
Directivity Index and Multi-element Arrays 

 At the beginning of the last section, we began discussing how it would be possible to 
increase the response and the signal-to-noise ratio by increasing the number of elements that we 
used to receive sound.  This also led to the formulation of the beam pattern function and drawing 
the response patterns for a simple two-element array.   
 
 We will quantify the affect of increasing the number of elements in our array by deriving 
an expression called the Directivity Index.  The Directivity Index is the ratio of the total noise 
power in an isotropic noise filled environment, incident on an array, compared to the power 
actually received by the system.   

omni directional noise

directional noise

NDI 10log
N

−=  

where Nomni-directional noise (NND) is the power of the isotropic noise incident on the array and 
Ndirectional noise (ND) is the power of the isotropic noise received by the array.  
  
 To calculate the Directivity Index of an array,  

( )

2
ND i

D i

N 4 r I

N I b , d

= π

= θ φ A∫∫
 

φ

dφ

z

y θ

dθ

rdθ

r cos dθ φ

x 
 

14-1 



As shown in the above sketch, θ is the latitude angle measured up from the plane of the equator 
(x-y plane) and φ is the longitude angle measured from the x-z axis.  The area of a small 
elemental area on this surface can be found from the following equation, obtained by multiplying 
the dimensions of the element. 
 
 2dA r cos d d= θ θ φ  

 
The integrations over θ must be from 0 to 2π and the integration over φ is from –π/2 to +π/2.  
When calculating the omni or non-directional power, b =1 and it is easy to show that the 
integration over θ and φ result in a factor of 4π.    Similarly, to calculate the directional noise 
level: 
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Since the beam pattern function is independent of θ such that b(θ,φ)=b(θ) and because the beam 
pattern function is symmetrical about the x-axis, the double integrals can be evaluated as below. 
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When this is all combined to calculate the Directivity Index: 
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If we can solve the integral of the beam pattern function in the formula above, we can determine 
the Directivity Index of a given array.  The key will be to determine the beam pattern function 
for the specific array and to evaluate the integral. 

Directivity Index for a 2-element Array 

 If we evaluate the integral in the equation above for a 2-element array, we get the 
following: 
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Since the denominator inside the logarithm is simply: 
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 The student should note then that the Directivity Index of an array varies as a function 
of frequency (or wavelength) of the incident sound.  When we are evaluating the Directivity 
Index for an array, normally we will calculate the DI using the center frequency of the frequency 
band of the processor. 
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n-Element Array 
 

Beam Pattern Function 
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We will study an n-element array with separation, d, between elements and an acoustic wave 
incident at an angle θ just as we did for the two element array.  To find the total voltage from all 
n-elements we have to add up the voltage from each element and then square the result.  For the 
two element case we were able to accomplish this mathematical task using trigonometric 
identities.  The task is more complicated with 3 or more elements so we will use a technique 
borrowed from electrical engineering called phasor addition. 
 
Recall from our electrical engineering that we often used phasor addition to add up AC sin waves 
in three phase systems.  In this technique, the voltage from each array element is represented by 
a vector-like arrow whose direction is defined by the difference in phase that the element has 
from the voltage of the adjacent array elements.  This “phase angle” representation is where the 
technique gets its name. The so called “phasor” diagram if formed by connecting the individual 
“phasors” head to tail analogous to vector addition.  If the output from a hypothetical array with 
three elements each differed by 120o or 2π/3 radians, the below expressions would represent the 
output from each:   
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If we added up these three voltages, the phasor diagram would appear as below at the time, t=0 
sec.  If somehow we had an output equal to the sum of these three voltages, the output must be 
zero volts.   
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More often in our EE class, we were interested in the difference between 2 phases of a system.  
We employed phasor subtraction to find the real and reactive parts of this difference.  Hopefully 
it is obvious that the magnitude of the difference between v1 and v2 in our example is Vo. 
 
For our multi-element array, the difference in phase between adjacent elements is δ = k ∆x.    In 
the above diagram, we see that each element of the array sees the same wavefront after it has 
traveled an additional distance ∆x = d sinθ  from the element next to it.  The phase difference 
between elements is then δ = kdsinθ.  The total voltage of beamformer obtained by summing the 
individual elements is therefore: 
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Using a phasor representation, we want to find the resulting amplitude of the sum, A, and 
sometimes even the resulting phase angle, φ.  A geometric construction of each of the phasor 
elements in the sum is drawn as in the diagram below.  In this case a 6 element array is shown.   
 

 
 
Segment AG is the resulting amplitude of the sum, A.  We see that the phasors are 
approximating the arc of a circular path of radius, R, such that 
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since  APa is 
2
δ

∠ .  Similarly, since n A APM =  and the midpoint of the chord is =
2 2
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Combining these two results and solving for V(θ), 
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It is customary to write nVo in the numerator since this would be the voltage if the wave arrived 
at each element of the array at the same time.  In this case we would call nVo the maximum 
voltage, Vm.  
 
The overall phase of the resulting sum is simply, 

n
2
δ
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Since δ = kdsinθ = 2πdsinθ/λ, the total voltage can be written as a function of the angle, θ, 
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The power seen by the beamformer is then,  
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Finally, the beam pattern function is defined, 
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Side lobes and maximums are dependent on the number of elements in the array.  For six 
elements, a null can be created from a hexagon of the 6 representative phasors.  This corresponds 
to a phase angle, δ, of 60 degrees between phasors.  Additional nulls can be found when δ is 120o 
(triangle), 180o, 240o, and 300o.  Below is the beam pattern ( ( )b θ )for a six element array along 

the y-axis with d/λ = 0.5.   
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In general, the greater the greater the number of elements, the more nulls and therefore more side 
lobes are created.  Each lobe is narrower resulting in increased bearing resolution.  Below is the 
beam pattern for an eight element array along the y-axis with d/λ= 0.5.  Can you describe the 
phasor diagram that creates each of the nulls?   
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Directivity Index 
  
Calculating the Directivity index for an n-element array is fairly difficult.  Using the definition of 
Directivity Index,   
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we state without proof that if the beam pattern function for an n-element array is evaluated, the 
result is: 
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Linear Arrays 
 
A linear array is a continuous collection of many very small elements.  The phasor diagram is 
similar to the one above with n a very large number and each individual element having a very 
small length.  Because of this, the same beam pattern function can be used as the n-element array 
with the substitution that array length L = nd.  Additionally, with many small elements, the 
denominator is the sine of a very small angle allowing us to use the small angle approximation, 
sinα = α. 
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Below is the beam pattern function for a linear array along the y axis with L/λ = 2. 
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Nulls and Side Lobes 
 

Nulls occur when Lsinsin 0π θ⎛ ⎞ =⎜ ⎟λ⎝ ⎠
.  The sine function has zeros at integer multiples of 180 

degrees or π radians. 
Lsin n ,   n 1,2,3,...π θ

= π =
λ

 

Between these nulls are secondary maxima or side-lobes that occur when the function 
α

αsin is a 

maxima.  ( =α
λ

θπLsin ).  We can find cases where this occurs with a computer and observe that 

smallest value is πα 43.1= .  For this value, ( ) 04719.0=θb  and ( ) dB 3.13log10 −=θb .  This 
means that the first side lobe next to the main lobe at θ = 0 degrees is reduced in amplitude by 
13.3 dB. 
 
Directivity Index 
 
Again without proof, the directivity index of a linear array reduces to the following simple result 
so long as the array length is much greater than the wavelength. 
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Piston Arrays 

 
 
A plane piston array as shown above is thought of as composed of a very large number of 
elements arranged in 2 dimensions on it’s surface.  Since there is no fixed phase relationship 
between these elements, phasor addition will not work.  Instead, it is necessary to integrate over 
the elements making up the surface.  Experience has shown this is best done in polar coordinates 
and the results will not be repeated here.  The resulting beam pattern function is  
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where J1 is the Bessel Function of the first order and first kind.  It’s values are well tabulated in 
mathematical handbooks much like the trigonometric functions.  As seen below, maximum 
values and zero crossings for this Bessel function are not as orderly as the trigonometric 
functions.  
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(πDsinθ/λ) has zero crossings (nulls) at πDsinθ/λ = 3.83,
(πDsinθ/λ) has extremes (near the side lobes) at πDsinθ/λ

14-9 
πDsinθ/λ
  

 7.02, 10.17, 13.32, 16.47, ...... 
 = 1.84, 5.33, 8.54, 11.71, 14.86, .... 



From this we see that the first zero crossing corresponding to a null in the beam pattern function 
occurs when  

 

 3.83sin 1.22
D D

λ λ
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π
 

The first side lobe occurs when 
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The actual value of the maximum corresponding to the first side lobe is found by iterating with a 

computer.  It is near the place where Dsin 5.33π θ
≈

λ
, and the exact value is 1.66sin

D
λ

θ = . 

 
Note that the center beam occurred at θ = 0 where both the numerator and denominator are 
approaching zero. 
 
Below is the beam pattern ( ( )b θ )for a piston array along the y-axis with D/λ = 2.0.   
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A Table showing the piston array results for lobes, nulls, and beam widths as well as those for 
linear and two element arrays appears on the following page.
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 2-element array continuous line array circular piston 

defining 
parameters 

element separation distance 
– d array length – L array diameter - D 

beam pattern 

function 
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Problems: 

1. Given a 2 element array with a 1.0 m spacing between elements, determine the Directivity 
Index assuming the frequency is 3000 Hz and c = 1500 Hz. 

 
2. Find the directivity Index of a line of 6 elements spaced 10 cm apart when receiving sound of 

wavelength 30 cm. 
 
3. The Directivity Index of a sonar array depends on all of the following except: 

a) the physical dimensions of the array. 
b) the speed of sound in the water. 
c) the layout of the hydrophones in the array. 
d) the efficiency of the array. 

 
4. Determine the null angles from 0 to 90° of a 0.25 m active linear array operating at 25 kHz. 
 
5.   A 200m linear array is used for receiving a 300 Hz signal.  What is the directivity index.  
 
6.  A continuous line array of length 150 cm is receiving sound of 5 kHz.  The sound speed is 
1500 m/s. 

a)  Find the angles at which there is a null in the directivity pattern. 
b) Find the angles to the maximum points of all side lobes.  
c) Calculate the half power beam width. 
d) Calculate b(θ) for θ = 10o, 20o , 30o 

,
  40o

,
  50o

,
  60o

,  70o
,  80o

,
  90o 

e) Calculate the Directivity Index. 
 
7.  Find the directivity index for a linear array of length 125 cm, when operating at 15 kHz in 
water where c = 1500 m/s. 
 
8.  Find the directivity index for a circular piston array of diameter 125 cm, when operating at 15 
kHz in water where c = 1500 m/s. 
 
9.  A plane circular piston array of diameter 100 cm is receiving sound of frequency 7 kHz.  The 
sound speed is 1500 m/s. 

a)  Find the angles at which there are nulls in the directivity pattern 
b)  Find the angles to the maximum points of all side lobes. 
c)  Calculate the half-power beam width.  

 
10.  a)  Design a plane circular array with a half-power beam width of 25o at 15 kHz.  The 
diameter of the array is _________. 
       b).  Design a continuous line array with a half-power beam width of  25o at 15 kHz.  The 
length of the array is _________. 
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11.  What is the spacing, d, required for a 4-element line array (detecting frequencies of 10 kHz 
in water) so that: 

a)  The first null in the beam pattern occurs at 90o. 
b) The second major lobe (of magnitude unity) in the beam pattern occurs at 90o. 
c) Compute DI for a) 
d) Compute DI for b) 
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N Element Array 
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Beam Patterns for 6 and 8 Element Arrays 
(λ/d = 0.5)
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Beam Pattern for a Vertical Linear Array  
L/λ = 2.0
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Piston Array
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J1(πDsinθ/λ) has zero crossings (nulls) at πDsinθ/λ = 3.83, 7.02, 10.17, 13.32, 16.47, ....
J1(πDsinθ/λ) has extremes (side lobes) at πDsinθ/λ = 1.84, 5.33, 8.54, 11.71, 14.86, .... 

Bessel Function

Beam Pattern for a Piston Array
D/λ = 2.0
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half power angles 
b(θ)=0.5

θhp
θBW=2θhp

(only for beam about array axis)

side lobes
b(θ)=1
θmax

null angles
b(θ) = 0
θnull

directivity index
DI

beam pattern function
b(θ) = 

array diameter - Darray length – Lelement separation distance – ddefining parameters

circular pistoncontinuous line array2-element array
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