
Speed of Sound in the Sea 

 The speed of a wave propagating through a medium is not a constant.  This is especially 
true for the non-homogeneous medium, the ocean.  The speed of sound through water has been 
found to be mainly a function of three factors.  They are temperature, pressure or depth and 
salinity.  Because the speed is not constant, sound does not travel along straight paths. 
 
Temperature 

In general, for most areas of the ocean, the water temperature decreases from the surface 
to the bottom, but there are many local variations.  Shallow layers see the most variation with 
time and depth (ie. Surface mixing, solar heating, currents, seasonal variations, etc).  In vary 
deep water, the temperature eventual becomes constant with depth at about 4 C. 

 
Depth 

Hydrostatic pressure makes sound velocity increase with depth because of variations in 
the bulk modulus, B.  This effect is linear in the first approximation with an increase of 0.017 
m/s per meter increase in depth.   

 
Recall in Physics I we showed that pressure varies with depth according to the simple 

formula, 
oP P gh= +ρ  
 

Leroy formula (1968) gives a precise hydrostatic pressure: 
 

( )3 6 2P 1.0052405 1 5.28 10 sin z 2.36 10 z 10.196 10  Pa

 - latitude in degrees
z - depth in meters

− −⎡ ⎤= + × φ + × + ×⎣ ⎦
φ
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(From:  Lurton, X. An Introduction to Underwater Acoustics, 1st ed.  London, Praxis Publishing 
LTD, 2002, p37)  
 
Salinity 
 

The change in the mix of pure water and dissolved salts effects sound velocity.  Salinity 
is expressed in practical salinity units (p.s.u.).  These unit have the same magnitude as the 
traditional parts per thousand (‰).  Most oceans have a salinity of 35 p.s.u., although salinity can 
vary locally based on hydrological conditions.  Closed seas have a greater difference in their 
salinity (38 p.s.u. for Mediterranean Sea due to evaporation, 14 p.s.u. for Baltic Sea due to large 
freshwater input).  Salinity varies very little with depth, but there can be stronger variations near 
river estruaries, melting ice, etc. 
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Velocity Models 
 
 In the 1940’s, sound velocity variations and their affect on acoustic propagation were first 
noticed and studied.  It is very difficult to locally measure sound velocity, but easy to measure 
the parameters that affect it (temperature, salinity, and depth).  Several models have been created 
to predict sound velocity.  A good first approximation is that developed by Medwin (1975).  It is 
simple but limited to 1000 meters in depth: 
 

( ) ( )( )2 2 4 3 2 2c t, z,S 1449.2 4.6t 5.5x10 t 2.9x10 t 1.34 10 t S 35 1.6x10 z

with the following limits:
0 t 35  C
0 S 45 p.s.u.
0 z 1000 meters

− − −= + − + + − − +

≤ ≤ °
≤ ≤
≤ ≤

−

 

Where c is the speed of sound as a function of temperature, t, depth, z, and salinity, S. 
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(From:  Lurton, X. An Introduction to Underwater Acoustics, 1st ed.  London, Praxis Publishing LTD, 2002, p37) 
  
More recent and accurate models have been developed and include Chen and Millero (1977).  
Their model is endorsed by UNESCO and used as the standardized reference model: 
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Where, 
t - temperature (  C)
z - depth (m)
S - salinity (p.s.u.)

°
 

As you can see, the speed of propagation has a very complicated dependence on these 
three factors.  Some thumbrules that you can use to relate the dependence of the speed of sound 
in seawater to each of the factors are:  

 

speedin  increase m/s 1.3 salinity in  increaseppt  1
speedin  increase m/s 1.7 depth  of meters 100

speedin increasem/s3turein temperaincrease C 1

⇒
⇒

⇒°
 

(From: Principles of Naval Weapons Systems, Edited by Joseph B. Hall, CDR, USN, Dubuque, IA:  Kendall/Hunt 
Publishing Co, 2000, p.179) 

 
Seawater contains many inhomogenieties, including bubble layers close to the surface, 

mineral particles in suspension, and living organisms.  These are all potential scatterers of 
acoustic waves, especially at higher frequencies. 

Measuring the Speed of Sound in the Ocean 

 To predict the direction of propagation of a sound wave in the ocean, we must know the 
speed of sound as a function of position (or depth) in the ocean water.  To measure the speed of 
sound in water, the Navy has developed several tools to measure the temperature of the seawater 
as a function of depth or the velocity of sound directly. 
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 The most widely used tool is an Expendable BathyThermograph or XBT (picture 
compliments of ES419).  XBTs are launched from submarines, surface ships and even aircraft.  
These measure the temperature of the water as the device sinks at a known rate and transmits this 
back to the launching platform.  This provides a detailed plot of temperature as a function of 
depth.  Neglecting salinity, the Sound Velocity Profile or SVP can be calculated as a function of 
depth and temperature (since these cause the greatest variation in the speed of sound in 
seawater.) 
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Many modern submarines are often equipped with velocimeters that calculate the speed 
of sound in situ.  Other submarines have systems that calculate and record sound speed using 
temperature and depth measurements from onboard ships instruments. 

 
Expendable Bathythermographs produce graphs of water temperature and sound speed as 

a function of water depth as seen below.  In the next lesson we will examine typical plots in more 
detail for tactical significance.  For now you should familiarize yourself with the basic shape of 
these typical plots. 
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Using a Sound Velocity Profile and Snell's Law 

 We will now shift from thinking of sound as a wave and using the wave equations to 
sound as a ray and using Snell’s Law.  We can look at either the grazing angles, referenced to the 
horizontal and used when looking at refraction, or incidence angles, referenced to the vertical 
and used for refraction and backscattering. 
 

In the below sketch, a plane wave is moving towards a boundary beyond which the speed 
of sound is much slower.  As the wavefronts hit the boundary they slow down and bend more 
normal to the boundary.  Specific examination of the wave after the right edge hits the boundary 
at point A shows that the left side of the wavefront must travel a distance from B to D expressed 
as the product of the sound speed c1 and some time interval ∆t.  In that same time interval the 
right edge of the wave front moves from A to E expressed as the product of sound speed c2 and 

some time interval ∆t.  Using trigonometry we see that the ratio of the cosine of the grazing 
angle to the speed of sound remains constant across the boundary.  This observation is called 
Snell’s Law.   

Refraction
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2θ

1= ∆BD c t

2= ∆AE c t

( ) 1
1cos ∆
= =

BD c t
AD AD

θ

( ) 2
2cos ∆
= =

AE c t
AD AD

θ

( ) ( )1 2

1 2

cos cos 1
= =

∆ ∆c t c t AD
θ θ

High c1

Low c2

1θ

( ) ( )1 2

1 2

cos cos
=

c c
θ θ

 
Snell's law and ray theory are well suited for each other.  Imagine that a sound ray is 

transmitted through a series of mediums label 1 through 4 with sequentially increasing sound 
speed.  In each medium, the angle the ray makes with the horizontal, θ, will depend on the angle 
it has in the previous medium and the speed of sound for each medium.  The figure below 
depicts the relation. 
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                      where c1 < c2 < c3 < c4       and θ1 > θ2 > θ3 > θ4  

According to Snell's Law 

( ) ( ) ( ) ( ) constant
cccc n

n

3

3

2

2

1

1 =
θ

==
θ

=
θ

=
θ cos....coscoscos  

Notice that when a ray is in a layer and horizontal, θ = 0° and the cos(θ) = 1.  We call the speed 
of sound when the ray is horizontal, co. 
 

Sound Rays Travel in Arcs 
  
Using Snell's Law from above, we can approximate the behavior of a sound ray as it travels 
through a medium where the speed of sound is changing at a constant rate.  Let's take the 
example where the speed of sound increases as a function of depth as shown.   
 
 If the speed of sound increased in each layer as shown, a sound ray would travel in a path 
the same as the one already shown.   
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(Notice that the sound ray is bending back towards the layers where the sound 
speed is lower.  This can be used later to qualitatively determine the ray path for 
sound in water.)  
 
More realistically though, the speed of sound changes as a continuous function.  If we use a 
continuous function instead of the step function for the speed of sound vs. depth, the speed of 
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sound as a function of depth can be described by a simple linear equation.  This result can be 
used to find functions for the radius of the path of the sound ray as well as other quantities.  
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(Korman, M.S. Principles of Underwater Sound and Sonar, the preliminary edition.  Dubuque, IA:  Kendall/Hunt 
Publishing Company, 1995, pgs 145-147) 
 
The speed of sound, shown as the dotted line, can be expressed as (c1 is the surface temperature): 

1c c gz= +  
where g is the gradient, 

z
c

g
∆

∆
= .  From Snell's Law and inserting our relation ship for c, yields: 

( )

1

1

1 2

1 1

1

cos cos
c c

cos cos
c c gz

z R cos cos

θ θ
=

θ θ
=

+

= θ− θ

 

where R is defined as:  1

1

cR
g cos

≡
θ

 .  Soon we will show R is the radius of curvature of the 

sound ray.  θ is always measured clockwise from the horizontal axis. 

  

Ray Theory Geometry
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In polar coordinates we know that the slope of a line is 
dz tan
dx

= θ  

From above we see that dz .  To find how the ray angle varies with distance x, R sin d= − θ θ
sindx R d R cos d
tan

θ
= − θ = −

θ
θ θ  

Integrating both sides gives the result that: 
[ ]1 1x x R sin sin− = − θ− θ  

Integrating both sides of dz gives: 
[ ]1 1z z R cos cos− = θ− θ  

Rearranging these two equations: 
1 1

1 1

x x R sin R sin
z z R cos R cos
− − θ = − θ
− + θ = θ

 

Or 
p

p

x x R sin

z z R cos

− = − θ

− = θ
 

With 
p 1 1

p 1 1

x x R sin

z z R cos

= − θ

= + θ
 

Squaring the top two equations and adding the results gives the equation of a circle, 

( ) ( )2 2 2
p px x z z R− + − =  

Specificically, the circle has radius, 1

1

cR
g cos

≡
θ

, and is centered at the point (xp,zp).  Thus we 

have shown that a sound ray in a layer of constant sound speed will travel along the arc of a 
circle. 
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To sum up the results then: 
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Time to travel in layer n 

( 1
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1

cos −
−

− −= n
n

n
n g

cs θθ
θ

) Curvilinear Path Length 

 These equations will only work for one specific sound ray emanating from a source in an 
environment with a constant gradient.  The last two equations in the table are presented without 
proof, but are useful results from many standard sources. 
 
Example 1 
 
Let’s look at the following example. 
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csurface=1500 m/s 

θII=30° 

θI=20° 

c100 m=1510 m/s 

 Sound leaves the ship at two different angles, θ1 and θ2.  Note the path travelled by each 
ray is different and if we calculate the parameters R, ∆x and ∆z, each of these will be different 
for each ray.   
  
For both rays, the gradient, g, is a constant.  This is calculated as such: 

( )
( )

1-sec 1.0
m100-0

m/s15101500

=

−
=

∆
∆

=

g
z
cg

 

We must now calculate the radius of curvature, R of each ray separately: 

( )( )
meters 000,16

20cossec 0.1
m/s 1500

cos 1-
1

=
°

==

I

I

R
g

cR
θ  

and  

( )( )II -1
II

II

c 1500 m/sR
g cos 0.1 sec cos30

R 17,300 meters

= =
θ °

=

 

The skip distance, X, is the distance between successive places where the sound ray 
stikes the surface.  The easiest way to calculate this is to calculate the displacement, ∆x, from 
where the sound strikes the surface first to where the sound has leveled off or gone horizontal (θ2 
= 0°).  Thus: 

( )
θ

θ
sin2

sin0sin22
RX

RxX
=

−°−=∆=  

where θ is the angle of reflection from the surface.  So for each ray: 
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( )
m 000,11

20sinm 000,162
=

°=

I

I

X
X

 

and 
( )

m 300,17
30sinm 300,172

=
°=

II

II

X
X

 

The results of the calculations for each ray are significantly different from each other and 
show how the ray paths depend on the initial angle of the ray. 

We can do the same for the depth the rays to.  The maximum depth excursion of the ray 
below its starting depth occurs when the ray goes horizontal again (θ2 = 0°) or: 

( )
( )θ

θ
cos1

cos0cos

max

max

−=∆
−°=∆

Rz
Rz

 

so for each ray: 

feet) (7600 m 2320
feet) (3170 m 965

max,

max,

=∆

=∆

II

I

z
z

 

Example 2 

Also try the following example problem.1

c0

c2

c1 
0° θ2

θ1 

Use the figure above and the following information to answer the questions. 
 
 a.  If θ2 = 30°,  c2 = 1299 m/s, c1 = 964 m/s, what is θ1? 
  Using Snell's Law we have: 

°=⎥⎦
⎤

⎢⎣
⎡ °=

=

=

− 5030cos
1299
964cos

cos
cos

coscos

1
1

2

2
11

2

2

1

1

θ

θ
θ

θθ

c
c

cc

 

                                                           
1 From:  Korman, M. S. Principles of Underwater Sound and Sonar, the preliminary edition, p. 144.  
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 b.  Determine c0. 
  Again using Snell's law and the θ0 = 0° 

m/s 1500
cos30

/ 1299
cos

0

0
2

2

=
°

=

=

smc

cc
θ  

 c.  What is the gradient if ∆z = 3000 m between points "1" and "0"? 

1-

10

s 18.
3000

/964/1500

=

−
=

∆
−

=
∆
∆

=
m

smsm
z
cc

z
cg  

d. What is the radius of the sound ray path? 

( ) ( )( )
meters 8330

50coss 0.18
m/s 964

cos

1-

1

1

=
°

=

=

R

R

g
cR
θ
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Problems 

1. A submerged submarine is at 10 meters. 
a) Use Medwin’s Equation to determine the speed of sound in the water if the salinity is 

35.0 ppt and the seawater injection temperature is 20.0°C. 
b) If the submarine in the problem above submerges to 200. meters and the seawater 

injection temperature goes down to 5.00°C, what is the new sound speed? 
c) Determine the average gradient between the two depths in the problems above. 
d) Is this a positive or negative sound gradient? 
e) Sketch the SVP and sketch the approximate of several sound rays emanating from the sub 

when it is at a depth of 10.0 meters. 
f) If sound radiates from the sub at a depth of 10.0 m at an initial angle of 15° with respect 

to the horizontal, determine the angle of depression of the sound when it has reached a 
depth of 500. meters (assume the gradient is constant.) 

g) Determine the Radius of Curvature of the sound ray. 
h) Determine the horizontal displacement of the sound ray as it goes from 10.0 meters to 

500. meters. 
 
 c (m/s) 1498.1 1500.2 

surface 

100 

50 

depth (m) 

2. Use the following SVP to 
complete the next problems: 
a) Calculate the gradient of 

the SVP. 
b) If a sound ray exits 

horizontally from a sub 
that is at 50.0 m, what 
will be its grazing angle 
when it hits the surface 
of the ocean? 

c) If a ray reflects off the 
surface of the ocean at an 
angle of 2.15° (assume 
the surface is perfectly 
flat), what will be the 
skip distance of the 
sound ray? 

d) This is an example of: 
i) a positive gradient 
ii) a negative gradient 

e) If a sub is at 50.0 m, what is the largest angle below the horizontal where the ray will not 
reach 100. m? 

f) What is the skip distance of the limiting ray? 
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Use the following SVP for the remaining problems: 

Sound velocity profile in the deep sound channel
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3. Compute the sound speed gradients for 0 < z < 1
 
4. A ray starts at 1525 m with a grazing angle if 15

pointed below the horizontal).  
a) What are the sound speeds at depths of 1525 
b) Does the ray curve upward or downward? 
c) What is the grazing angle at 2440 m? 
d) At what sound speed will the ray become hor

of 0 degrees)? 
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c1 = 1517.9 m/s  (surface) 
 
c2 = 1493.5 m/s  (1200m) 
 

c3 = 1556.0 m/s  (4800 m) 
 

c3

200 m and 1200 < z < 4800. 

 degrees (recall a positive grazing angle is 

m and 2440 m? 

izontal (a horizontal ray has a grazing angle 



5. A sound source is at a depth of 1200 m.   
a) At what angle with respect to the horizontal does the ray have to make at 1200 m so that 

that when it reaches the surface the grazing angle is 0 degrees?  This is called the surface 
limiting ray. 

b) What angle with respect to the horizontal does a ray have to make at 1200 m so that when 
it reaches the bottom at 4900 m, the angle is 0 degrees?  This is called the bottom limiting 
ray. 

c) At what depth below 1200 m is the sound speed equal to that at the surface? 
d) At what angle with respect to the horizontal does a ray have to make at 1200 m so that 

when it reaches the the depth found in c), the grazing angle is 0 degrees?  This is called 
the lower limiting ray 

e) Compute the radius of the surface limiting ray. 
f) Compute the radius of the bottom limiting ray. 
g) Compute the radius of the lower limiting ray. 
h) Compute the horizontal distance that the bottom limiting ray travels from the source until 

it grazes the bottom. 
i) Compute the horizontal distance that the surface limiting ray travels from the source until 

it just grazes the surface. 
 
6. A ray leaving a sound source at 1200 m points downward with an angle of 30 degrees with 

respect to the surface.  
a) How far will it travel horizontally until its angle with the horizontal is 25 degrees? 
b) At what depth does the ray in a) make an angle of 25 degrees with respect to the 

horizontal. 
 
 
 

4-15 



1

Speed of Sound in WaterSpeed of Sound in Water

D
ep

th
D

ep
th

D
ep

th
D

ep
th

D
ep

th
D

ep
th

SalinitySalinity PressurePressure TemperatureTemperature

Medium Effects:  Elasticity and DensityMedium Effects:  Elasticity and Density

Salinity                     Pressure             TemperatureSalinity                     Pressure             Temperature
Variable Effects of:Variable Effects of:

Speed of Sound Factors

• Temperature
• Pressure or Depth
• Salinity

speedin  increase m/s 1.3 salinity in  increaseppt  1
speedin  increase m/s 1.7 depth  of meters 100

speedin increase m/s 3  turein temperaincreaseC1

⇒
⇒

⇒°

Temperature, Pressure, and Salinity
( ) ( )( )2 2 4 3 2 2c t, z,S 1449.2 4.6t 5.5x10 t 2.9x10 t 1.34 10 t S 35 1.6x10 z

with the following limits:
0 t 35  C
0 S 45 p.s.u.
0 z 1000 meters

− − − −= + − + + − − +

≤ ≤ °
≤ ≤
≤ ≤

Sound Speed Variations with Temperature and Salinity 
(z = 0 m)

1380
1400
1420
1440
1460
1480
1500
1520
1540
1560
1580

0 5 10 15 20 25 30 35 40

Temperature (C)

S
ou

nd
 S

pe
ed

 (m
/s

)

0
30
35
40

ppt salinity

Class Sound Speed Data
Class Sound Speed in Water Data

y = 0.0004x3 - 0.0807x2 + 6.2061x + 1393.4

1400

1420

1440

1460

1480

1500

1520

0 5 10 15 20 25

Temp (C)

So
un

d 
S

pe
ed

 (m
/s

)

Series1
Poly. (Series1)

More Curve Fitting

2 2 4 3 6 4 9 5
o

4 6 2 7 3
1

3
2 3 22

0 1 2 3

P Pressure from Leroy Formula
c 1402.388 5.03711t 5.80852x10 t 3.3420x10 t 1.478x10 t 3.1464x10 t

c 0.153563 6.8982x10 t 8.1788x10 t 1.3621x10 t 6.1185 1.362

c = c + c P+ c P + c P + AS+ BS + CS

− − − −

− − −

=

= + − + − +

= + − + − + 10 4

5 6 8 2 10 3 12 4
2

9 10 12 2
3

2 3
o 1 2 3

5 5 8 2 8 3
1

1x10 t
c 3.126x10 1.7107x10 t 2.5974x10 t 2.5335x10 t 1.0405x10 t
c 9.7729x10 3.8504x10 t 2.3643x10 t

A A A P A P A P

A 9.4742x10 1.258x10 t 6.4885x10 t 1.0507x10 t 2.01

−

− − − − −

− − −

− − − −

= − + − +

= − + −

= + + +

= − − + −

( )

10 4

7 9 10 2 12 3
2

10 12 13 2
3

2 5 5 7

6 3

22x10 t
A 3.9064x10 9.1041x10 t 1.6002x10 t 7.988x10 t
A 1.1x10 6.649x10 t 3.389x10 t

B = -1.922x10 -4.42x10 t 7.3637x10 1.7945x10 t P

C = -7.9836x10 P+1.727x10  

−

− − − −

− − −

− − − −

− −

= − + − +

= + −

+ +

( )3 6 2 4P 1.0052405 1 5.28 10 sin z 2.36 10 z 10.196 10  Pa

 - latitude in degrees
z - depth in meters

− −⎡ ⎤= + × φ + × + ×⎣ ⎦
φ

Chen and Millero

Leroy

Expendable BathythermographExpendable Bathythermograph

LAUNCHER

RECORDER

Wire Spool

Thermistor

PROBE (XBT)

Canister Loading Breech

Terminal
Board

Stantion

Launcher Recorder
Cable (4-wire
shielded)

Alternating Current 
PowerCable (3-wire)

Optional
Equipment

Depth/Temperature
Chart

Canister Loading Breech

Lesson 4



2

Typical Deep Ocean
Sound Velocity Profile (SVP)

Typical Deep Ocean
Sound Velocity Profile (SVP)
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Ray Theory Geometry

Positive gradient, g
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The z (Depth) and x (Range) Directions

θI=20°

csurface=1500 m/s
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The z (Depth) and x (Range) Directions 

θI=20°

csurface=1500 m/s
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Why is R = Radius?

Positive gradient, g
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Positive gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R

( )1 1x x R sin sin− = − θ− θ

( )1 1z z R cos cos− = θ− θ

1

1

cR
g cos

=
θ

1

1

cos cos
c c
θ θ

=

1

1

c c cg
z z z

∆ −
= =
∆ −

Negative Gradient

Negative gradient, g
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Example 1

• Given:  c1 = 964 m/s, c2 = 1299 m/s, θ2 = 30o

∆z(between 1 and 0) = 3000m

• Find:     θ1, co, g (between pt 1 and 0), R

c0

θ1

θ2 0°
c1

c2

Example 2

• Find gradient, g
• Find Radius of Curvature, R, for each ray.
• Skip distance – i.e. the distance until the ray hits 

the surface again
• Max depth reached by each ray

θI=20°

θII=30°

csurface=1500 m/s

c100 m=1510 m/s
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Backups 1
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