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1. (35) A 2.00 kg mass on the end of an ideal spring (no damping) with
spring constant 72.0 N/m is driven by a force:

(o),
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a. (2) What is the driving frequency? What i 1s the period?
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b. (4) What is the equation of motion for this system? 4
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c. (3) What is complex impedance for this system at the frequency of the dnver‘?

o < \ - J2.0 t L leg '
i - =) - } 7 dec - it = I35k (. - 4
L- ~ = 5 K LM Lt ) ' < \f 8 = / 8 16 'f:‘, j .‘f\\ ] .

= 4 (32 "B ‘
d. (3) What is the magnitude and phase of the complex impedance at this frequency?
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e. (3) What is thegteady state complex partlcle velocity?
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f. (3) What is the steady state complex position? 'What is the real part? (95{ .
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g. (3) What is the real part of the transient solution for the posmon of the
mass? Remember, you must have two arbitrary constants in this solution.

Yoo = A cos (u;ﬁ + )

h. (2) What is natural frequency of the system?
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1. (3) What is the real part of the complete solution for the position of the mass at any

time? '
L= ~.0208m Cos éﬁgt)&tzﬁ (o5 . SO

J (3)What is the real part of the complete solution for the velocity of the mass at any
time? :
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J. (6) At t =0 sec, the mass is at rest at +0.030 m. Evaluate the arbitrary constants.
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2. A square wave periodically repeating elecmcal-mgnahs-sent-to the oscilloscope according to
the following mathematical pattern:

=1y for-ZSﬁtSOs
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2, a. Draw and label this voltage pattern from -5 s to +5 s.
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3 b What is the period and fundamental angular ﬁ'equency, o?
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% b. Is this signal odd or even? 's affect your expected Fourier coefficients?
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% c. What is the average value of the 51gnal Howms this aﬂ‘ectyour expected Fourier
coefficients?
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%\ e. Write the 1rst four owest frequency terms that a approximates this SIgnal

-1 3. §[ 3 mn] { cos Wl = qi
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3. (10) A laboratory study of the impedance of a system (in this' case a loudspeaker) shows the
below results. We have made the case that the uppergn@llpwg' half power points are near to the
extremes of the imaginary part of the complex impedance. - &
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a. (4) From this data, estimate the resonance Q factor for this system
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b. (3) Using a very clever expenmental techmque you esnmatc the effective damping
resistance of the system (both mechamcal' mpin t%;__ adiation combined) to be 1.8
kg/sec. What is the overall effective wbrfhng mas 0 system?

= AT g a2 (Le5) (v )
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¢. (3) From this estimate of effective mass of the system, what is the spring constant of the
system? = o RN -
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