
Beam Pattern Function for 
Two Element Array 

    
 

If we had a single hydrophone, with an omni-directional response, sounds would appear 
to come from all directions.  In other words, we could not determine what direction a sound 
came from.  If we could somehow limit the direction our system would listen, we could possibly 
determine the bearing a sound came from and maybe increase the ratio of the signal power 
received to the noise power received.  (Increase SNR which is a good thing.) 
   
 One way to do this is to use more than one hydrophone.  What if we use two 
hydrophones connected at a distance d apart from each other.  Recall from our previous studies 
that the hydrophone converts the mechanical sound signal to an electrical signal or voltage.  We 
can mathematically describe this process by introducing a quantity M, the transducer sensitivity 
constant.  M is used to convert the mechanical pressure quantity to an electrical signal, where: 
 

( ) ( )tpMtv ∗=  

Now let’s look at the arrangement of the two hydrophones and how their output is used. 
 

 First examine the diagram for a basic two-hydrophone array, sonar system.  The outputs 
of each hydrophone are combined in a beam former (they are added together), then the quantity 
squared to find the amount of power in the signal and noise incident on the hydrophones.  (See 
the following diagram.)  
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 the two hydrophones at some angle other than 
rophones, the sound wave will have to travel some 

 hydrophone.  (See diagram below.)   
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θsinx where d=∆  
 
A phase factor, δ, can be inserted in the one-dimensional wave equation to describe the 

pressure of the wave as it is incident upon each hydrophone where: 
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When the output is then squared it is actually measuring is the power of the incoming signal (or a 
signal proportional to the rate of sound energy incident on the hydrophones.) 
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If we then display the time-averaged power derived from the equation above, we get: 
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So depending on the value of δ (which is equal to kdsin(θ)), the time averaged power will be: 
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Two-dimensional Beam Pattern 

 Why have we calculated the time-averaged power?  Since the value for δ depends on the 
angle of the incoming sound wave from the array axis, the power received depends on the angle 
at which the sound ray is incident on the array.  We can describe this angular dependence with 
one equation to relate the actual power received to the time averaged power on the axis (where 
θ=0° and the power is a maximum.)  This ratio is the two-dimensional beam pattern function of 
the array, b(θ) where: 
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using a trigonometric identity that 21 cos 2 cos
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 The beam pattern function determines the magnitude of the received power at every 
angle, to the maximum received power, thus the beam pattern function will vary (as a function of 
angle) between 0 and 1. 
 

( ) 10 ≤≤ θb  

 The key now is to determine what important parameters we can determine from the beam 
pattern function.  Below is a polar plot of the beam pattern function for a two element array 
where the separation in elements is equal to twice the wavelength. 
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Maximum Power Angles (θmax) 

 Any angle where b(θ) = 1.  Using our previously derived formula for b(θ), there can be 
many angles where this occurs.  From b(θ): 
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Below are listed the max power angles for various ratios of λ/d: 

λ/d θmax 

(between 0° and 90°) 
2.0 0° 
1.0 0°,90° 
0.5 0°, 30°, 90° 

0.333 0°, 19.5°, 41.8°, 90° 
0.25 0°, 14.5°, 30°, 48.6°, 90° 

 

Notice that the lower the ratio of λ/d, the higher the number of maximum power angles. 

Null Angles (θnull) 

 The angles where the beam pattern function is equal to zero.  If any sound ray arrives at 
any of the null angles, little or no power from the incoming sound ray is received because of 
destructive interference between the signals received by each of the separate elements in the 
array.  We calculate the null angle by setting the beam pattern function equal to zero as shown 
below. 
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Below are listed the null angles for various ratios of λ/d: 

λ/d θnull 

(between 0° and 90°) 
2.0 90° 
1.0 30° 
0.5 14.5°, 48.6° 

0.333 9.6°, 30°, 56.4° 
0.25 7.2°, 22.0°, 38.7°, 61.0° 

Beamwidth (θBW) 

 The beamwidth of a beam is the angular displacement between the angles where the 
beam pattern function, b(θ), is greater than 0.5.  If any sound ray arrives at any angle within the 
beamwidth, the sound ray may be detectable.  We assume that if a ray arrives at an angle outside 
the beamwidth that the signal will not be detectable.  Within each beam, at least half of the 
power of the original wave will be received (not cancelled due to destructive interference 
between the elements of the array.)  
 
 The beamwidth is important because it is proportional to the bearing accuracy of the 
specific beam.   
 
 When we detect a sound, we can electronically determine which beam that the sound 
arrived in but not specifically at what exact bearing in that beam.  Thus, the smaller the beam 
width, the greater the bearing accuracy.  It is important to not then that beam width is not only a 
function of the frequency of the sound but what beam the sound arrives in. 
 
 Referring to the diagram on page 13-4, the beams on the “beam” of the array 
(perpendicular to the array axis) are much narrower than the beams on the array axis (also called 
the “end-fire” beams.) 
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Dependence Of Beam Pattern On Frequency 
 For most physical arrays, the separation distance between the elements, d, is a fixed 
distance.  Since all of the previous parameters depended on the ratio of λ/d, every one of the 
parameters will depend on the frequency (and thus the wavelength) of the sound incident on the 
array.  To show the dependence of the beam pattern of a fixed array on frequency, several beam 
patterns are shown below:   
 Frequency = 750 Hz  Frequency = 1500 Hz 

 Frequency = 3000 Hz  Frequency = 6000 Hz 

 

 Frequency  = 1975 Hz  Frequency = 5314 Hz 
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Three-Dimensional Beam Pattern 

 Lastly, we must remember that we live in a three-dimensional world.  So why did we 
spend so much time exploring the two-dimensional beam pattern?  The beam pattern is 
independent of the angle φ in a three-dimensional environment.  An example of a three-
dimensional beam pattern is shown below. 

 

array elements 

 The only difference between the two-dimensional beam patterns we previously derived 
and the three-dimensional beam pattern shown above is that the three-dimensional beam pattern 
is the two-dimensional pattern rotated about the array axis.  In the example above, the elements 
lie on the x-axis as shown. 

13-8 



Problems: 

1. You have a two element array as shown in the sketches below.  The separation between the 
elements is as indicated.   Each point element is omni-directional and calibrated to give 0.001 
volt per Pascal.  Find the total voltage generated from the array for a traveling wave 

( ) o
2p x p cos x tπ⎛ ⎞= −⎜ λ⎝ ⎠

ω ⎟  (with maximum amplitude po = 1 Pa) in each of the following 

situations.  The time is at the instant shown in the sketch 
a)   

 
b) 
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c) Repeat b) for an angle of 30o. (Draw your own sketch) 
d) Repeat a) for the case where one of the elements is moved to the trough. (draw your own 

sketch) 
 
  
2. Given a 2 element array with a 1.0 m spacing between elements, determine the following 

assuming the frequency is 3000 Hz and c = 1500 m/s. 
 

a) The wavelength of the sound. 

b) The maximum power angles from 0° ≤ θ ≤ 90°. 
 
c) The null angles from 0° ≤ 

θ ≤ 90°. 
 

d) The beam width about 0° 
. 
e) The beam width about 30°. 
 
f) Complete a polar plot of 

b(θ).   
 

 
 
 

 
3. The half power beamwidth is 

defined as: 
a) The angular separation between the first two null angles of an array. 
b) The angular separation between the two “3dB down” angles of the main beam of the 

array. 
c) The directivity index of the array divided by 2. 
d) The area of the beam pattern of an array where there is no chance of detection. 

4.  You are given a two element array with identical omni directional hydrophones.  Let the 
spacing between the hydrophones be λ/2.  Calculate the beam width of the main lobe (beam 
width is the angular separation of the half power points) 

 
5.  An array consisting of two identical elements placed 40 cm apart is receiving sound of a 
wavelength of 12 cm. 

a)   Locate the angles where there are nulls in the beam pattern function. 
b)  Locate the angles where there are maxima (or side lobes). 
c) Calculate the value of b(θ) for a sufficient number of additional angles such that you can 

plot  b(θ) for 0<θ<90.  Plot b(θ) vs θ on polar graph paper. 
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6.  Design a 2 element array with a half –power full beam width of 25 degrees at 15 kHz.  The 
spacing between the two elements is:______________________ 

13-11 



1

Superposition Fourier Series
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2 Dimensional Example
Single Hydrophone
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Beam Pattern Function
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3-d Beam Pattern Effect of Increasing Frequency
 Frequency = 750 Hz  Frequency = 1500 Hz 

 Frequency = 3000 Hz  Frequency = 6000 Hz 
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