
Oscillatory Motion  
 

Our goal this semester is to understand how sound waves travel through the water so that 
we may exploit them to prosecute a target.  We will start with simple models and increase 
complexity as we go.  This course is meant to be directly applicable for the war-fighter. 

 
To begin with lets go back to our childhood days looking out over the calm waters of the 

nearby pond.  When you throw a rock in the water, you create a wave on the surface.  If you 
closely watch a leaf on the surface, you will see it go up and down as the wave passes by, yet the 
leaf returns to its original position after the wave passes.  This is a simple yet extremely 
important point regarding wave motion.  The medium carrying the wave does not move with the 
wave, generally returning to its original position after the wave has gone past.  The medium 
carrying the wave simply oscillates around an equilibrium position.  To begin our study of 
underwater sound, we will look at the periodic nature of this motion.  It is the basis of all 
mechanical wave motion. 

Mass-Spring System 

Hooke's Law and the Simple Harmonic Oscillator 

An illustrative model to begin understanding acoustics is the problem of a simple mass-
spring oscillating system.  Begin with a mass attached to a perfect massless spring.  The spring is 
attached to a firm wall and the mass sits on a frictionless surface.  If the spring is displaced from 
the rest position of the system where x=0, the mass will move back and forth with a periodic 
motion centered about the x=0 position.  This periodic motion can be described by a simple time 
varying equation, which should give us insight in to periodic wave motion. 

 
 
 
 
 Frictionless 

Surface  
 
 
 
 
 
 
From Hooke's Law, the restoring force of the spring is equal to: 

kxFspring −=  

There is a minus sign in front of the spring constant because the force of the spring is in the 
opposite direction of the displacement of the mass.  The displacement, x, is the distance the 
spring is stretched or compressed (and is equal to the displacement of the mass) from the x=0 or 
rest position of the spring. 
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We can now write an equation to relate the forces on the mass in the x-direction to the 

acceleration of the mass in the x-direction:  (Or in other words apply Newton's second law for 
the motion only in the x-dimension.) 

block blockF m= a∑
r r  

Since the only force on the block is due to the spring and all motion is along the x-axis, we can 
write the scalar equation,  

spring block xF m a=  

2

block 2

d xkx m
dt

− =  

2

2
block

d x k x 0
dt m

+ =  

This is a simple, second order differential equation that describes the motion of the mass.  
One solution for the position of the mass, x, as a function of time that satisfies the differential 
equation is: 

( ) ( )x t A cos t= ω + φ
 

where the angular frequency squared, 2

block

k
m

ω =  and A and φ, are unknown constants.  

Appendix A checks this solution and verifies the value of the angular frequency.  We refer to 
quantity, ω + , as the “phase” of the block’s motion.  The phase is generally expressed in 
radians and the motion repeats once the phase has changed by 2π.  The amplitude of the 
oscillation, A and the initial phase of the oscillations φ, can only be solved for by knowing two 
initial conditions of the system.   

t φ

 
Another solution to the second order differential equation is ( ) (x t Asin t )= ω +φ .  Another 

uses complex exponentials, ( ) ( )i tx t Ae ω +φ=  and is shorthand to signify only the real part of this 
expression is the solution to the second order differential equation.  It is a worthwhile exercise 
for the student to show that both these solutions also satisfy the second order differential 
equation. 

 
We must be able to find the velocity and acceleration of the mass as a function of time to 

use the initial conditions of the system.  To calculate these quantities, we must just take the 
derivative as shown below. 
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( ) ( ) ( ) ( )

( ) ( ) ( )

x

2
2 2

x 2

d cos tdx t
v t A Asin t

dt dt
d x t

a t A cos t x
dt

ω + φ⎡ ⎤⎣ ⎦= = = −ω ω +

= = −ω ω + φ = −ω

φ

 
Looking at the above equations , we can obtain the maximum values of the velocity and 

acceleration.  These maximum values are:  

max
2

max

v A

a A

= ω

= ω
 
An important characteristic of the system is the angular frequency.  Using the above 

equations, and knowing a couple of the parameters of the system as a function of time, we can 
solve for the more easily understandable quantities, the frequency and period of the system.  
These can be calculated from the following equations: 

f
2
1 2T
f

ω
=

π
π

= =
ω

 

Example Problem 

Let's look at an example:  A mass of 200 grams is connected to a light spring that has a 
spring constant (k) of 5.0 N/m and is free to oscillate on a horizontal, frictionless surface.  If the 
mass is displaced 5.0 cm from the rest position and released from rest find:  a)  the period of its 
motion, b)  the maximum speed and c) the maximum acceleration of the mass. 

 
Using the relationships given above, the following can be calculated:

N/m 05.
( ) ( )[ ]( )
( ) ( ) ( )[ ]( )

( )( )
22

max

2-
max

3-

m/s 251Aa  c)

m/s 250m x1005rad/s 05Av
rad 0.0 and cm 05A  : andA for  soving therefore
sec) (0rad/s 05Arad/s 05cm/s 0sec 0v and

seconds) (0rad/s 05Acm 05sec 0x
seconds 0 at t rest  from golet 

and cm 5.0 displaced  wasmass  that theconditions initial  the  Usingb)

seconds 2612T

rad/sec 05
kg 200x10

mk  a)

.

...
.

.sin.
.cos.

.

.

=ω=

==ω=

=φ=φ
φ+−==

φ+==
=

=
ω
π

=

====ω
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Energy in the Mass Spring System 
 

The energy of the mass spring system can be found at any time by summing the kinetic 
energy of the mass with the potential energy of the spring. 

2 2
block

1 1E K U m v kx
2 2

= + = +  

When the displacement of the mass from the equilibrium position is at the maximum 
displacement, x=A, the velocity of the spring is instantaneously zero.  As there are no non-
conservative forces such as friction, energy is conserved and the total energy at any time is 
simply 

2
max

1E k
2

= A  

This is very powerful because it allows us to calculate the total energy of an oscillating mass 
very simply and then calculate the velocity when the position is known or vice versa.  
Conceptually, we view the continuous motion of a mass spring oscillator as the perpetual transfer 
of energy back and forth between kinetic and potential forms.  Without any energy loss (due, for 
example, to friction) this transfer will continue indefinitely. 
 

The average energy in a simple harmonic oscillator is calculated using the following 
definition for the average of a periodic function: 

( ) ( )
T

0

1f t f t dt
T

≡ ∫
For kinetic and potential energy we find that since the time average of the square of the sine and 
cosine is one half, i.e. ( ) ( )2 2 1sin t cos t

2
θ = θ = , then 

( )2 2 2 2 2 2
block block block

1 1 1K m v m A sin t m A kA
2 2 4

= = ω ω +φ = ω = 21
4

( )2 2 21 1 1U k x kA cos t kA
2 2 4

= = ω + φ = 2

 
This shows that on average, the kinetic energy of a simple harmonic oscillator and the potential 
energy of a simple harmonic oscillator are the same, each being exactly one half the total energy 
of the harmonic oscillator.    
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Damped Mass-Spring System 

 
Hooke's Law Revisited 

 The approach used above for the simple harmonic oscillator will work for a damped 
oscillator with a small modification.  Some device such as a “dashpot” provides a mechanism by 
which energy is removed from the system.  A dashpot is like a shock absorber with a piston 
moving through a viscous fluid.  We model the dashpot such that it provides a resistive force to 
the system that is proportional to the speed of the mass.    
 

dampingF bv= −  
 
The constant of proportionality, b, depends on such factors as fluid viscosity, size, shape and 
roughness of the piston, and the space between the piston and the fluid chamber walls.  Because 
of this new force, our x component equation from Newton’s second law gains an additional term. 
 

x blockkx bv m ax− − =  
 
The new equation of motion then becomes: 
 

2

2

d x dxm b kx
dt dt

0+ + =  

 
A solution to the equation of motion is: 
 

( )tx Ae cos t−α ′= ω + φ  
 
Again the initial amplitude of oscillation, A, and the initial phase, φ, are arbitrary constants of the 
second order differential equation.  The angular frequency is slightly different from the 
undamped case: 
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2k b
m 2m

⎛ ⎞′ω = −⎜ ⎟
⎝ ⎠

  
⎝ ⎠

  
The amplitude decays exponentially with time with a decay constant, α: The amplitude decays exponentially with time with a decay constant, α: 
  

b
2m

α =  

 
Appendix B shows that our solution satisfies the equation of motion and that the angular 
frequency and damping constants are correct.  When plotted for typical values of k, m, and b, the 
motion of the mass looks like the graph below.  As the amplitude decreases we can see that 
energy is leaving the system, mostly as heat generated from friction as the piston moves through 
the viscous fluid in the dashpot.  Later in the course we will discuss losses of energy due to 
various mechanisms in the ocean draining energy from an acoustic wave.  Although greatly 
simplified, the damped oscillator provides a satisfactory model of what the medium must be 
experiencing as the wave passes. 
 
 
 
 
 
 
 
 
Overdamped and critically damped motion 

One interesting result of the expression for the angular frequency is that if the damping 
constant is large enough, ω can become zero or even an imaginary number.  This occurs 
whenever the damping constant is sufficiently large compared to the mass and the spring 
constant. 

2b 4mk≥    
 

When this happens we say that the system is “over damped” and the motion resembles that of 
curve C below.  Note that it can take significant time for the mass to relax to its equilibrium 
position in this case. When the angular frequency is exactly zero, the system is said to be 
“critically damped” as shown by curve B.  In this case, the mass returns to the equilibrium 
position faster and without overshoot.  
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Appendix  A - Checking the solution for simple harmonic motion 
 
( ) ( )x t A cos t= ω + φ  

( )dxv A sin t
dt

= = − ω ω + φ  

( )
2

2
2

d xa A cos t
dt

= = − ω ω + φ  

 
Substituting into the equation of motion: 
 

( ) ( )
2

2
2

block block

d x k kx A cos t A cos t
dt m m

+ = − ω ω +φ + ω + φ 0=  

( ) ( ) ( )2 2

block block

k kcos t cos t cos t 0
m m

⎛ ⎞
−ω ω + φ + ω + φ = −ω + ω + φ =⎜ ⎟

⎝ ⎠
 

 

So this solution works so long as 2

block

k
m

ω =  

  
 
You should be able to repeat this process for other solutions. 
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Appendix  B - Checking the solution for damped harmonic motion 
 

( )tx Ae cos t−α ′= ω + φ

( ) ( ) ( )t tdxv Ae sin t A e cos t
dt

−α −α′ ′ ′= = − ω ω + φ + −α ω + φ

( ) ( ) ( ) ( )
2

t 2 t t 2 t
2

d xa Ae cos t A e sin t A e sin t A e cos t
dt

−α −α −α −α′ ′ ′ ′ ′ ′ ′= = − ω ω + φ + α ω ω + φ + α ω ω + φ + α ω + φ

( ) ( ){ }t 2 2Ae 2 sin t cos t−α ′ ′ ′ ′⎡ ⎤= αω ω + φ + α −ω ω + φ⎣ ⎦

( ) ( )tAe sin t cos t−α ′ ′ ′= − ω ω + φ +α ω + φ⎡ ⎤⎣ ⎦

2

2

d x b dx k x 0
dt m dt m

+ + =

( ) ( ){ } ( ) ( ) ( )t t2 2 tb kAe Ae Ae 0
m m

cos t cos t cos tsin−α −α −α+ + =⎡ ⎤′ ′ ′ ′⎡ ⎤α −ω ω +φ α ω +φ ω +φ⎣ ⎣ ⎦⎦2 sin t t′ ′ ′+ − ′αω ω +φ ω ω +φ

( ) ( )
t 2 2

b
2m b k cAe 0b o

m
s t

m m
− ⎡ ⎤′ ′α −ω − α + ω + φ⎢ ⎥⎣ ⎦

⎡ ⎤⎧ ⎫2 sin t′ ′ ′αω − ω ω + =⎨
⎣ ⎦

⎬
⎩ ⎭

+ φ⎢ ⎥

2
2k b 0

m 2m
⎛ ⎞ ′− −ω =⎜ ⎟
⎝ ⎠

2k b
m 2m

⎛ ⎞′ω = − ⎜ ⎟
⎝ ⎠

b
2m

α =
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Problems 
1. A particle oscillates with simple harmonic motion so that its displacement varies 

according to the expression x=(5.0 cm)cos(2t+π/6), where x is in centimeters and t is in 
seconds.  At t=0, find  

a) the displacement of the particle,  
b) its velocity, and  
c) its acceleration.   
d) Find the period and amplitude of the motion. 
 

2. A piston in an automobile engine is in simple harmonic motion.  If its amplitude of 
oscillation from the centerline is ±5.0 cm and its mass is 2.0 kg, find the maximum 
velocity and acceleration of the piston when the auto engine is running at the rate of 3600 
rev/min. 

 
3. A 20.0 g particle moves in simple harmonic motion with a frequency of 3.0 

oscillations/sec and amplitude of 5.0 cm.  
a) Through what total distance does the particle move during one cycle of its 

motion? 
b) What is its maximum speed?  Where does this occur? 
c) Find the maximum acceleration of the particle.  Where in the motion does the 

maximum acceleration occur? 
 

4. A 1.0 kg mass attached to a spring of force constant 25.0 N/m oscillates on a horizontal, 
frictionless track.  At t=0, the mass is released from rest at x = -3.0 cm.  (That is, the 
spring is compressed by 3.0 cm)  Find  

a) the period of its motion,  
b) the maximum values of its speed and acceleration, and  
c) the displacement, velocity, and acceleration as functions of time. 

 
5. A 5.0 kg mass attached to a spring of force constant 8.0 N/m vibrates in simple harmonic 

motion with amplitude of 10.0 cm.  Calculate  
a) the maximum value of its speed and acceleration,  
b) the speed and acceleration when the mass is 6.0 cm from the equilibrium position, 

and  
c) the time it takes the mass to move from x = 0 to x = 8.0 cm. 
d) the total energy of the system 
e) the speed of the 5.0 kg mass when x = 5.0 cm 
 

6. A block of unknown mass is attached to a spring of force constant 6.5 N/m and 
undergoes simple harmonic motion with an amplitude of 10.0 cm.  When the mass is 
halfway between its equilibrium position and endpoint, its speed is measured to be +30 
cm/s.  Calculate  

a) the mass of the block,  
b) the period of the motion, and  
c) the maximum acceleration of the block. 
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Lesson 1 - Oscillations

• Harmonic Motion        
Circular Motion

• Simple Harmonic 
Oscillators
– Linear -

Horizontal/Vertical 
Mass-Spring Systems

• Energy of Simple 
Harmonic Motion

Math Prereqs

d cos
d

θ =
θ

d sin
d

θ =
θ

cos θ

sin− θ

2 2

0 0

cos d sin d
π π

θ θ = θ θ =∫ ∫ 0

2 2
2 2

0 0

1 1cos d sin d
2 2

π π

θ θ = θ θ =
π π∫ ∫

1
2

Identities

cos cos 2cos sin
2 2

θ + φ θ − φ
θ + φ =

2 2sin cos 1θ + θ =

( )cos cos cos sin sinθ ± φ = θ φ θ φm

2 1 1cos cos 2
2 2

θ = + θ

ie cos i sin± θ = θ ± θ

Math Prereqs

( ) ( )
T

0

1f t f t dt
T

≡ ∫

"Time Average"=

2 2cos t
T
π⎛ ⎞ =⎜ ⎟

⎝ ⎠

T T
2

0 0

1 2 1 1 1 2 1cos t dt cos 2 t dt
T T T 2 2 T 2

π ⎡ π ⎤⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫

Example:

Harmonic Relation to circular motion

( ) ( )x A cos A cos t= θ + φ = ω + φ

2
T
π

ω =
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Horizontal mass-spring

F ma=∑

Hooke’s Law: sF kx= −

2

block 2

d xkx m
dt

− =

2

2
block

d x k x 0
dt m

+ =

Frictionless

Solutions to differential equations

• Guess a solution
• Plug the guess into the differential equation

– You will have to take a derivative or two
• Check to see if your solution works.  
• Determine if there are any restrictions (required 

conditions).
• If the guess works, your guess is a solution, but it 

might not be the only one.
• Look at your constants and evaluate them using 

initial conditions or boundary conditions.

Our guess

( )x A cos t= ω + φ

Definitions

• Amplitude - (A) Maximum value of the displacement (radius of 
circular motion).  Determined by initial displacement and velocity.

• Angular Frequency (Velocity) - (ω) Time rate of change 
of the phase.

• Period - (T) Time for a particle/system to complete one cycle.

• Frequency - (f) The number of cycles or oscillations completed in 
a period of time

• Phase - (ωt + φ) Time varying argument of the trigonometric 
function.

• Phase Constant - (φ) Initial value of the phase. Determined by 
initial displacement and velocity.

( )x A cos t= ω + φ

The restriction on the solution

2

block

k
m

ω =

block

1 kf
2 2 m
ω

= =
π π

blockm2T 2
k

π
= = π

ω

The constant – phase angle
( )x t 0 A= = ( )v t 0 0= = 0φ =

( )x t 0 0= = ( ) 0v t 0 v= =
2
π

φ =

( )x A cos t= ω + φ ( )v A sin t= − ω ω + φ

( )2a A cos t= − ω ω + φ
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Energy in the SHO

2 2 21 1 1E mv kx kA
2 2 2

= + =

( )2 2kv A x
m

= ± −

Average Energy in the SHO

( )2 2 2 21 1 1U k x kA cos t kA
2 2 4

= = ω + φ =

( )2 2 2 2 2 2 21 1 1 1K m v m A sin t m A kA
2 2 4 4

= = ω ω + φ = ω =

( )x A cos t= ω + φ

( )dxv A sin t
dt

= = − ω ω + φ

K U=

Example
• A mass of 200 grams is connected to a light spring that has 

a spring constant (k) of 5.0 N/m and is free to oscillate on a 
horizontal, frictionless surface.  If the mass is displaced 5.0 
cm from the rest position and released from rest find:  

• a)  the period of its motion, 
• b)  the maximum speed and 
• c) the maximum acceleration of the mass.
• d) the total energy
• e) the average kinetic energy
• f) the average potential energy

“Dashpot”

dampingF bv= −

dxkx b ma
dt

− − =

2

2

d x dxm b kx 0
dt dt

+ + =

( )tx Ae cos t−α ′= ω + φ

Equation of Motion

Solution

Damped Oscillations

( )tx Ae cos t−α ′= ω + φ

( ) ( ) ( )t tdxv Ae sin t A e cos t
dt

−α −α′ ′ ′= = − ω ω + φ + −α ω + φ

( ) ( ) ( ) ( )
2

t 2 t t 2 t
2

d xa Ae cos t A e sin t A e sin t A e cos t
dt

−α −α −α −α′ ′ ′ ′ ′ ′ ′= = − ω ω + φ + α ω ω + φ + α ω ω + φ + α ω + φ

( ) ( ){ }t 2 2Ae 2 sin t cos t−α ′ ′ ′ ′⎡ ⎤= αω ω + φ + α − ω ω + φ⎣ ⎦

( ) ( )tAe sin t cos t−α ′ ′ ′= − ω ω + φ + α ω + φ⎡ ⎤⎣ ⎦

2

2

d x b dx k x 0
dt m dt m

+ + =

( ) ( ){ } ( ) ( ) ( )t t2 2 tb kAe Ae Ae 0
m m

cos t cos t cos2 sin tt sin t−α −α −α′ ′ ′+ − + + =⎡ ⎤′ ′ ′ ′⎡ ⎤α − ω ω + φ α ω + φ ω + φ⎣ ⎣ ⎦′αω ω + φ ω ω⎦ + φ

( ) ( )
t 2 2

b
2m b k cAe 0b2 s oin t

m
s t

m m
− ⎡ ⎤′ ′α − ω − α + ω + φ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′ ′αω − ω ω
⎧ ⎫

+ =⎨ + φ⎢ ⎥⎣ ⎦
⎬

⎩ ⎭

2
2k b 0

m 2m
⎛ ⎞ ′− − ω =⎜ ⎟
⎝ ⎠

2k b
m 2m

⎛ ⎞′ω = − ⎜ ⎟
⎝ ⎠

b
2m

α =

Damped frequency oscillation

2

2

k b
m 4m

′ω = −

2b 4mk≥

B - Critical damping (=)
C - Over damped (>)

b
2m

α =
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Giancoli 14-55

• A 750 g block oscillates on the end of a spring 
whose force constant is k = 56.0 N/m.  The mass 
moves in a fluid which offers a resistive force F = 
-bv where b = 0.162 N-s/m.  
– What is the period of the motion?  What if there had 

been no damping?
– What is the fractional decrease in amplitude per cycle?
– Write the displacement as a function of time if at t = 0, 

x = 0; and at t = 1.00 s, x = 0.120 m.

Forced vibrations

ext 0F F cos t= ω 0
dxkx b F cos t ma
dt

− − + ω =

2

02

d x dxm b kx F cos t
dt dt

+ + = ω

( )0 0x A sin t= ω + φ

Resonance

0
k
m

ω =Natural frequency

( )0 0x A sin t= ω + φ

( )
0

0 2 222 2
0 2

FA
bm
m

=
ωω − ω +

( )2 2
01

0

m
tan

b
−

⎛ ⎞ω − ω
⎜ ⎟φ =
⎜ ⎟ω⎝ ⎠

Quality (Q) value

• Q describes the sharpness of 
the resonance peak

• Low damping give a large Q
• High damping gives a small Q
• Q is inversely related to the 

fraction width of the resonance 
peak at the half max amplitude 
point.

0mQ
b
ω

=

0

1
Q

∆ω
=

ω

∆ω

Tacoma Narrows Bridge Tacoma Narrows Bridge (short clip)
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