character of the illumination across the image,
although this is not a problem in many natural scenes. Other
practical pitfalls in color analysis are discussed in Reference
S.

As is true in any calibration scheme, violation of one’s
initial assumptions can quickly lead to foolishness. Correc-
tions derived at one calibration session are unlikely to be
valid at the next. Color settings on the digitizer and camera
must be maintained between the calibration and test images.
If we fail to account for differences in ambient illumination
levels in the test and calibration images, errors will follow.
Each time that we change to a different type of color film,
video tape, or video recorder, we must recalibrate.

More basic than these problems are some limitations in-
herent in the equipment itself and in our assumptions. While
our scheme provides smooth interpolations based on an en-
semble of corrections, some minimal precautions need to
be observed. All types of imaging systems can be made
hopelessly distorted, as would be the case with using faded
or overexposed color slides. A video camera with severe
chroma or alignment errors will render meaningless results.
In addition, our assumption in applying the characteristic
vector analysis (namely, that S(\) varies smoothly with
wavelength) means that our technique can only approximate
spectra that have a substantial amount of fine detail. Finally,
we should reemphasize that we have not eliminated eye-
versus-camera metamerism. To do so would require changes
in the system’s hardware. However, where such metamers
do not exist, our algorithm substantially improves the map-
ping between the two visual systems.

Conclusions

We have described a simple method of calibrating a color
video digitizing system which permits retrieval of colori-
metrically accurate spectral reflectances or transmittances.
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This and related methods should prove helpful to many
workers concerned with color appearance and color rendi-
tion. As we indicate above, our system has some limitations,
both functional and theoretical. Preliminary tests of the al-
gorithm and equipment show that, with a modicum of care,
these problems can be minimized. Accordingly, we expect
to realize the system’s promise of quick and accurate mea-
surement of colorimetric variables from a wide variety of
sources (film, video tape, and live video). These advantages
should make our system a valuable tool in image analysis.
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