
Waves and the One-Dimensional Wave Equation 
 
 Earlier we talked about the waves on a pond.  Before we start looking specifically at 
sound waves, let’s review some general information about waves.   

 

 

 

 

 

Types 

 There are two general classifications of waves, longitudinal and transverse: 
 
Transverse Wave – A traveling wave in which the particles of the disturbed medium move 
perpendicularly to the wave velocity.  An example is the wave pulse on a stretched rope that 
occurs when the rope is moved quickly up and down. 
 
Longitudinal Wave – A traveling wave in which the particles of the medium undergo 
displacement parallel to the direction of the wave motion.  Sound waves are longitudinal waves. 
 
 One thing to note is that some waves exhibit characteristics of both types of waves.  The 
waves on our pond are a combination of both types. 

    

Transverse: 

Longitudinal: 
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Characteristics 

Just like the periodic motion of the simple harmonic oscillator, waves have certain 
characteristics.  The ones we will concentrate on are the frequency, period, wave speed and the 
wavelength.  Recall from SP211, a picture of a transverse wave in a medium at some time, 
maybe t=0 sec.  

Traveling Wave at  t = 0
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 We wrote an equation to describe this picture: 
 

( ) 0
2s x s sin xπ⎛ ⎞= ⎜ ⎟λ⎝ ⎠

 
 
where: 

s  =  particle displacement – Distance that the fluid particle is moved from its 
equilibrium position at any time, t. 

so  =  maximum particle displacement or amplitude 
λ =  distance over which the wave begins to repeat 

k = 2π
λ

 =  a conversion factor that relates the change in phase (angle) to a spatial  

displacement.  We call k the wavenumber. 
 

When we let this wave begin to move to the right with a speed, c, the position is shifted 
in the governing equation from x to x-ct. 

 
 ( ) ( )o

2s x, t s sin x ctπ⎡ ⎤= −⎢ ⎥λ⎣ ⎦ 
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Below is a picture of the same traveling wave shown at some later time, t. 

Traveling Wave at Some Later Time, t
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Now, if instead of taking a snap shot of the wave in the medium at two different times, 
what if we had set a sensor somewhere in space – maybe at x = 0 m, and recorded the wave’s 
displacement over time.  The equation governing the wave would become: 

 

( ) ( ) [ ]o o o
2 2 c 2s 0, t s sin 0 ct s sin t s sin t s sin t

T
π π π⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − = − = − ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

o
 
 

where  
 
T  =  period – Time to complete one cycle.  

c  =  
T
λ  = wave velocity – Distance that wave energy travels per unit time. 

ω =  2
T
π  = a conversion factor that relates the change in phase (angle) to a temporal  

displacement.  We call ω the angular frequency. 

f  =  1
T

= frequency, is the inverse of the period.  It is the number of cycles per unit time 

that pass the origin. 
 
Note that we have employed a similar strategy regarding the group of constants in front 

of the time variable that we used when discussing the wavenumber, k.  Since the wave repeats 
every 2π change in phase and that corresponds to a time period, T, angular frequency, ω=2π /T, 
is nothing more than a conversion factor from time to phase angle.  The symmetry with 
wavenumber is striking causing many people to identify the wave number as the “special 
frequency” and to specifically refer to angular frequency, ω, as the “temporal frequency” 
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To be clear, the speed of the wave c, is not the speed of the medium.  It is the speed of the 

wave disturbance envelope and is often called the “phase speed.”  It is the speed you would need 
to run next to the medium in order to stay in phase with a point on the disturbance.   

 
The speed of the medium is also called the particle speed and is found by taking the 

derivative of the displacement with respect to time.    
 

u = s
t

∂
∂

= particle speed – Distance that the medium travels per unit time. 

 
Note that the average value of the particle velocity over any cycle is zero. 

 

Traveling wave at x = 0
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Putting these three pictures together, we have an expression for a traveling wave in a medium 
 

( ) o
2 2s x, t s sin x t

T
π π⎡ ⎤= −⎢ ⎥λ⎣ ⎦

 
 
or more compactly, 
 

( ) [ ]os x, t s sin kx t= − ω 
 
We also have a new way of defining the speed of the wave.  It makes good sense that the wave 
speed is the distance the wave travels in one cycle (the wavelength) divided by the time it takes 
the wave to complete one cycle.  It is a simple matter to substitute the frequency, f, for the 
period: 
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 c f
T
λ

= = λ  

 
The wave speed can also be calculated from the angular frequency and the wavenumber: 
 

2c
T 2 k
λ π ω⎛ ⎞= =⎜ ⎟π⎝ ⎠

 

 
We call waves modeled using this result “plane waves” because in three dimensions the 

locus of points all having the same phase are planes.  We call these planes “wavefronts” and 
often draw them as lines on a page separated by one wavelength.  In fact, the wavefronts are 
actually parallel planes.  We also find it convenient to show the direction the wave is traveling 
using a “ray” which is constructed perpendicular to the wavefronts.   

e e 

 
Sound Waves 
 

When sound travels in a fluid, i.e a gas or a liquid
longitudinal direction because fluids are poor at transmit
a transverse wave.  Below is a cartoon of the longitudina
 

We call the locations where the fluid is displaced
molecules condensations (high density) and the locations
spaced, rarefactions (low density).   
 

The intermolecular forces tend to push out on eac
compressed spring pushes back on a mass.  The gas laws
gaseous fluid are at a higher pressure (force per unit area
lower pressure.  The same is true for liquid fluids.   
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In addition to describing sound waves in fluids by the displacement of the molecules, we 

can also describe the wave by the velocity of the molecules or the variations in density and 
pressure. 

 
 

 
 

  
Acoustic Presssure 
 
 In the case of pressure, static pressure from the height of the column of fluid above the 
wave are always present. This force is constant with time.  In SP211 we learned how to calculate 
this pressure, p, using the following equation: 

 op p gh= + ρ  
where ρ is the density of the fluid and h is the height of the fluid column. 
 
The acoustic pressure due to the condensations and rarefactions sits on this static pressure and 
oscillates around it due to the presence of the acoustic wave motion.  While we could consider 
the entire pressure variation in describing an acoustic wave, we will, by convention, instead 
consider only the pressure variation from the static pressure.  
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Pressure in a Fluid
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We saw that simple harmonic motion has a governing differential equation called the “equation 
of motion” whose solution gives the position of a mass as a function of time.  In the case of a 
traveling wave, there is an analogous equation whose solution describes the medium’s particle 
displacement as a function of position and time.  This partial differential equation is known as 
“the wave equation.”  In the next section we will show how the wave equation follows directly 
from some fundamental Physics principles.  
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Sound Waves in a medium – the wave equation 

 
Initial Position – VI
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Later Position – VF

 A p (x1) 
p(x2) 

VI VF

A 

x1             x2

 

 

 

 

 

 

To derive the one-dimensional wave equation, let's look at the motion of a small volume 
of fluid.  We can relate its motion to the spring-mass system from the previous section.  If we 
apply a pressure gradient to the fluid volume, VI, (such as an acoustic pressure from an acoustic 
wave)  it will move and compress the volume of fluid.  The pressure on the left face of the fluid 
block is p1(x1), while that exerted on the right face is p2(x2).  If there is a differential pressure, ∆p, 
then the fluid block might move to the right, and, as the block accelerates, it will change to 
volume, VF.  We will make some assumptions regarding the movement of the block: 

 
 1.  The process is adiabatic – no heat is lost or gained by the presence of the acoustic 
wave.  This is a reasonable assumption because for acoustic wave frequencies in the ocean, the 
wavelength is too long and thermal conductivity of seawater too small for significant heat flow 
to take place. 
 2.  Changes in particle displacement of the fluid from equilibrium are small. 
 3.  The fluid column is not deformed (shear deformation) by differential pressure.     
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To fully describe the motion of sound in the fluid from first principles, we will examine 
three well known Physics laws – Newton’s Second Law, an equation of state, and conservation 
of mass.  These laws, coupled with the assumptions above provide a robust and powerful model 
for underwater sound. 

 
Newton’s Second Law 
   

Newton's Second Law is customarily used by examining the forces in a particular 
direction and then summing them as vectors.  In the case of our fluid volume, VI, the forces in 
the x direction are: 

( ) ( )x 1 2F p x A p x A pA= − = −∆∑  

 
This net force across the volume is equal to the mass times the acceleration of the volume.  The 
mass is found by multiplying the initial density by the initial volume (∆x = x2-x1)    
   

 Im A x= ρ ∆  
 
The acceleration in the x direction is the second time derivative of average displacement 
 

 
2

x 2

sa
t

∂
=

∂
 

and  

 1 2s ss
2
+

=  

 
Substituting into Newton’s Second Law, 
 

x x

2

I 2

2

I 2

2
a

2

F = ma    becomes

spA A x   and rearranging  gives
t

p s  or more appropriately
x t

p s
x t

⎛ ⎞∂
−∆ = ρ ∆ ⎜ ⎟∂⎝ ⎠

⎛ ⎞∆ ∂
− = ρ ⎜ ⎟∆ ∂⎝ ⎠

⎛ ⎞∂ ∂
= −ρ⎜ ⎟∂ ∂⎝ ⎠

∑

 
In the final result, acoustic pressure was used since the derivative of the static pressure is zero.  
Additionally, the instantaneous density and displacement for an infinitesimally small volume are 
substituted.  
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Equation of State and Conservation of Mass 
 

Even though we think of liquids mostly as incompressible fluids, in reality, they are not.  
The Bulk Modulus of Elasticity describes how much the volume of the liquid changes for a given 
change in pressure.  In equation form this is: 

( ) ( )
( )

2 1 a

F I I

p x p x pB   
V V V V V

−
≡ − ≈

− ∆ I

-

 

The significance of the negative sign in above equation is that when pa is positive, then VF<VI 
and ∆V is negative. 

 
Using solid geometry we can develop an expression to relate the acoustic pressure to the 

displacement of the small volume in the above figure.  Implied in this argument is the law of 
conservation of mass.  We are not allowing any of the medium to escape the volume, nor are we 
allowing any additional mass to seep in. 

 

( )

( ) ( )( )

I

F

2 1

F I

I I

V A x
V A x s   
(Note:  s = s - s  is a negative number)

A x s A xV V V s
V V A x

= ∆

= ∆ + ∆

∆

∆ + ∆ − ∆− ∆ ∆
= = =

x∆ ∆
 

Thus substituting in the last two equations and rearranging the definition of the Bulk 
Modulus of Elasticity: 

a
I

a

a

Vp B
V
sp B   or more correctly
x
sp B
x

∆
= −

∆
= −

∆
∂

= −
∂

 

Substituting this last result into our previous relationship between pressure and 
displacement: 

  

 
2 2

a
2 2

p s sB B
x t x x

∂ s
x

∂ ∂ ∂ ∂⎛ ⎞= −ρ = − = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
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The One Dimensional Wave Equation 
 

Substituting the conclusion from conservation of mass and equation of state into 
Newton’’s Second Law results in the one-dimensional wave equation that we can use to describe 
the displacement, s, from their rest position of particles in a medium, with respect to time and 
position.  This equation is a partial differential equation with a solution that varies with time and 
position.  As with the mass-spring system equations, if we can find an equation that satisfies this 
second order differential equation, the equation could be used to describe the motion of the 
particles in the medium.   

 
2 2

2 2

s s
x B t

∂ ρ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠
 

 
One solution that we will use was described above as a plane wave and has the form: 

( ) ( )os x, t s sin kx t= ± ω
 

Recall that: 
 

s0 = amplitude of the oscillation or maximum displacement 
k  = 2π/λ  is the wave number 
ω  = 2πf = 2π/T is the angular frequency 
± determines the direction that the wave travels   
(+ is for a wave traveling to the left, - is for a wave traveling to the right) 
 

To check the validity of this solution we must take the appropriate second derivatives:  
 

 
( ) ( )

( ) ( )

2
2

o o2

2
2

o o2

s sin kx t s k sin kx t
x

s sin kx t s sin kx t
t

∂
− ω = − − ω⎡ ⎤⎣ ⎦∂

∂
− ω = − ω − ω⎡ ⎤⎣ ⎦∂

 

 
Substitution into the wave equation 

 

( ) ( )2 2
o os k sin kx t s sin kx t

B
ρ⎛ ⎞− − ω = − ω⎜ ⎟

⎝ ⎠
− ω  

or  

 2 2k
B
ρ⎛ ⎞= ω⎜ ⎟

⎝ ⎠
 

 
Rearranging and recalling that the speed of the wave, c = ω/k, 
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2
2

2

Bc
k
ω

= =
ρ

 

 
This is a fairly profound result.  It tells us that the plane wave solution for particle 

displacement is a “good” solution provided the speed of the wave is not arbitrary, but exactly 
equal to the square root of the bulk modulus divided by the density.  When the bulk modulus and 
density of water are used, a nominal value for the speed of sound in water is 1500 m/s.  This 
agrees with measured results. 

 
Had we used an equation of state for a gas instead of a liquid, we would have arrived at a 

similar result following a similar procedure.  The plane wave solution would still solve the wave 
equation, but the wave speed would become: 

 
2 nRTc

m
γ

=  

 
When typical room temperature numbers are used, this results in a nominal speed of sound in air 
of 340 m/s. 

 
The rules of differential equations make no statement about the uniqueness of a solution 

to the wave equation.  Many other solutions exist as well.  Had the solution been expressed as a 
cosine vice a sine, the wave equation would still have been satisfied.   Additionally, complex 
exponentials could have been used as a solution due to Euler’s identity. 

 
 ( )i kx t

os(x, t) s e −ω=  
 
This expression is really shorthand for the real (or imaginary) part of the complex exponential. 
A Gaussian pulse of the following form also satisfies the wave equation. 
 

2kx t

os(x, t) s e
−ω⎛ ⎞−⎜ ⎟ωτ⎝ ⎠=  

 
Additionally, if a certain frequency wave satisfies the differential equation, all multiples or 
harmonics of that frequency must also work. 

( ) ( )os x, t s sin nkx n t= ± ω
 

Rules for differential equations also specify that linear combinations of solutions are also 
solutions.  This is called the principle of superposition.  A method using the theory developed by 
a French mathematician named Fourier will allow disturbances of almost any shape to be 
constructed using series of harmonic plane waves.  These disturbances will still themselves be 
solutions to the wave equation.   
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Alternate Views for Describing an Acoustic Wave – The Pressure Field 
 

So far, we have viewed sound moving in a fluid as a harmonic traveling wave, 
considering only particle displacements.  This is not a unique view.  Just as an electromagnetic 
wave can be seen as an oscillating electric field or and oscillating magnetic field, so too can a 
sound wave be seen as an oscillating pressure field, an oscillating velocity field or an oscillating 
density field.  Of course, the fundamental difference remains that the electromagnetic wave is 
always a vector field, while the sound wave in a fluid is generally a scalar field. 

 
Using the solution for the wave equation, ( ) ( )0s x, t s sin kx t= − ω , we can find the 

equations for two of these fields.  First the we will find the acoustic pressure.  Previously we 
found the relationship of the acoustic pressure pa, and the displacement of the small volume from 
the equation of state.  Using this we get: 

( )

( ) ( ) ( )

a

0
a 0

sp x, t = -B
x
s sin kx- wt

p x, t = -B = -Bs kcos kx- wt
x

∂
∂
∂ ⎡ ⎤⎣ ⎦

∂
 

The first important observation about the pressure field relative to the displacement field is that 
they are 90 degrees out of phase with each other.  This means that when the particle 
displacement of the medium is at a maximum, the acoustic pressure is at a minimum.  
Additionally, when the displacement is zero, the maximum acoustic pressure is: 

2
a max o op Bs k c s= = ρ k  

By convention, acousticians prefer not to use an engineering modulus, B, instead substituting 
B=ρc2. 
  
Alternate Views – The Velocity Field and Specific Acoustic Impedance 
 

The particle velocity is not the wave velocity.  The speed that the wave travels is a 
function of the medium and is a constant.  The speed of sound, c, is given by the equations: 

Bc f
T k
λ ω

= = = λ =
ρ

 

The particle velocity of the medium, on the other hand tells us how fast the molecules in 
the fluid are moving.  It is found by simply taking the time derivative of the equation describing 
the position of the medium, the plane wave solution.   

( )

( ) ( ) ( )0
0

max 0 0

su x, t
t

s sin kx t
u x, t s cos kx t

t
where
u s s ck

∂
=

∂
∂ − ω⎡ ⎤⎣ ⎦= = − ω − ω

∂

= ω =
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It is noteworthy that for a plane wave, the particle velocity and the particle displacement 
are 90 degrees out of phase, but that the velocity and acoustic pressure are in phase.  We can also 
find the maximum particle velocity from the characteristics of the wave.   

 
In your electrical engineering classes, you were introduced to a quantity called 

“impedance.”  It was the ratio of the driving “force” in a circuit, the voltage, to the rate at which 
charge passes by a point in the circuit, the current. 

electric
VZ
I

≡
%

%
 

By analogy, the driving force in an acoustic wave is the pressure and the rate at which 
particles in the medium pass a particular point is the velocity.  It is no accident that we define the 
specific acoustic impedance as the ratio of the pressure to the particle velocity. 

p(x, t)z
u(x, t)

≡  

For the case of a plane wave we have found expressions for both the pressure and 
velocity fields. 

( )
( )

2
0

0

c s k cos kx tpz c
u s ck cos kx t

−ρ − ω
≡ = = ρ

− − ω
 

The specific acoustic impedance relates the characteristics of a sound wave to the 
properties of the medium in which it is propagating.  Nominal values for the density, ρ, and the 
wave speed, c, for water are ρ = 1000 kg/m3 and c = 1500 m/s.  Do not be confused into thinking 
that specific acoustic impedance is always the product of density and the speed of sound.  This is 
only true for a plane wave.  For other geometries, for instance a spherically spreading wave, the 
specific acoustic impedance is a different expression – even in the same fluid.  

 
More on Continuity of Mass – The Density Field 

 
When motivating the wave equation, it was mentioned that the mass in our test fluid 

volume was not changing.   Specifically, the initial mass in position I is the same as that in 
position F. 

I I F FV Vρ = ρ  

Recalling our expression for the equation of state and substituting, 

I
I I

F I F I I F F I
a

I I I F

V V
V Vp B B B 1 B B

V V

ρ
−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ρ ρ ρ − ρ ρ −
= − = − = − − = − ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟ρ ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠I

ρ
ρ

 

We find that the fractional change in density, F I

I

⎛ ⎞ρ − ρ
⎜ ρ⎝ ⎠

⎟  is directly proportional to the pressure.  

This fractional change in density is called a condensation variable.  It is often written, 
( ) ( )o a

o
0

x, t p s k cos kx t
B

ρ − ρ
= = −

ρ
ω  
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We have developed four different descriptions for a traveling acoustic plane wave; 
particle displacement, particle velocity, acoustic pressure and fractional change in density.  
Particle displacement is 90 degrees out of phase with the other three, but all four discriptions 
travel with the same wave speed and have the same period and wavelength.  All four can be used 
to properly model acoustic effects.   

 

Energy in a Sound Wave 

Missing in the discussion of wave equations and their solution is any mention of energy.  
We started the semester with a review of simple harmonic (sinusoidal) motion.  The reason we 
did this should be apparent to you by now.  As a plane wave traverses any medium, all specific 
particle locations undergo simple harmonic motion as the wave passes by.  Because of this, we 
can use the basic SP211 equations for kinetic and potential energy of the medium.  The only 
modification is to replace mass with density so as to calculate energy density or energy per unit 
volume.  This is a logical modification since the medium carrying the wave is continuous.  It 
would make no sense to identify a particular piece of mass, nor the total mass.  The equations for 
kinetic and potential energy density in a simple harmonic oscillator are respectively as follows  

 
2

K

2 2 2
Hooke

2 2
P

1 u
2
1 1k s m s 12 2 s

V V 2

ε = ρ

ω
ε = = = ρω

 

Since we have equations for particle displacement and particle velocity, we can simply substitute 
these into the above.  

( ) ( )

( ) ( )

22 2 2
K o o

22 2 2 2 2 2
P o o

1 1 1u s cos kx t s cos kx t
2 2 2
1 1 1s s sin kx t s sin kx
2 2 2

ε = ρ = ρ ω − ω = ρω − ω⎡ ⎤⎣ ⎦

ε = ρω = ρω − ω = ρω − ω⎡ ⎤⎣ ⎦

2

t
 

It should be clear that the total energy is the sum of the potential and kinetic energy and that 
when the kinetic energy is maximum the potential energy is zero and vice versa.  The question of 
how the energy is partitioned depends on when you ask the question. 
 

The average energy in a simple harmonic oscillator is calculated using the following 
definition for a periodic function: 

( ) ( )
T

0

1f t f t dt
T

≡ ∫
For kinetic and potential energy we find that since the time average of ( ) ( )2 2 1sin t cos t

2
θ = θ = , 

( )

( )

2 2 2 2 2 2
K o o

2 2 2 2 2 2
P o o

1 1s cos kx t s u
2 4
1 1s sin kx t s u
2 4

ε = ρω − ω = ρω = ρ

ε = ρω − ω = ρω = ρ

max

max

1
4

1
4
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This shows that on average, the kinetic energy of a plane wave and the potential energy of a 
plane wave are the same, each being exactly one half the total energy of the harmonic oscillator.  
The total average energy density of the wave is then, 

 2
K P m

1 u
2

ε = ε + ε = ρ ax  

Using the acoustic impedance, p pu
z c

= =
ρ

 allows us to write the total energy in terms of 

maximum pressure. 
2
a max

2

p1
2 c

ε =
ρ

 

 
Acoustic Intensity 

 
Acoustic intensity, I, is defined as the amount of energy passing through a unit area per 

unit time as the wave propagates through the medium.  As we described in SP211, energy moved 
per unit time is power which has units of Watts.  Intensity then must have units of Watts/m2.   

[ ]

1 ×⎡ ⎤ ⎡ ⎤ ⎡= = × =⎢ ⎥ ⎢ ⎥ ⎢ ×⎣ ⎦ ⎣ ⎦ ⎣
= ×

Power Work Force displacementI
Area time Area Area time

I Pressure velocity

⎤
⎥⎦  

This unit analysis suggests acoustic intensity can be calculated from the product of acoustic 
pressure and particle velocity. 

( ) ( )

( ) ( )

a

a a max max

2
a

I p u   where
p p sin kx- t  and u u sin kx- t

pbut u =
c

p x, t
I x, t =

c

=

= ω =

ρ

ρ

ω

 

One important thing to note is that since the acoustic pressure is a time-varying quantity, so is the 
intensity.   

  
We will use a more meaningful quantity, the time average acoustic intensity.  The 

average intensity of an acoustic wave is the time average of the pressure over a single period of 
the wave and is given by the equation: 

2
ap

I
c

=
ρ

 

Since the time averaged acoustic pressure is 2 2
a a

1p p
2

= max , the average acoustic intensity can be 

written:  
2
a maxp1I

2 c
=

ρ
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This result looks remarkably similar to the average energy density of a traveling plane 
wave.  In fact this is not accidental.  If you consider a plane wave as a cylinder of length cdt and 
cross section A, the total energy in this cylinder, dE, would be the product of the energy density 
and the volume.  

 dE Acdt= ε  
 

 A 

 cdt 

Rearranging we see an alternative expression for average acoustic intensity,  

1 dEI c
A dt

= = ε  

Since 
2
a max

2

p1
2 c

ε =
ρ

, the average acoustic intensity is again
2
a maxp1I

2 c
=

ρ
.  

This result is pleasing in that it agrees with an analogy suggested earlier between voltage 
and pressure.  In your electrical engineering class, you learned that electric power was voltage 
squared divided by impedance.  Average power was found using 

2
maxV1P

2 Z
=  

Now we have found that average acoustic power per unit area is simply acoustic pressure 
squared divided by specific acoustic impedance.   

2
a maxP p1I

A 2 z
= =  

This sheds light on why the modifier “specific” precedes acoustic impedance.  By analogy, 
specific acoustic impedance, z, must be acoustic impedance Z, divided by area. 
 
To further make use of electrical engineering backround, time averaged pressure may also be 
determined by: 

2 2
a rms

2 max
a rms

2 2
max rms

p p

pp p
2

therefore:
p pI
2 c c

=

= =

= =
ρ ρ

 

Lastly, from this point further, unless otherwise noted, when we refer to the intensity of the 
wave, we actually mean the time-averaged intensity.   
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Review and definition: 

1. displacement (s) ≡ distance fluid particle moves from equilibrium (meters) 
2. period (T) ≡ time required to complete one complete oscillation (seconds) 

3. particle velocity (u) ≡ displacement/time (meters/second) = 
t
s

∂
∂  

4. wave speed (c) ≡ speed the wave front is moving (meters/second)  where f
k

c λω
ρ
β

===  

5. frequency (f) ≡ 1/T (Hz or 1/second) 
6. angular frequency (ω) ≡ 2πf (radians/second) 
7. wave lengths (λ) ≡ distance between same amplitude points of two successive wave fronts 

(meters) 
8. wave number (k) ≡ 2π/λ (1/m) 
9. wave fronts ≡ surface over which all particles vibrate in phase 
10. acoustic ray ≡ a vector perpendicular to the wave front pointing in the direction of 

propagation at one specific 
11. static pressure (ps) ≡ pressure of environment minus any changes due to sound wave (Pa or 

N/m2) 
12. acoustic pressure (pa) ≡ pressure fluctuations due to presence of wave motion of particle 

displacement (Pa) 
13. instantaneous pressure (ptot) ≡ static plus acoustic pressure at any one instant 
14. plane waves ≡ small segment of a spherical wavefront at a long distance from the source 

15. rms pressure (prms) = 2
ap ≡ root mean square value of the acoustic pressure (Pa) 

16. Intensity (I) = p2
a max/2ρc = p2

rms/ρc 
17. acoustic impedance (z) ≡ p/u =ρc = ρω/k 
18. Bulk Modulus of Elasticity (B) ≡ provides relationship between change in pressure to change 

in volume of unit of fluid 
19. density (ρ) ≡ mass contained in a unit volume of fluid (kg/m3) 
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Problems 

1. A sound wave propagates a point about 50 meters below the surface of a calm sea.  The 
instantaneous pressure at the point is given by: ( )txp π400sin1000106 5 += , where t is in 
seconds and p in Pascals.   
a) What is the value of static pressure at the point?  
b) What is the value of maximum (or peak) acoustic pressure at the point?  
c) What is the root-mean-square acoustic pressure?   
d) What is the acoustic pressure when t=0, 1.25, 2.5, 3.75, 5.00 milliseconds?   
e) What is the average acoustic intensity of the sound wave?  (The density of the water is 

1000 kg/m3 and the sound speed is 1500 m/sec.) 
f) What is the intensity level, L, in dB re 1 µPa? 
 

2. A plane acoustic wave is propagating in a medium of density ρ=1000 kg/m3.  The equation 
for a particle displacement in the medium due to the wave is given by:  

( ) ( txxs ππ 120008cos101 6 −= − )

)

, where distances are in meters and time is in seconds.   
a) What is the rms particle displacement?   
b) What is the wavelength of the sound wave?   
c) What is the frequency?   
d) What is the speed of sound in the medium?   
e) What is the value of maximum (or peak) particle velocity?   
f) What is the value of maximum acoustic pressure?   
g) What is the specific acoustic impedance of the medium?   
h) What is the bulk modulus of the medium?  
i) What is the acoustic intensity of the sound wave?   
j) What is the acoustic power radiated over a 3 m2 area? 
 

3. A plane acoustic wave is propagating in a medium of density ρ and sound speed c.  The 
equation for pressure amplitude in the medium due to the wave is given by:  

( tkxpp ω−= cos0 , where p0 is the maximum pressure amplitude of the sound.  

a) Show that the equation above can be written in the form, ( )ctxpp −=
λ
π2cos0 .   

b) Show that maximum pressure amplitudes (compressions) can be found at the following 
locations in space:  x=nλ+ct where n= 0, 1, 2, 3, …   

c) Show that maximum pressure amplitudes (rarefactions) can be found at the following 
location in space:  x=(n+1/2)λ+ct, where n = 0, 1, 2, 3, … 

 
4. A plane acoustic wave travels to the left with amplitude 100 Pa, wavelength 1.0 m and 

frequency 1500 Hz;  ⎟
⎠
⎞

⎜
⎝
⎛ += t

m
xPap

sec
30002cos1001

ππ , while another plane wave travels to 

the right with amplitude 200 Pa, wavelength ½ m and frequency 750 Hz:  

⎟
⎠
⎞

⎜
⎝
⎛ += t

m
xPap

sec
1500cos2002

ππ .   
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a) Find the rms average total pressure.  Your answer will not depend on distance x.  (Hint:  

rms average pressure ≡ 2
totalP , where the <> symbol denotes a time average.   

b) If ( )tkxpp ω−= cos01 and ( )φω +−= tkxpp cos01 , find the rms average total pressure. 
 
5. Given the following equation for an acoustic wave, originating from a source in the ocean 

( ) [ ]
⎟
⎠
⎞

⎜
⎝
⎛ −= txxtxp

sec
1602

m 13
2sinPa 108, 5 ππ  

Determine the following: 
a) The wavelength  
b) The rms pressure of the wave 
c) What is the frequency of the wave? 
d) The time averaged intensity of the acoustic wave  

 
6. If the particle displacement can be found to be: 

( ) [ ]
⎟
⎠
⎞

⎜
⎝
⎛ −= − txxtxs

sec
1602

m 13
2cos m 106, 6 ππ  

a) What is the value of the peak particle velocity? 
b) What would be the maximum acoustic pressure if the Bulk Modulus of Elasticity of the 

medium were 2.0x109 N/m2? 
 
7. If a pressure pulse from a small explosion in water is known to be equal to 

( )
2t

0.1secp 1000Pa e
⎛ ⎞−⎜
⎝=

⎟
⎠  at x = 0 

a) Construct a solution to the wave equation for the pulse propagating to the right.  This 
expression must be in the form of a function of x and t. 

b) Sketch p(x,t) from part a) for time t = 0, t = 0.1 s, and t = 0.2 s. 
 
8. If an acoustic pressure pulse in water at x = 0 is known to be 

( ) o
2

pp t
t1

=
⎛ ⎞+ ⎜ ⎟τ⎝ ⎠

  where τ = 1 millesec, po = 1 Pa 

a) Find a wave expression for the pressure pulse traveling in the x-direction to the left. 
b) Find an expression for the intensity of the waveform found in part a). 

 
9. What is the speed of sound in yards per second in: 

a) air? 
b) water? 
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Waves
• Traveling Waves

– Types
– Classification
– Harmonic Waves
– Definitions
– Direction of Travel

• Speed of Waves
• Energy of a Wave

Types of Waves

• Mechanical Waves - Those waves resulting from 
the physical displacement of part of the medium from 
equilibrium.

• Electromagnetic Waves - Those wave resulting 
from the exchange of energy between an electric and 
magnetic field.

• Matter Waves - Those associated with the wave-like 
properties of elementary particles.

Requirements for Mechanical Waves

• Some sort of disturbance
• A medium that can be disturbed
• Physical connection or mechanism through 

which adjacent portions of the medium can 
influence each other.

Classification of Waves
• Transverse Waves - The 

particles of the medium 
undergo displacements in a 
direction perpendicular to the 
wave velocity
– Polarization - The orientation 

of the displacement of a 
transverse wave.

• Longitudinal 
(Compression) Waves -
The particles of the medium 
undergo displacements in a 
direction parallel to the 
direction of wave motion.
– Condensation/Rarefraction

Waves on the surface of a liquid 3D Waves
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Sound Waves
Harmonic Waves

• Transverse displacement looks like:

At t = 0

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6

x (m)

s 
(m

) λ
s0

( ) 0
2s x s sin xπ⎛ ⎞= ⎜ ⎟λ⎝ ⎠

Let the wave move

Traveling Wave

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6 8

x (m)

s 
(m

)

ct

( ) ( )0
2s x, t s sin x ctπ⎡ ⎤= −⎢ ⎥λ⎣ ⎦

Standing at the origin
• Transverse displacement looks like:

At x = 0

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6

t (sec)

s 
(m

) Τ

s0

( ) ( )o o o
2 2 c 2s 0, t s sin 0 ct s sin t s sin t

T
π π π⎡ ⎤ ⎡ ⎤ ⎛ ⎞= − = − = − ⎜ ⎟⎢ ⎥ ⎢ ⎥λ λ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

Phase Velocity

distance moved in one cyclec f
time required for one cycle T

λ
= = = λ

so

-so

ct

• Wave velocity is a function of the properties 
of the medium transporting the wave 

so

-so

ct

That negative sign

• Wave moving 
right

• Wave moving 
left

( ) o
2 2s x, t s sin x t

T
π π⎡ ⎤= −⎢ ⎥λ⎣ ⎦

( ) o
2 2s x, t s sin x t

T
π π⎡ ⎤= +⎢ ⎥λ⎣ ⎦
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Alternate notation

( ) 0
2 2s x, t s sin x t

T
π π⎡ ⎤= −⎢ ⎥λ⎣ ⎦

( ) [ ]os x, t s sin kx t= −ω

2k π
=
λ

2
T
π

ω =

Wave number

Angular frequency

2c
T 2 T k
λ λ π ω

= = =
π

Definitions
• Amplitude - (so) Maximum value of the displacement of a particle in a 

medium (radius of circular motion).

• Wavelength - (λ) The spatial distance between any two points that behave 
identically, i.e. have the same amplitude, move in the same direction (spatial period)

• Wave Number - (k) Amount the phase changes per unit length of wave 

travel.  (spatial frequency, angular wavenumber)

• Period - (T) Time for a particle/system to complete one cycle.

• Frequency - (f) The number of cycles or oscillations completed in a period of 
time

• Angular Frequency - (ω) Time rate of change of the phase.

• Phase - (kx - ωt) Time varying argument of the trigonometric function.

• Phase Velocity - (v) The velocity at which the disturbance is moving 
through the medium

Two dimensional wave motion

i rθ = θ

Plane WaveSpherical Wave

Acoustic Variables

• Displacement
• ParticleVelocity
• Pressure
• Density

acoustic 
pressure

static 
pressure

total static ap p p= +

su
t
∂

=
∂

( ) [ ]os x, t s sin kx t= −ω

( ) o

o

x, tρ −ρ
ρ

Condensation = Compression
Rarefaction    =  Expansion

A microscopic picture of a fluid

x1 x2

s2

x1  x2

A
p (x1)

p(x2)VI

A
p (x1)

p(x2)

VI

A

VF

Initial Position – VI

Later Position - VF

s1

• Assumptions:
– Adiabatic
– Small displacements
– No shear deformation

• Physics Laws:
– Newton’s Second Law
– Equation of State
– Conservation of mass

The Wave Equation

2
a

2

p s
x t

⎛ ⎞∂ ∂
= − ⎜ ⎟∂ ∂⎝ ⎠

ρNewton’s Second Law/
Conservation of Mass

a
sp B
x
∂

= −
∂

Equation of State/
Conservation of Mass

2 2

2 2

s s
x B t
∂ ρ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

PDE – Wave Equation
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Solutions to differential equations

• Guess a solution
• Plug the guess into the differential equation

– You will have to take a derivative or two
• Check to see if your solution works.  
• Determine if there are any restrictions (required 

conditions).
• If the guess works, your guess is a solution, but it 

might not be the only one.
• Look at your constants and evaluate them using 

initial conditions or boundary conditions.

The Plane Wave Solution

( ) ( )os x, t s sin kx t= ωm
2 2

2 2

s s
x B t
∂ ρ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

( ) ( )2 2
o os k sin kx t s sin kx t

B
ρ⎛ ⎞− −ω = − ω −ω⎜ ⎟

⎝ ⎠

2 2k
B
ρ⎛ ⎞= ω⎜ ⎟

⎝ ⎠

Bc
k
ω
= =

ρ

General rule for wave speeds

Elastic Propertyc
Inertial Property

=

Young's modulus Yc
density

= =
ρ

Bulk modulus Bc
density

= =
ρ

Longitudinal wave 
in a long bar

Longitudinal wave 
in a fluid

Sound Speed Bulk modulus Bc
density

= =
ρ

1500 m/s343 m/sSpeed

1026 kg/m31.21 kg/m3Density

2.28 x 109 Pa1.4(1.01 x 105) PaBulk Modulus
Sea WaterAir

Variation with Temperature:

( ) mv 331 0.60T
s

≈ +

( )2 3 mv 1449.05 4.57T .0521T .00023T
s

≈ + − +

Air

Seawater

Example

• A plane acoustic wave is propagating in a 
medium of density ρ=1000 kg/m3.  The equation 
for a particle displacement in the medium due to 
the wave is given by:  

where distances are in meters and time is in 
seconds.  

• What is the rms particle displacement?  
• What is the wavelength of the sound wave?  
• What is the frequency?  
• What is the speed of sound in the medium? 

( ) ( )txxs ππ 120008cos101 6 −= −

Alternate Solutions

( ) ( )os x, t s sin nkx m t= ± ω

( )i kx t
os(x, t) s e −ω=

2kx t

os(x, t) s e
−ω⎛ ⎞−⎜ ⎟ωτ⎝ ⎠=

( ) ( )os x, t s cos kx t= ±ω
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Superposition

• Waves in the same 
medium will add 
displacement when at the 
same position in the 
medium at the same time.

• Overlapping waves do not 
in any way alter the travel 
of each other (only the 
medium is effected)

Superposition

• Fourier’s Theorem – any complex wave can be 
constructed from a sum of pure sinusoidal 
waves of different amplitudes and frequencies

Alternate Views

( )0
su s cos kx t
t
∂

= = − ω −ω
∂

( ) ( )os x, t s sin kx t= ±ωParticle Displacement

Particle Velocity

Pressure

Density

( ) ( )2
a 0

sp x, t = -B - c s kcos kx- wt
x

∂
=

∂
ρ

( ) ( )o a
o

0

x, t p s k cos kx t
B

ρ −ρ
= = − −ω

ρ

Pitch is frequency

>20000 HzUltrasonic

< 20 HzInfrasonic
20 Hz – 20000 HzAudible 

Middle C on the piano has a frequency of 262 Hz.
What is the wavelength (in air)?

1.3 m

Specific Acoustic Impedance

• Like electrical impedance
• Acoustic analogy

– Pressure is like voltage
– Particle velocity is like 

current
• Specific acoustic 

Impedance:

• For a plane wave:

electric
VZ
I

≡
%

%

p(x, t)z
u(x, t)

≡

( )
( )

2
0

0

c s k cos kx tpz c
u s ck cos kx t

−ρ −ω
≡ = = ρ

− −ω

Energy Density in a Plane Wave
( ) ( )

( ) ( )

22 2 2 2
K o o

22 2 2 2 2 2
P o o

1 1 1u s cos kx t s cos kx t
2 2 2
1 1 1s s sin kx t s sin kx t
2 2 2

ε = ρ = ρ ω −ω = ρω −ω⎡ ⎤⎣ ⎦

ε = ρω = ρω −ω = ρω −ω⎡ ⎤⎣ ⎦

Kε Pε2
2 a max
max 2

p1 1u
2 2 c
ρ =

ρ
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Average Energy Density

2
K P max

1 u
2

ε = ε + ε = ρ

( )

( )

2 2 2 2 2 2
K o o max

2 2 2 2 2 2
P o o max

1 1 1s cos kx t s u
2 4 4
1 1 1s sin kx t s u
2 4 4

ε = ρω −ω = ρω = ρ

ε = ρω −ω = ρω = ρ

2
a max

2

p1
2 c

ε =
ρ

Or

Kε Pε2
2 a max
max 2

p1 1u
2 2 c
ρ =

ρ

Average Power and Intensity

A

cdt

dE Acdt= ε

dEP Ac
dt

= = ε

2
2 a max
max a max max

P p1 1 1I c cu p u
A 2 2 c 2

= = ε = ρ = =
ρ

Instantaneous Intensity

( ) ( ) ( ) ( ) ( )
2

2a
a

p x, t
I x, t p x, t u x, t z u x, t

z
⎡ ⎤⎣ ⎦= = = ⎡ ⎤⎣ ⎦

[ ]

1 ×⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = × =⎢ ⎥ ⎢ ⎥ ⎢ ⎥×⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= ×

Power Work Force displacementI
Area time Area Area time

I Pressure velocity

2
2VP ZI VI

Z
= = =

Root Mean Square (rms) Quantities

2 max
a rms

2 2
max rms

pp p
2

therefore:
p pI
2 c c

= =

= =
ρ ρ
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