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Oscillatory Motion  
 

Our goal this semester is to understand how sound waves travel through the water so that 
we may exploit them to prosecute a target.  We will start with simple models and increase 
complexity as we go.  This course is meant to be directly applicable for the war-fighter. 

 
To begin with lets go back to our childhood days looking out over the calm waters of the 

nearby pond.  When you throw a rock in the water, you create a wave on the surface.  If you 
closely watch a leaf on the surface, you will see it go up and down as the wave passes by, yet the 
leaf returns to its original position after the wave passes.  This is a simple yet extremely 
important point regarding wave motion.  The medium carrying the wave does not move with the 
wave, generally returning to its original position after the wave has gone past.  The medium 
carrying the wave simply oscillates around an equilibrium position.  To begin our study of 
underwater sound, we will look at the periodic nature of this motion.  It is the basis of all 
mechanical wave motion. 

Mass-Spring System 

Hooke's Law and the Simple Harmonic Oscillator 

An illustrative model to begin understanding acoustics is the problem of a simple mass-
spring oscillating system.  Begin with a mass attached to a perfect massless spring.  The spring is 
attached to a firm wall and the mass sits on a frictionless surface.  If the spring is displaced from 
the rest position of the system where x=0, the mass will move back and forth with a periodic 
motion centered about the x=0 position.  This periodic motion can be described by a simple time 
varying equation, which should give us insight in to periodic wave motion. 

 
 
 
 
 Frictionless 

Surface  
 
 
 
 
 
 
From Hooke's Law, the restoring force of the spring is equal to: 

kxFspring −=  

There is a minus sign in front of the spring constant because the force of the spring is in the 
opposite direction of the displacement of the mass.  The displacement, x, is the distance the 
spring is stretched or compressed (and is equal to the displacement of the mass) from the x=0 or 
rest position of the spring. 
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We can now write an equation to relate the forces on the mass in the x-direction to the 

acceleration of the mass in the x-direction:  (Or in other words apply Newton's second law for 
the motion only in the x-dimension.) 

block blockF m= a∑
r r  

Since the only force on the block is due to the spring and all motion is along the x-axis, we can 
write the scalar equation,  

spring block xF m a=  

2

block 2

d xkx m
dt

− =  

2

2
block

d x k x 0
dt m

+ =  

This is a simple, second order differential equation that describes the motion of the mass.  
One solution for the position of the mass, x, as a function of time that satisfies the differential 
equation is: 

( ) ( )x t A cos t= ω + φ
 

where the angular frequency squared, 2

block

k
m

ω =  and A and φ, are unknown constants.  

Appendix A checks this solution and verifies the value of the angular frequency.  We refer to 
quantity, ω + , as the “phase” of the block’s motion.  The phase is generally expressed in 
radians and the motion repeats once the phase has changed by 2π.  The amplitude of the 
oscillation, A and the initial phase of the oscillations φ, can only be solved for by knowing two 
initial conditions of the system.   

t φ

 
Another solution to the second order differential equation is ( ) (x t Asin t )= ω +φ .  Another 

uses complex exponentials, ( ) ( )i tx t Ae ω +φ=  and is shorthand to signify only the real part of this 
expression is the solution to the second order differential equation.  It is a worthwhile exercise 
for the student to show that both these solutions also satisfy the second order differential 
equation. 

 
We must be able to find the velocity and acceleration of the mass as a function of time to 

use the initial conditions of the system.  To calculate these quantities, we must just take the 
derivative as shown below. 
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Looking at the above equations , we can obtain the maximum values of the velocity and 

acceleration.  These maximum values are:  
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An important characteristic of the system is the angular frequency.  Using the above 

equations, and knowing a couple of the parameters of the system as a function of time, we can 
solve for the more easily understandable quantities, the frequency and period of the system.  
These can be calculated from the following equations: 

f
2
1 2T
f

ω
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π
π
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Example Problem 

Let's look at an example:  A mass of 200 grams is connected to a light spring that has a 
spring constant (k) of 5.0 N/m and is free to oscillate on a horizontal, frictionless surface.  If the 
mass is displaced 5.0 cm from the rest position and released from rest find:  a)  the period of its 
motion, b)  the maximum speed and c) the maximum acceleration of the mass. 

 
Using the relationships given above, the following can be calculated:
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Energy in the Mass Spring System 
 

The energy of the mass spring system can be found at any time by summing the kinetic 
energy of the mass with the potential energy of the spring. 

2 2
block

1 1E K U m v kx
2 2

= + = +  

When the displacement of the mass from the equilibrium position is at the maximum 
displacement, x=A, the velocity of the spring is instantaneously zero.  As there are no non-
conservative forces such as friction, energy is conserved and the total energy at any time is 
simply 

2
max

1E k
2

= A  

This is very powerful because it allows us to calculate the total energy of an oscillating mass 
very simply and then calculate the velocity when the position is known or vice versa.  
Conceptually, we view the continuous motion of a mass spring oscillator as the perpetual transfer 
of energy back and forth between kinetic and potential forms.  Without any energy loss (due, for 
example, to friction) this transfer will continue indefinitely. 
 

The average energy in a simple harmonic oscillator is calculated using the following 
definition for the average of a periodic function: 

( ) ( )
T

0

1f t f t dt
T

≡ ∫
For kinetic and potential energy we find that since the time average of the square of the sine and 
cosine is one half, i.e. ( ) ( )2 2 1sin t cos t

2
θ = θ = , then 

( )2 2 2 2 2 2
block block block

1 1 1K m v m A sin t m A kA
2 2 4

= = ω ω +φ = ω = 21
4

( )2 2 21 1 1U k x kA cos t kA
2 2 4

= = ω + φ = 2

 
This shows that on average, the kinetic energy of a simple harmonic oscillator and the potential 
energy of a simple harmonic oscillator are the same, each being exactly one half the total energy 
of the harmonic oscillator.    
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Damped Mass-Spring System 

 
Hooke's Law Revisited 

 The approach used above for the simple harmonic oscillator will work for a damped 
oscillator with a small modification.  Some device such as a “dashpot” provides a mechanism by 
which energy is removed from the system.  A dashpot is like a shock absorber with a piston 
moving through a viscous fluid.  We model the dashpot such that it provides a resistive force to 
the system that is proportional to the speed of the mass.    
 

dampingF bv= −  
 
The constant of proportionality, b, depends on such factors as fluid viscosity, size, shape and 
roughness of the piston, and the space between the piston and the fluid chamber walls.  Because 
of this new force, our x component equation from Newton’s second law gains an additional term. 
 

x blockkx bv m ax− − =  
 
The new equation of motion then becomes: 
 

2

2

d x dxm b kx
dt dt

0+ + =  

 
A solution to the equation of motion is: 
 

( )tx Ae cos t−α ′= ω + φ  
 
Again the initial amplitude of oscillation, A, and the initial phase, φ, are arbitrary constants of the 
second order differential equation.  The angular frequency is slightly different from the 
undamped case: 
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2k b
m 2m

⎛ ⎞′ω = −⎜ ⎟
⎝ ⎠

  
⎝ ⎠

  
The amplitude decays exponentially with time with a decay constant, α: The amplitude decays exponentially with time with a decay constant, α: 
  

b
2m

α =  

 
Appendix B shows that our solution satisfies the equation of motion and that the angular 
frequency and damping constants are correct.  When plotted for typical values of k, m, and b, the 
motion of the mass looks like the graph below.  As the amplitude decreases we can see that 
energy is leaving the system, mostly as heat generated from friction as the piston moves through 
the viscous fluid in the dashpot.  Later in the course we will discuss losses of energy due to 
various mechanisms in the ocean draining energy from an acoustic wave.  Although greatly 
simplified, the damped oscillator provides a satisfactory model of what the medium must be 
experiencing as the wave passes. 
 
 
 
 
 
 
 
 
Overdamped and critically damped motion 

One interesting result of the expression for the angular frequency is that if the damping 
constant is large enough, ω can become zero or even an imaginary number.  This occurs 
whenever the damping constant is sufficiently large compared to the mass and the spring 
constant. 

2b 4mk≥    
 

When this happens we say that the system is “over damped” and the motion resembles that of 
curve C below.  Note that it can take significant time for the mass to relax to its equilibrium 
position in this case. When the angular frequency is exactly zero, the system is said to be 
“critically damped” as shown by curve B.  In this case, the mass returns to the equilibrium 
position faster and without overshoot.  
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Appendix  A - Checking the solution for simple harmonic motion 
 
( ) ( )x t A cos t= ω + φ  

( )dxv A sin t
dt

= = − ω ω + φ  

( )
2

2
2

d xa A cos t
dt

= = − ω ω + φ  

 
Substituting into the equation of motion: 
 

( ) ( )
2

2
2

block block

d x k kx A cos t A cos t
dt m m

+ = − ω ω +φ + ω + φ 0=  

( ) ( ) ( )2 2

block block

k kcos t cos t cos t 0
m m

⎛ ⎞
−ω ω + φ + ω + φ = −ω + ω + φ =⎜ ⎟

⎝ ⎠
 

 

So this solution works so long as 2

block

k
m

ω =  

  
 
You should be able to repeat this process for other solutions. 
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Appendix  B - Checking the solution for damped harmonic motion 
 

( )tx Ae cos t−α ′= ω + φ

( ) ( ) ( )t tdxv Ae sin t A e cos t
dt

−α −α′ ′ ′= = − ω ω + φ + −α ω + φ

( ) ( ) ( ) ( )
2

t 2 t t 2 t
2

d xa Ae cos t A e sin t A e sin t A e cos t
dt

−α −α −α −α′ ′ ′ ′ ′ ′ ′= = − ω ω + φ + α ω ω + φ + α ω ω + φ + α ω + φ

( ) ( ){ }t 2 2Ae 2 sin t cos t−α ′ ′ ′ ′⎡ ⎤= αω ω + φ + α −ω ω + φ⎣ ⎦

( ) ( )tAe sin t cos t−α ′ ′ ′= − ω ω + φ +α ω + φ⎡ ⎤⎣ ⎦

2

2

d x b dx k x 0
dt m dt m

+ + =

( ) ( ){ } ( ) ( ) ( )t t2 2 tb kAe Ae Ae 0
m m

cos t cos t cos tsin−α −α −α+ + =⎡ ⎤′ ′ ′ ′⎡ ⎤α −ω ω +φ α ω +φ ω +φ⎣ ⎣ ⎦⎦2 sin t t′ ′ ′+ − ′αω ω +φ ω ω +φ

( ) ( )
t 2 2

b
2m b k cAe 0b o

m
s t

m m
− ⎡ ⎤′ ′α −ω − α + ω + φ⎢ ⎥⎣ ⎦

⎡ ⎤⎧ ⎫2 sin t′ ′ ′αω − ω ω + =⎨
⎣ ⎦

⎬
⎩ ⎭

+ φ⎢ ⎥

2
2k b 0

m 2m
⎛ ⎞ ′− −ω =⎜ ⎟
⎝ ⎠

2k b
m 2m

⎛ ⎞′ω = − ⎜ ⎟
⎝ ⎠

b
2m

α =
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Problems 
1. A particle oscillates with simple harmonic motion so that its displacement varies 

according to the expression x=(5.0 cm)cos(2t+π/6), where x is in centimeters and t is in 
seconds.  At t=0, find  

a) the displacement of the particle,  
b) its velocity, and  
c) its acceleration.   
d) Find the period and amplitude of the motion. 
 

2. A piston in an automobile engine is in simple harmonic motion.  If its amplitude of 
oscillation from the centerline is ±5.0 cm and its mass is 2.0 kg, find the maximum 
velocity and acceleration of the piston when the auto engine is running at the rate of 3600 
rev/min. 

 
3. A 20.0 g particle moves in simple harmonic motion with a frequency of 3.0 

oscillations/sec and amplitude of 5.0 cm.  
a) Through what total distance does the particle move during one cycle of its 

motion? 
b) What is its maximum speed?  Where does this occur? 
c) Find the maximum acceleration of the particle.  Where in the motion does the 

maximum acceleration occur? 
 

4. A 1.0 kg mass attached to a spring of force constant 25.0 N/m oscillates on a horizontal, 
frictionless track.  At t=0, the mass is released from rest at x = -3.0 cm.  (That is, the 
spring is compressed by 3.0 cm)  Find  

a) the period of its motion,  
b) the maximum values of its speed and acceleration, and  
c) the displacement, velocity, and acceleration as functions of time. 

 
5. A 5.0 kg mass attached to a spring of force constant 8.0 N/m vibrates in simple harmonic 

motion with amplitude of 10.0 cm.  Calculate  
a) the maximum value of its speed and acceleration,  
b) the speed and acceleration when the mass is 6.0 cm from the equilibrium position, 

and  
c) the time it takes the mass to move from x = 0 to x = 8.0 cm. 
d) the total energy of the system 
e) the speed of the 5.0 kg mass when x = 5.0 cm 
 

6. A block of unknown mass is attached to a spring of force constant 6.5 N/m and 
undergoes simple harmonic motion with an amplitude of 10.0 cm.  When the mass is 
halfway between its equilibrium position and endpoint, its speed is measured to be +30 
cm/s.  Calculate  

a) the mass of the block,  
b) the period of the motion, and  
c) the maximum acceleration of the block. 
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Lesson 1 - Oscillations

• Harmonic Motion        
Circular Motion

• Simple Harmonic 
Oscillators
– Linear -

Horizontal/Vertical 
Mass-Spring Systems

• Energy of Simple 
Harmonic Motion

Math Prereqs

d cos
d

θ =
θ

d sin
d

θ =
θ

cos θ

sin− θ

2 2

0 0

cos d sin d
π π

θ θ = θ θ =∫ ∫ 0

2 2
2 2

0 0

1 1cos d sin d
2 2

π π

θ θ = θ θ =
π π∫ ∫

1
2

Identities

cos cos 2cos sin
2 2

θ + φ θ − φ
θ + φ =

2 2sin cos 1θ + θ =

( )cos cos cos sin sinθ ± φ = θ φ θ φm

2 1 1cos cos 2
2 2

θ = + θ

ie cos i sin± θ = θ ± θ

Math Prereqs

( ) ( )
T

0

1f t f t dt
T

≡ ∫

"Time Average"=

2 2cos t
T
π⎛ ⎞ =⎜ ⎟

⎝ ⎠

T T
2

0 0

1 2 1 1 1 2 1cos t dt cos 2 t dt
T T T 2 2 T 2

π ⎡ π ⎤⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫

Example:

Harmonic Relation to circular motion

( ) ( )x A cos A cos t= θ + φ = ω + φ

2
T
π

ω =

Lesson 1
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Horizontal mass-spring

F ma=∑

Hooke’s Law: sF kx= −

2

block 2

d xkx m
dt

− =

2

2
block

d x k x 0
dt m

+ =

Frictionless

Solutions to differential equations

• Guess a solution
• Plug the guess into the differential equation

– You will have to take a derivative or two
• Check to see if your solution works.  
• Determine if there are any restrictions (required 

conditions).
• If the guess works, your guess is a solution, but it 

might not be the only one.
• Look at your constants and evaluate them using 

initial conditions or boundary conditions.

Our guess

( )x A cos t= ω + φ

Definitions

• Amplitude - (A) Maximum value of the displacement (radius of 
circular motion).  Determined by initial displacement and velocity.

• Angular Frequency (Velocity) - (ω) Time rate of change 
of the phase.

• Period - (T) Time for a particle/system to complete one cycle.

• Frequency - (f) The number of cycles or oscillations completed in 
a period of time

• Phase - (ωt + φ) Time varying argument of the trigonometric 
function.

• Phase Constant - (φ) Initial value of the phase. Determined by 
initial displacement and velocity.

( )x A cos t= ω + φ

The restriction on the solution

2

block

k
m

ω =

block

1 kf
2 2 m
ω

= =
π π

blockm2T 2
k

π
= = π

ω

The constant – phase angle
( )x t 0 A= = ( )v t 0 0= = 0φ =

( )x t 0 0= = ( ) 0v t 0 v= =
2
π

φ =

( )x A cos t= ω + φ ( )v A sin t= − ω ω + φ

( )2a A cos t= − ω ω + φ
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Energy in the SHO

2 2 21 1 1E mv kx kA
2 2 2

= + =

( )2 2kv A x
m

= ± −

Average Energy in the SHO

( )2 2 2 21 1 1U k x kA cos t kA
2 2 4

= = ω + φ =

( )2 2 2 2 2 2 21 1 1 1K m v m A sin t m A kA
2 2 4 4

= = ω ω + φ = ω =

( )x A cos t= ω + φ

( )dxv A sin t
dt

= = − ω ω + φ

K U=

Example
• A mass of 200 grams is connected to a light spring that has 

a spring constant (k) of 5.0 N/m and is free to oscillate on a 
horizontal, frictionless surface.  If the mass is displaced 5.0 
cm from the rest position and released from rest find:  

• a)  the period of its motion, 
• b)  the maximum speed and 
• c) the maximum acceleration of the mass.
• d) the total energy
• e) the average kinetic energy
• f) the average potential energy

“Dashpot”

dampingF bv= −

dxkx b ma
dt

− − =

2

2

d x dxm b kx 0
dt dt

+ + =

( )tx Ae cos t−α ′= ω + φ

Equation of Motion

Solution

Damped Oscillations

( )tx Ae cos t−α ′= ω + φ

( ) ( ) ( )t tdxv Ae sin t A e cos t
dt

−α −α′ ′ ′= = − ω ω + φ + −α ω + φ

( ) ( ) ( ) ( )
2

t 2 t t 2 t
2

d xa Ae cos t A e sin t A e sin t A e cos t
dt

−α −α −α −α′ ′ ′ ′ ′ ′ ′= = − ω ω + φ + α ω ω + φ + α ω ω + φ + α ω + φ

( ) ( ){ }t 2 2Ae 2 sin t cos t−α ′ ′ ′ ′⎡ ⎤= αω ω + φ + α − ω ω + φ⎣ ⎦

( ) ( )tAe sin t cos t−α ′ ′ ′= − ω ω + φ + α ω + φ⎡ ⎤⎣ ⎦

2

2

d x b dx k x 0
dt m dt m

+ + =

( ) ( ){ } ( ) ( ) ( )t t2 2 tb kAe Ae Ae 0
m m

cos t cos t cos2 sin tt sin t−α −α −α′ ′ ′+ − + + =⎡ ⎤′ ′ ′ ′⎡ ⎤α − ω ω + φ α ω + φ ω + φ⎣ ⎣ ⎦′αω ω + φ ω ω⎦ + φ

( ) ( )
t 2 2

b
2m b k cAe 0b2 s oin t

m
s t

m m
− ⎡ ⎤′ ′α − ω − α + ω + φ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′ ′αω − ω ω
⎧ ⎫

+ =⎨ + φ⎢ ⎥⎣ ⎦
⎬

⎩ ⎭

2
2k b 0

m 2m
⎛ ⎞ ′− − ω =⎜ ⎟
⎝ ⎠

2k b
m 2m

⎛ ⎞′ω = − ⎜ ⎟
⎝ ⎠

b
2m

α =

Damped frequency oscillation

2

2

k b
m 4m

′ω = −

2b 4mk≥

B - Critical damping (=)
C - Over damped (>)

b
2m

α =
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Giancoli 14-55

• A 750 g block oscillates on the end of a spring 
whose force constant is k = 56.0 N/m.  The mass 
moves in a fluid which offers a resistive force F = 
-bv where b = 0.162 N-s/m.  
– What is the period of the motion?  What if there had 

been no damping?
– What is the fractional decrease in amplitude per cycle?
– Write the displacement as a function of time if at t = 0, 

x = 0; and at t = 1.00 s, x = 0.120 m.

Forced vibrations

ext 0F F cos t= ω 0
dxkx b F cos t ma
dt

− − + ω =

2

02

d x dxm b kx F cos t
dt dt

+ + = ω

( )0 0x A sin t= ω + φ

Resonance

0
k
m

ω =Natural frequency

( )0 0x A sin t= ω + φ

( )
0

0 2 222 2
0 2

FA
bm
m

=
ωω − ω +

( )2 2
01

0

m
tan

b
−

⎛ ⎞ω − ω
⎜ ⎟φ =
⎜ ⎟ω⎝ ⎠

Quality (Q) value

• Q describes the sharpness of 
the resonance peak

• Low damping give a large Q
• High damping gives a small Q
• Q is inversely related to the 

fraction width of the resonance 
peak at the half max amplitude 
point.

0mQ
b
ω

=

0

1
Q

∆ω
=

ω

∆ω

Tacoma Narrows Bridge Tacoma Narrows Bridge (short clip)

Lesson 1



Waves and the One-Dimensional Wave Equation 
 
 Earlier we talked about the waves on a pond.  Before we start looking specifically at 
sound waves, let’s review some general information about waves.   

 

 

 

 

 

Types 

 There are two general classifications of waves, longitudinal and transverse: 
 
Transverse Wave – A traveling wave in which the particles of the disturbed medium move 
perpendicularly to the wave velocity.  An example is the wave pulse on a stretched rope that 
occurs when the rope is moved quickly up and down. 
 
Longitudinal Wave – A traveling wave in which the particles of the medium undergo 
displacement parallel to the direction of the wave motion.  Sound waves are longitudinal waves. 
 
 One thing to note is that some waves exhibit characteristics of both types of waves.  The 
waves on our pond are a combination of both types. 

    

Transverse: 

Longitudinal: 
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Characteristics 

Just like the periodic motion of the simple harmonic oscillator, waves have certain 
characteristics.  The ones we will concentrate on are the frequency, period, wave speed and the 
wavelength.  Recall from SP211, a picture of a transverse wave in a medium at some time, 
maybe t=0 sec.  

Traveling Wave at  t = 0

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6

x (m)

s 
(m

)

λ 

s0 

 
 We wrote an equation to describe this picture: 
 

( ) 0
2s x s sin xπ⎛ ⎞= ⎜ ⎟λ⎝ ⎠

 
 
where: 

s  =  particle displacement – Distance that the fluid particle is moved from its 
equilibrium position at any time, t. 

so  =  maximum particle displacement or amplitude 
λ =  distance over which the wave begins to repeat 

k = 2π
λ

 =  a conversion factor that relates the change in phase (angle) to a spatial  

displacement.  We call k the wavenumber. 
 

When we let this wave begin to move to the right with a speed, c, the position is shifted 
in the governing equation from x to x-ct. 

 
 ( ) ( )o

2s x, t s sin x ctπ⎡ ⎤= −⎢ ⎥λ⎣ ⎦ 
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Below is a picture of the same traveling wave shown at some later time, t. 

Traveling Wave at Some Later Time, t

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8

x (m)

s 
(m

)
ct 

 
 

Now, if instead of taking a snap shot of the wave in the medium at two different times, 
what if we had set a sensor somewhere in space – maybe at x = 0 m, and recorded the wave’s 
displacement over time.  The equation governing the wave would become: 

 

( ) ( ) [ ]o o o
2 2 c 2s 0, t s sin 0 ct s sin t s sin t s sin t

T
π π π⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − = − = − ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

o
 
 

where  
 
T  =  period – Time to complete one cycle.  

c  =  
T
λ  = wave velocity – Distance that wave energy travels per unit time. 

ω =  2
T
π  = a conversion factor that relates the change in phase (angle) to a temporal  

displacement.  We call ω the angular frequency. 

f  =  1
T

= frequency, is the inverse of the period.  It is the number of cycles per unit time 

that pass the origin. 
 
Note that we have employed a similar strategy regarding the group of constants in front 

of the time variable that we used when discussing the wavenumber, k.  Since the wave repeats 
every 2π change in phase and that corresponds to a time period, T, angular frequency, ω=2π /T, 
is nothing more than a conversion factor from time to phase angle.  The symmetry with 
wavenumber is striking causing many people to identify the wave number as the “special 
frequency” and to specifically refer to angular frequency, ω, as the “temporal frequency” 
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To be clear, the speed of the wave c, is not the speed of the medium.  It is the speed of the 

wave disturbance envelope and is often called the “phase speed.”  It is the speed you would need 
to run next to the medium in order to stay in phase with a point on the disturbance.   

 
The speed of the medium is also called the particle speed and is found by taking the 

derivative of the displacement with respect to time.    
 

u = s
t

∂
∂

= particle speed – Distance that the medium travels per unit time. 

 
Note that the average value of the particle velocity over any cycle is zero. 

 

Traveling wave at x = 0

-1.5
-1

-0.5
0

0.5
1

1.5
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s 
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)

Τ 
s0 

 
 
Putting these three pictures together, we have an expression for a traveling wave in a medium 
 

( ) o
2 2s x, t s sin x t

T
π π⎡ ⎤= −⎢ ⎥λ⎣ ⎦

 
 
or more compactly, 
 

( ) [ ]os x, t s sin kx t= − ω 
 
We also have a new way of defining the speed of the wave.  It makes good sense that the wave 
speed is the distance the wave travels in one cycle (the wavelength) divided by the time it takes 
the wave to complete one cycle.  It is a simple matter to substitute the frequency, f, for the 
period: 
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 c f
T
λ

= = λ  

 
The wave speed can also be calculated from the angular frequency and the wavenumber: 
 

2c
T 2 k
λ π ω⎛ ⎞= =⎜ ⎟π⎝ ⎠

 

 
We call waves modeled using this result “plane waves” because in three dimensions the 

locus of points all having the same phase are planes.  We call these planes “wavefronts” and 
often draw them as lines on a page separated by one wavelength.  In fact, the wavefronts are 
actually parallel planes.  We also find it convenient to show the direction the wave is traveling 
using a “ray” which is constructed perpendicular to the wavefronts.   

e e 

 
Sound Waves 
 

When sound travels in a fluid, i.e a gas or a liquid
longitudinal direction because fluids are poor at transmit
a transverse wave.  Below is a cartoon of the longitudina
 

We call the locations where the fluid is displaced
molecules condensations (high density) and the locations
spaced, rarefactions (low density).   
 

The intermolecular forces tend to push out on eac
compressed spring pushes back on a mass.  The gas laws
gaseous fluid are at a higher pressure (force per unit area
lower pressure.  The same is true for liquid fluids.   
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, the displacement must be in the 
ting the shear forces necessary to sustain 
l displacement of a sound wave. 

 into clumps of closely spaced 
 where the fluid molecules are sparsely 

h other at the condensations just as a 
 suggest the high density regions of a 
)  and the low density regions are at a 



 
In addition to describing sound waves in fluids by the displacement of the molecules, we 

can also describe the wave by the velocity of the molecules or the variations in density and 
pressure. 

 
 

 
 

  
Acoustic Presssure 
 
 In the case of pressure, static pressure from the height of the column of fluid above the 
wave are always present. This force is constant with time.  In SP211 we learned how to calculate 
this pressure, p, using the following equation: 

 op p gh= + ρ  
where ρ is the density of the fluid and h is the height of the fluid column. 
 
The acoustic pressure due to the condensations and rarefactions sits on this static pressure and 
oscillates around it due to the presence of the acoustic wave motion.  While we could consider 
the entire pressure variation in describing an acoustic wave, we will, by convention, instead 
consider only the pressure variation from the static pressure.  
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Pressure in a Fluid

pr
es

su
re

time

static 
pressure 

acoustic 
pressure 

 
 

 
We saw that simple harmonic motion has a governing differential equation called the “equation 
of motion” whose solution gives the position of a mass as a function of time.  In the case of a 
traveling wave, there is an analogous equation whose solution describes the medium’s particle 
displacement as a function of position and time.  This partial differential equation is known as 
“the wave equation.”  In the next section we will show how the wave equation follows directly 
from some fundamental Physics principles.  
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Sound Waves in a medium – the wave equation 

 
Initial Position – VI

  

  

x1              x2

VI 
p(x2) 

 
p (x1) 

A  
 

 

 

s1 

s2

 
Later Position – VF

 A p (x1) 
p(x2) 

VI VF

A 

x1             x2

 

 

 

 

 

 

To derive the one-dimensional wave equation, let's look at the motion of a small volume 
of fluid.  We can relate its motion to the spring-mass system from the previous section.  If we 
apply a pressure gradient to the fluid volume, VI, (such as an acoustic pressure from an acoustic 
wave)  it will move and compress the volume of fluid.  The pressure on the left face of the fluid 
block is p1(x1), while that exerted on the right face is p2(x2).  If there is a differential pressure, ∆p, 
then the fluid block might move to the right, and, as the block accelerates, it will change to 
volume, VF.  We will make some assumptions regarding the movement of the block: 

 
 1.  The process is adiabatic – no heat is lost or gained by the presence of the acoustic 
wave.  This is a reasonable assumption because for acoustic wave frequencies in the ocean, the 
wavelength is too long and thermal conductivity of seawater too small for significant heat flow 
to take place. 
 2.  Changes in particle displacement of the fluid from equilibrium are small. 
 3.  The fluid column is not deformed (shear deformation) by differential pressure.     
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To fully describe the motion of sound in the fluid from first principles, we will examine 
three well known Physics laws – Newton’s Second Law, an equation of state, and conservation 
of mass.  These laws, coupled with the assumptions above provide a robust and powerful model 
for underwater sound. 

 
Newton’s Second Law 
   

Newton's Second Law is customarily used by examining the forces in a particular 
direction and then summing them as vectors.  In the case of our fluid volume, VI, the forces in 
the x direction are: 

( ) ( )x 1 2F p x A p x A pA= − = −∆∑  

 
This net force across the volume is equal to the mass times the acceleration of the volume.  The 
mass is found by multiplying the initial density by the initial volume (∆x = x2-x1)    
   

 Im A x= ρ ∆  
 
The acceleration in the x direction is the second time derivative of average displacement 
 

 
2

x 2

sa
t

∂
=

∂
 

and  

 1 2s ss
2
+

=  

 
Substituting into Newton’s Second Law, 
 

x x

2

I 2

2

I 2

2
a

2

F = ma    becomes

spA A x   and rearranging  gives
t

p s  or more appropriately
x t

p s
x t

⎛ ⎞∂
−∆ = ρ ∆ ⎜ ⎟∂⎝ ⎠

⎛ ⎞∆ ∂
− = ρ ⎜ ⎟∆ ∂⎝ ⎠

⎛ ⎞∂ ∂
= −ρ⎜ ⎟∂ ∂⎝ ⎠

∑

 
In the final result, acoustic pressure was used since the derivative of the static pressure is zero.  
Additionally, the instantaneous density and displacement for an infinitesimally small volume are 
substituted.  
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Equation of State and Conservation of Mass 
 

Even though we think of liquids mostly as incompressible fluids, in reality, they are not.  
The Bulk Modulus of Elasticity describes how much the volume of the liquid changes for a given 
change in pressure.  In equation form this is: 

( ) ( )
( )

2 1 a

F I I

p x p x pB   
V V V V V

−
≡ − ≈

− ∆ I

-

 

The significance of the negative sign in above equation is that when pa is positive, then VF<VI 
and ∆V is negative. 

 
Using solid geometry we can develop an expression to relate the acoustic pressure to the 

displacement of the small volume in the above figure.  Implied in this argument is the law of 
conservation of mass.  We are not allowing any of the medium to escape the volume, nor are we 
allowing any additional mass to seep in. 

 

( )

( ) ( )( )

I

F

2 1

F I

I I

V A x
V A x s   
(Note:  s = s - s  is a negative number)

A x s A xV V V s
V V A x

= ∆

= ∆ + ∆

∆

∆ + ∆ − ∆− ∆ ∆
= = =

x∆ ∆
 

Thus substituting in the last two equations and rearranging the definition of the Bulk 
Modulus of Elasticity: 

a
I

a

a

Vp B
V
sp B   or more correctly
x
sp B
x

∆
= −

∆
= −

∆
∂

= −
∂

 

Substituting this last result into our previous relationship between pressure and 
displacement: 

  

 
2 2

a
2 2

p s sB B
x t x x

∂ s
x

∂ ∂ ∂ ∂⎛ ⎞= −ρ = − = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
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The One Dimensional Wave Equation 
 

Substituting the conclusion from conservation of mass and equation of state into 
Newton’’s Second Law results in the one-dimensional wave equation that we can use to describe 
the displacement, s, from their rest position of particles in a medium, with respect to time and 
position.  This equation is a partial differential equation with a solution that varies with time and 
position.  As with the mass-spring system equations, if we can find an equation that satisfies this 
second order differential equation, the equation could be used to describe the motion of the 
particles in the medium.   

 
2 2

2 2

s s
x B t

∂ ρ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠
 

 
One solution that we will use was described above as a plane wave and has the form: 

( ) ( )os x, t s sin kx t= ± ω
 

Recall that: 
 

s0 = amplitude of the oscillation or maximum displacement 
k  = 2π/λ  is the wave number 
ω  = 2πf = 2π/T is the angular frequency 
± determines the direction that the wave travels   
(+ is for a wave traveling to the left, - is for a wave traveling to the right) 
 

To check the validity of this solution we must take the appropriate second derivatives:  
 

 
( ) ( )

( ) ( )

2
2

o o2

2
2

o o2

s sin kx t s k sin kx t
x

s sin kx t s sin kx t
t

∂
− ω = − − ω⎡ ⎤⎣ ⎦∂

∂
− ω = − ω − ω⎡ ⎤⎣ ⎦∂

 

 
Substitution into the wave equation 

 

( ) ( )2 2
o os k sin kx t s sin kx t

B
ρ⎛ ⎞− − ω = − ω⎜ ⎟

⎝ ⎠
− ω  

or  

 2 2k
B
ρ⎛ ⎞= ω⎜ ⎟

⎝ ⎠
 

 
Rearranging and recalling that the speed of the wave, c = ω/k, 
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2
2

2

Bc
k
ω

= =
ρ

 

 
This is a fairly profound result.  It tells us that the plane wave solution for particle 

displacement is a “good” solution provided the speed of the wave is not arbitrary, but exactly 
equal to the square root of the bulk modulus divided by the density.  When the bulk modulus and 
density of water are used, a nominal value for the speed of sound in water is 1500 m/s.  This 
agrees with measured results. 

 
Had we used an equation of state for a gas instead of a liquid, we would have arrived at a 

similar result following a similar procedure.  The plane wave solution would still solve the wave 
equation, but the wave speed would become: 

 
2 nRTc

m
γ

=  

 
When typical room temperature numbers are used, this results in a nominal speed of sound in air 
of 340 m/s. 

 
The rules of differential equations make no statement about the uniqueness of a solution 

to the wave equation.  Many other solutions exist as well.  Had the solution been expressed as a 
cosine vice a sine, the wave equation would still have been satisfied.   Additionally, complex 
exponentials could have been used as a solution due to Euler’s identity. 

 
 ( )i kx t

os(x, t) s e −ω=  
 
This expression is really shorthand for the real (or imaginary) part of the complex exponential. 
A Gaussian pulse of the following form also satisfies the wave equation. 
 

2kx t

os(x, t) s e
−ω⎛ ⎞−⎜ ⎟ωτ⎝ ⎠=  

 
Additionally, if a certain frequency wave satisfies the differential equation, all multiples or 
harmonics of that frequency must also work. 

( ) ( )os x, t s sin nkx n t= ± ω
 

Rules for differential equations also specify that linear combinations of solutions are also 
solutions.  This is called the principle of superposition.  A method using the theory developed by 
a French mathematician named Fourier will allow disturbances of almost any shape to be 
constructed using series of harmonic plane waves.  These disturbances will still themselves be 
solutions to the wave equation.   
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Alternate Views for Describing an Acoustic Wave – The Pressure Field 
 

So far, we have viewed sound moving in a fluid as a harmonic traveling wave, 
considering only particle displacements.  This is not a unique view.  Just as an electromagnetic 
wave can be seen as an oscillating electric field or and oscillating magnetic field, so too can a 
sound wave be seen as an oscillating pressure field, an oscillating velocity field or an oscillating 
density field.  Of course, the fundamental difference remains that the electromagnetic wave is 
always a vector field, while the sound wave in a fluid is generally a scalar field. 

 
Using the solution for the wave equation, ( ) ( )0s x, t s sin kx t= − ω , we can find the 

equations for two of these fields.  First the we will find the acoustic pressure.  Previously we 
found the relationship of the acoustic pressure pa, and the displacement of the small volume from 
the equation of state.  Using this we get: 

( )

( ) ( ) ( )

a

0
a 0

sp x, t = -B
x
s sin kx- wt

p x, t = -B = -Bs kcos kx- wt
x

∂
∂
∂ ⎡ ⎤⎣ ⎦

∂
 

The first important observation about the pressure field relative to the displacement field is that 
they are 90 degrees out of phase with each other.  This means that when the particle 
displacement of the medium is at a maximum, the acoustic pressure is at a minimum.  
Additionally, when the displacement is zero, the maximum acoustic pressure is: 

2
a max o op Bs k c s= = ρ k  

By convention, acousticians prefer not to use an engineering modulus, B, instead substituting 
B=ρc2. 
  
Alternate Views – The Velocity Field and Specific Acoustic Impedance 
 

The particle velocity is not the wave velocity.  The speed that the wave travels is a 
function of the medium and is a constant.  The speed of sound, c, is given by the equations: 

Bc f
T k
λ ω

= = = λ =
ρ

 

The particle velocity of the medium, on the other hand tells us how fast the molecules in 
the fluid are moving.  It is found by simply taking the time derivative of the equation describing 
the position of the medium, the plane wave solution.   

( )

( ) ( ) ( )0
0

max 0 0

su x, t
t

s sin kx t
u x, t s cos kx t

t
where
u s s ck

∂
=

∂
∂ − ω⎡ ⎤⎣ ⎦= = − ω − ω

∂

= ω =
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It is noteworthy that for a plane wave, the particle velocity and the particle displacement 
are 90 degrees out of phase, but that the velocity and acoustic pressure are in phase.  We can also 
find the maximum particle velocity from the characteristics of the wave.   

 
In your electrical engineering classes, you were introduced to a quantity called 

“impedance.”  It was the ratio of the driving “force” in a circuit, the voltage, to the rate at which 
charge passes by a point in the circuit, the current. 

electric
VZ
I

≡
%

%
 

By analogy, the driving force in an acoustic wave is the pressure and the rate at which 
particles in the medium pass a particular point is the velocity.  It is no accident that we define the 
specific acoustic impedance as the ratio of the pressure to the particle velocity. 

p(x, t)z
u(x, t)

≡  

For the case of a plane wave we have found expressions for both the pressure and 
velocity fields. 

( )
( )

2
0

0

c s k cos kx tpz c
u s ck cos kx t

−ρ − ω
≡ = = ρ

− − ω
 

The specific acoustic impedance relates the characteristics of a sound wave to the 
properties of the medium in which it is propagating.  Nominal values for the density, ρ, and the 
wave speed, c, for water are ρ = 1000 kg/m3 and c = 1500 m/s.  Do not be confused into thinking 
that specific acoustic impedance is always the product of density and the speed of sound.  This is 
only true for a plane wave.  For other geometries, for instance a spherically spreading wave, the 
specific acoustic impedance is a different expression – even in the same fluid.  

 
More on Continuity of Mass – The Density Field 

 
When motivating the wave equation, it was mentioned that the mass in our test fluid 

volume was not changing.   Specifically, the initial mass in position I is the same as that in 
position F. 

I I F FV Vρ = ρ  

Recalling our expression for the equation of state and substituting, 

I
I I

F I F I I F F I
a

I I I F

V V
V Vp B B B 1 B B

V V

ρ
−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ρ ρ ρ − ρ ρ −
= − = − = − − = − ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟ρ ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠I

ρ
ρ

 

We find that the fractional change in density, F I

I

⎛ ⎞ρ − ρ
⎜ ρ⎝ ⎠

⎟  is directly proportional to the pressure.  

This fractional change in density is called a condensation variable.  It is often written, 
( ) ( )o a

o
0

x, t p s k cos kx t
B

ρ − ρ
= = −

ρ
ω  
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We have developed four different descriptions for a traveling acoustic plane wave; 
particle displacement, particle velocity, acoustic pressure and fractional change in density.  
Particle displacement is 90 degrees out of phase with the other three, but all four discriptions 
travel with the same wave speed and have the same period and wavelength.  All four can be used 
to properly model acoustic effects.   

 

Energy in a Sound Wave 

Missing in the discussion of wave equations and their solution is any mention of energy.  
We started the semester with a review of simple harmonic (sinusoidal) motion.  The reason we 
did this should be apparent to you by now.  As a plane wave traverses any medium, all specific 
particle locations undergo simple harmonic motion as the wave passes by.  Because of this, we 
can use the basic SP211 equations for kinetic and potential energy of the medium.  The only 
modification is to replace mass with density so as to calculate energy density or energy per unit 
volume.  This is a logical modification since the medium carrying the wave is continuous.  It 
would make no sense to identify a particular piece of mass, nor the total mass.  The equations for 
kinetic and potential energy density in a simple harmonic oscillator are respectively as follows  

 
2

K

2 2 2
Hooke

2 2
P

1 u
2
1 1k s m s 12 2 s

V V 2

ε = ρ

ω
ε = = = ρω

 

Since we have equations for particle displacement and particle velocity, we can simply substitute 
these into the above.  

( ) ( )

( ) ( )

22 2 2
K o o

22 2 2 2 2 2
P o o

1 1 1u s cos kx t s cos kx t
2 2 2
1 1 1s s sin kx t s sin kx
2 2 2

ε = ρ = ρ ω − ω = ρω − ω⎡ ⎤⎣ ⎦

ε = ρω = ρω − ω = ρω − ω⎡ ⎤⎣ ⎦

2

t
 

It should be clear that the total energy is the sum of the potential and kinetic energy and that 
when the kinetic energy is maximum the potential energy is zero and vice versa.  The question of 
how the energy is partitioned depends on when you ask the question. 
 

The average energy in a simple harmonic oscillator is calculated using the following 
definition for a periodic function: 

( ) ( )
T

0

1f t f t dt
T

≡ ∫
For kinetic and potential energy we find that since the time average of ( ) ( )2 2 1sin t cos t

2
θ = θ = , 

( )

( )

2 2 2 2 2 2
K o o

2 2 2 2 2 2
P o o

1 1s cos kx t s u
2 4
1 1s sin kx t s u
2 4

ε = ρω − ω = ρω = ρ

ε = ρω − ω = ρω = ρ

max

max

1
4

1
4
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This shows that on average, the kinetic energy of a plane wave and the potential energy of a 
plane wave are the same, each being exactly one half the total energy of the harmonic oscillator.  
The total average energy density of the wave is then, 

 2
K P m

1 u
2

ε = ε + ε = ρ ax  

Using the acoustic impedance, p pu
z c

= =
ρ

 allows us to write the total energy in terms of 

maximum pressure. 
2
a max

2

p1
2 c

ε =
ρ

 

 
Acoustic Intensity 

 
Acoustic intensity, I, is defined as the amount of energy passing through a unit area per 

unit time as the wave propagates through the medium.  As we described in SP211, energy moved 
per unit time is power which has units of Watts.  Intensity then must have units of Watts/m2.   

[ ]

1 ×⎡ ⎤ ⎡ ⎤ ⎡= = × =⎢ ⎥ ⎢ ⎥ ⎢ ×⎣ ⎦ ⎣ ⎦ ⎣
= ×

Power Work Force displacementI
Area time Area Area time

I Pressure velocity

⎤
⎥⎦  

This unit analysis suggests acoustic intensity can be calculated from the product of acoustic 
pressure and particle velocity. 

( ) ( )

( ) ( )

a

a a max max

2
a

I p u   where
p p sin kx- t  and u u sin kx- t

pbut u =
c

p x, t
I x, t =

c

=

= ω =

ρ

ρ

ω

 

One important thing to note is that since the acoustic pressure is a time-varying quantity, so is the 
intensity.   

  
We will use a more meaningful quantity, the time average acoustic intensity.  The 

average intensity of an acoustic wave is the time average of the pressure over a single period of 
the wave and is given by the equation: 

2
ap

I
c

=
ρ

 

Since the time averaged acoustic pressure is 2 2
a a

1p p
2

= max , the average acoustic intensity can be 

written:  
2
a maxp1I

2 c
=

ρ
 

2-16



This result looks remarkably similar to the average energy density of a traveling plane 
wave.  In fact this is not accidental.  If you consider a plane wave as a cylinder of length cdt and 
cross section A, the total energy in this cylinder, dE, would be the product of the energy density 
and the volume.  

 dE Acdt= ε  
 

 A 

 cdt 

Rearranging we see an alternative expression for average acoustic intensity,  

1 dEI c
A dt

= = ε  

Since 
2
a max

2

p1
2 c

ε =
ρ

, the average acoustic intensity is again
2
a maxp1I

2 c
=

ρ
.  

This result is pleasing in that it agrees with an analogy suggested earlier between voltage 
and pressure.  In your electrical engineering class, you learned that electric power was voltage 
squared divided by impedance.  Average power was found using 

2
maxV1P

2 Z
=  

Now we have found that average acoustic power per unit area is simply acoustic pressure 
squared divided by specific acoustic impedance.   

2
a maxP p1I

A 2 z
= =  

This sheds light on why the modifier “specific” precedes acoustic impedance.  By analogy, 
specific acoustic impedance, z, must be acoustic impedance Z, divided by area. 
 
To further make use of electrical engineering backround, time averaged pressure may also be 
determined by: 

2 2
a rms

2 max
a rms

2 2
max rms

p p

pp p
2

therefore:
p pI
2 c c

=

= =

= =
ρ ρ

 

Lastly, from this point further, unless otherwise noted, when we refer to the intensity of the 
wave, we actually mean the time-averaged intensity.   
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Review and definition: 

1. displacement (s) ≡ distance fluid particle moves from equilibrium (meters) 
2. period (T) ≡ time required to complete one complete oscillation (seconds) 

3. particle velocity (u) ≡ displacement/time (meters/second) = 
t
s

∂
∂  

4. wave speed (c) ≡ speed the wave front is moving (meters/second)  where f
k

c λω
ρ
β

===  

5. frequency (f) ≡ 1/T (Hz or 1/second) 
6. angular frequency (ω) ≡ 2πf (radians/second) 
7. wave lengths (λ) ≡ distance between same amplitude points of two successive wave fronts 

(meters) 
8. wave number (k) ≡ 2π/λ (1/m) 
9. wave fronts ≡ surface over which all particles vibrate in phase 
10. acoustic ray ≡ a vector perpendicular to the wave front pointing in the direction of 

propagation at one specific 
11. static pressure (ps) ≡ pressure of environment minus any changes due to sound wave (Pa or 

N/m2) 
12. acoustic pressure (pa) ≡ pressure fluctuations due to presence of wave motion of particle 

displacement (Pa) 
13. instantaneous pressure (ptot) ≡ static plus acoustic pressure at any one instant 
14. plane waves ≡ small segment of a spherical wavefront at a long distance from the source 

15. rms pressure (prms) = 2
ap ≡ root mean square value of the acoustic pressure (Pa) 

16. Intensity (I) = p2
a max/2ρc = p2

rms/ρc 
17. acoustic impedance (z) ≡ p/u =ρc = ρω/k 
18. Bulk Modulus of Elasticity (B) ≡ provides relationship between change in pressure to change 

in volume of unit of fluid 
19. density (ρ) ≡ mass contained in a unit volume of fluid (kg/m3) 
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Problems 

1. A sound wave propagates a point about 50 meters below the surface of a calm sea.  The 
instantaneous pressure at the point is given by: ( )txp π400sin1000106 5 += , where t is in 
seconds and p in Pascals.   
a) What is the value of static pressure at the point?  
b) What is the value of maximum (or peak) acoustic pressure at the point?  
c) What is the root-mean-square acoustic pressure?   
d) What is the acoustic pressure when t=0, 1.25, 2.5, 3.75, 5.00 milliseconds?   
e) What is the average acoustic intensity of the sound wave?  (The density of the water is 

1000 kg/m3 and the sound speed is 1500 m/sec.) 
f) What is the intensity level, L, in dB re 1 µPa? 
 

2. A plane acoustic wave is propagating in a medium of density ρ=1000 kg/m3.  The equation 
for a particle displacement in the medium due to the wave is given by:  

( ) ( txxs ππ 120008cos101 6 −= − )

)

, where distances are in meters and time is in seconds.   
a) What is the rms particle displacement?   
b) What is the wavelength of the sound wave?   
c) What is the frequency?   
d) What is the speed of sound in the medium?   
e) What is the value of maximum (or peak) particle velocity?   
f) What is the value of maximum acoustic pressure?   
g) What is the specific acoustic impedance of the medium?   
h) What is the bulk modulus of the medium?  
i) What is the acoustic intensity of the sound wave?   
j) What is the acoustic power radiated over a 3 m2 area? 
 

3. A plane acoustic wave is propagating in a medium of density ρ and sound speed c.  The 
equation for pressure amplitude in the medium due to the wave is given by:  

( tkxpp ω−= cos0 , where p0 is the maximum pressure amplitude of the sound.  

a) Show that the equation above can be written in the form, ( )ctxpp −=
λ
π2cos0 .   

b) Show that maximum pressure amplitudes (compressions) can be found at the following 
locations in space:  x=nλ+ct where n= 0, 1, 2, 3, …   

c) Show that maximum pressure amplitudes (rarefactions) can be found at the following 
location in space:  x=(n+1/2)λ+ct, where n = 0, 1, 2, 3, … 

 
4. A plane acoustic wave travels to the left with amplitude 100 Pa, wavelength 1.0 m and 

frequency 1500 Hz;  ⎟
⎠
⎞

⎜
⎝
⎛ += t

m
xPap

sec
30002cos1001

ππ , while another plane wave travels to 

the right with amplitude 200 Pa, wavelength ½ m and frequency 750 Hz:  

⎟
⎠
⎞

⎜
⎝
⎛ += t

m
xPap

sec
1500cos2002

ππ .   
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a) Find the rms average total pressure.  Your answer will not depend on distance x.  (Hint:  

rms average pressure ≡ 2
totalP , where the <> symbol denotes a time average.   

b) If ( )tkxpp ω−= cos01 and ( )φω +−= tkxpp cos01 , find the rms average total pressure. 
 
5. Given the following equation for an acoustic wave, originating from a source in the ocean 

( ) [ ]
⎟
⎠
⎞

⎜
⎝
⎛ −= txxtxp

sec
1602

m 13
2sinPa 108, 5 ππ  

Determine the following: 
a) The wavelength  
b) The rms pressure of the wave 
c) What is the frequency of the wave? 
d) The time averaged intensity of the acoustic wave  

 
6. If the particle displacement can be found to be: 

( ) [ ]
⎟
⎠
⎞

⎜
⎝
⎛ −= − txxtxs

sec
1602

m 13
2cos m 106, 6 ππ  

a) What is the value of the peak particle velocity? 
b) What would be the maximum acoustic pressure if the Bulk Modulus of Elasticity of the 

medium were 2.0x109 N/m2? 
 
7. If a pressure pulse from a small explosion in water is known to be equal to 

( )
2t

0.1secp 1000Pa e
⎛ ⎞−⎜
⎝=

⎟
⎠  at x = 0 

a) Construct a solution to the wave equation for the pulse propagating to the right.  This 
expression must be in the form of a function of x and t. 

b) Sketch p(x,t) from part a) for time t = 0, t = 0.1 s, and t = 0.2 s. 
 
8. If an acoustic pressure pulse in water at x = 0 is known to be 

( ) o
2

pp t
t1

=
⎛ ⎞+ ⎜ ⎟τ⎝ ⎠

  where τ = 1 millesec, po = 1 Pa 

a) Find a wave expression for the pressure pulse traveling in the x-direction to the left. 
b) Find an expression for the intensity of the waveform found in part a). 

 
9. What is the speed of sound in yards per second in: 

a) air? 
b) water? 
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1

Waves
• Traveling Waves

– Types
– Classification
– Harmonic Waves
– Definitions
– Direction of Travel

• Speed of Waves
• Energy of a Wave

Types of Waves

• Mechanical Waves - Those waves resulting from 
the physical displacement of part of the medium from 
equilibrium.

• Electromagnetic Waves - Those wave resulting 
from the exchange of energy between an electric and 
magnetic field.

• Matter Waves - Those associated with the wave-like 
properties of elementary particles.

Requirements for Mechanical Waves

• Some sort of disturbance
• A medium that can be disturbed
• Physical connection or mechanism through 

which adjacent portions of the medium can 
influence each other.

Classification of Waves
• Transverse Waves - The 

particles of the medium 
undergo displacements in a 
direction perpendicular to the 
wave velocity
– Polarization - The orientation 

of the displacement of a 
transverse wave.

• Longitudinal 
(Compression) Waves -
The particles of the medium 
undergo displacements in a 
direction parallel to the 
direction of wave motion.
– Condensation/Rarefraction

Waves on the surface of a liquid 3D Waves

Lesson 2
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Sound Waves
Harmonic Waves

• Transverse displacement looks like:

At t = 0

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6

x (m)

s 
(m

) λ
s0

( ) 0
2s x s sin xπ⎛ ⎞= ⎜ ⎟λ⎝ ⎠

Let the wave move

Traveling Wave

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6 8

x (m)

s 
(m

)

ct

( ) ( )0
2s x, t s sin x ctπ⎡ ⎤= −⎢ ⎥λ⎣ ⎦

Standing at the origin
• Transverse displacement looks like:

At x = 0

-1.5
-1

-0.5
0

0.5
1

1.5

0 2 4 6

t (sec)

s 
(m

) Τ

s0

( ) ( )o o o
2 2 c 2s 0, t s sin 0 ct s sin t s sin t

T
π π π⎡ ⎤ ⎡ ⎤ ⎛ ⎞= − = − = − ⎜ ⎟⎢ ⎥ ⎢ ⎥λ λ⎣ ⎦ ⎣ ⎦ ⎝ ⎠

Phase Velocity

distance moved in one cyclec f
time required for one cycle T

λ
= = = λ

so

-so

ct

• Wave velocity is a function of the properties 
of the medium transporting the wave 

so

-so

ct

That negative sign

• Wave moving 
right

• Wave moving 
left

( ) o
2 2s x, t s sin x t

T
π π⎡ ⎤= −⎢ ⎥λ⎣ ⎦

( ) o
2 2s x, t s sin x t

T
π π⎡ ⎤= +⎢ ⎥λ⎣ ⎦
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Alternate notation

( ) 0
2 2s x, t s sin x t

T
π π⎡ ⎤= −⎢ ⎥λ⎣ ⎦

( ) [ ]os x, t s sin kx t= −ω

2k π
=
λ

2
T
π

ω =

Wave number

Angular frequency

2c
T 2 T k
λ λ π ω

= = =
π

Definitions
• Amplitude - (so) Maximum value of the displacement of a particle in a 

medium (radius of circular motion).

• Wavelength - (λ) The spatial distance between any two points that behave 
identically, i.e. have the same amplitude, move in the same direction (spatial period)

• Wave Number - (k) Amount the phase changes per unit length of wave 

travel.  (spatial frequency, angular wavenumber)

• Period - (T) Time for a particle/system to complete one cycle.

• Frequency - (f) The number of cycles or oscillations completed in a period of 
time

• Angular Frequency - (ω) Time rate of change of the phase.

• Phase - (kx - ωt) Time varying argument of the trigonometric function.

• Phase Velocity - (v) The velocity at which the disturbance is moving 
through the medium

Two dimensional wave motion

i rθ = θ

Plane WaveSpherical Wave

Acoustic Variables

• Displacement
• ParticleVelocity
• Pressure
• Density

acoustic 
pressure

static 
pressure

total static ap p p= +

su
t
∂

=
∂

( ) [ ]os x, t s sin kx t= −ω

( ) o

o

x, tρ −ρ
ρ

Condensation = Compression
Rarefaction    =  Expansion

A microscopic picture of a fluid

x1 x2

s2

x1  x2

A
p (x1)

p(x2)VI

A
p (x1)

p(x2)

VI

A

VF

Initial Position – VI

Later Position - VF

s1

• Assumptions:
– Adiabatic
– Small displacements
– No shear deformation

• Physics Laws:
– Newton’s Second Law
– Equation of State
– Conservation of mass

The Wave Equation

2
a

2

p s
x t

⎛ ⎞∂ ∂
= − ⎜ ⎟∂ ∂⎝ ⎠

ρNewton’s Second Law/
Conservation of Mass

a
sp B
x
∂

= −
∂

Equation of State/
Conservation of Mass

2 2

2 2

s s
x B t
∂ ρ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

PDE – Wave Equation
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Solutions to differential equations

• Guess a solution
• Plug the guess into the differential equation

– You will have to take a derivative or two
• Check to see if your solution works.  
• Determine if there are any restrictions (required 

conditions).
• If the guess works, your guess is a solution, but it 

might not be the only one.
• Look at your constants and evaluate them using 

initial conditions or boundary conditions.

The Plane Wave Solution

( ) ( )os x, t s sin kx t= ωm
2 2

2 2

s s
x B t
∂ ρ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

( ) ( )2 2
o os k sin kx t s sin kx t

B
ρ⎛ ⎞− −ω = − ω −ω⎜ ⎟

⎝ ⎠

2 2k
B
ρ⎛ ⎞= ω⎜ ⎟

⎝ ⎠

Bc
k
ω
= =

ρ

General rule for wave speeds

Elastic Propertyc
Inertial Property

=

Young's modulus Yc
density

= =
ρ

Bulk modulus Bc
density

= =
ρ

Longitudinal wave 
in a long bar

Longitudinal wave 
in a fluid

Sound Speed Bulk modulus Bc
density

= =
ρ

1500 m/s343 m/sSpeed

1026 kg/m31.21 kg/m3Density

2.28 x 109 Pa1.4(1.01 x 105) PaBulk Modulus
Sea WaterAir

Variation with Temperature:

( ) mv 331 0.60T
s

≈ +

( )2 3 mv 1449.05 4.57T .0521T .00023T
s

≈ + − +

Air

Seawater

Example

• A plane acoustic wave is propagating in a 
medium of density ρ=1000 kg/m3.  The equation 
for a particle displacement in the medium due to 
the wave is given by:  

where distances are in meters and time is in 
seconds.  

• What is the rms particle displacement?  
• What is the wavelength of the sound wave?  
• What is the frequency?  
• What is the speed of sound in the medium? 

( ) ( )txxs ππ 120008cos101 6 −= −

Alternate Solutions

( ) ( )os x, t s sin nkx m t= ± ω

( )i kx t
os(x, t) s e −ω=

2kx t

os(x, t) s e
−ω⎛ ⎞−⎜ ⎟ωτ⎝ ⎠=

( ) ( )os x, t s cos kx t= ±ω
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Superposition

• Waves in the same 
medium will add 
displacement when at the 
same position in the 
medium at the same time.

• Overlapping waves do not 
in any way alter the travel 
of each other (only the 
medium is effected)

Superposition

• Fourier’s Theorem – any complex wave can be 
constructed from a sum of pure sinusoidal 
waves of different amplitudes and frequencies

Alternate Views

( )0
su s cos kx t
t
∂

= = − ω −ω
∂

( ) ( )os x, t s sin kx t= ±ωParticle Displacement

Particle Velocity

Pressure

Density

( ) ( )2
a 0

sp x, t = -B - c s kcos kx- wt
x

∂
=

∂
ρ

( ) ( )o a
o

0

x, t p s k cos kx t
B

ρ −ρ
= = − −ω

ρ

Pitch is frequency

>20000 HzUltrasonic

< 20 HzInfrasonic
20 Hz – 20000 HzAudible 

Middle C on the piano has a frequency of 262 Hz.
What is the wavelength (in air)?

1.3 m

Specific Acoustic Impedance

• Like electrical impedance
• Acoustic analogy

– Pressure is like voltage
– Particle velocity is like 

current
• Specific acoustic 

Impedance:

• For a plane wave:

electric
VZ
I

≡
%

%

p(x, t)z
u(x, t)

≡

( )
( )

2
0

0

c s k cos kx tpz c
u s ck cos kx t

−ρ −ω
≡ = = ρ

− −ω

Energy Density in a Plane Wave
( ) ( )

( ) ( )

22 2 2 2
K o o

22 2 2 2 2 2
P o o

1 1 1u s cos kx t s cos kx t
2 2 2
1 1 1s s sin kx t s sin kx t
2 2 2

ε = ρ = ρ ω −ω = ρω −ω⎡ ⎤⎣ ⎦

ε = ρω = ρω −ω = ρω −ω⎡ ⎤⎣ ⎦

Kε Pε2
2 a max
max 2

p1 1u
2 2 c
ρ =

ρ
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Average Energy Density

2
K P max

1 u
2

ε = ε + ε = ρ

( )

( )

2 2 2 2 2 2
K o o max

2 2 2 2 2 2
P o o max

1 1 1s cos kx t s u
2 4 4
1 1 1s sin kx t s u
2 4 4

ε = ρω −ω = ρω = ρ

ε = ρω −ω = ρω = ρ

2
a max

2

p1
2 c

ε =
ρ

Or

Kε Pε2
2 a max
max 2

p1 1u
2 2 c
ρ =

ρ

Average Power and Intensity

A

cdt

dE Acdt= ε

dEP Ac
dt

= = ε

2
2 a max
max a max max

P p1 1 1I c cu p u
A 2 2 c 2

= = ε = ρ = =
ρ

Instantaneous Intensity

( ) ( ) ( ) ( ) ( )
2

2a
a

p x, t
I x, t p x, t u x, t z u x, t

z
⎡ ⎤⎣ ⎦= = = ⎡ ⎤⎣ ⎦

[ ]

1 ×⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = × =⎢ ⎥ ⎢ ⎥ ⎢ ⎥×⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= ×

Power Work Force displacementI
Area time Area Area time

I Pressure velocity

2
2VP ZI VI

Z
= = =

Root Mean Square (rms) Quantities

2 max
a rms

2 2
max rms

pp p
2

therefore:
p pI
2 c c

= =

= =
ρ ρ
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Logarithms and Levels 

 Logarithms are used to compare two quantities to one another quickly with an easy frame 
of reference.  It is particularly useful if there is a large difference in orders of magnitude between 
quantities as in acoustic pressure or acoustic energy calculations.  We will see how useful 
logarithms can be in our next lesson.  For now, let's concentrate on review of some of the basic 
principles leading up to our use of logarithms. 
 Unless otherwise stated, we will be working solely with logarithms that are in base 10 
(Briggsian) .  Some useful relationships to remember when working with logarithms are: 
 

1. ( )x
10y 10   then  log y x= =  

2. ( ) ( ) ( )log xy = log x + log y  

3. ( ) ( )xlog log x log y
y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

4. ( ) ( )xnxn log10log10 =  

Intensity Level 

 In the last lesson, we defined the time average intensity in relation to the time average or 
rms pressure as well as the maximum acoustic pressure. 

2 2
max

p pI
c 2 c

= =
ρ ρ

 

 The intensity is a useful quantity because it quantifies the power in an acoustic wave, but 
because of the large variation in magnitudes of Intensity, it is more useful to use logarithms to 
compare intensities.  The below table demonstrates the wide variation in Intensity for typical 
sounds in air.   
 

We will start by defining a new quantity, L, the intensity level, which has units of dB. 

0

I
L 10log

I
≡  

where: 
<I> is the time average intensity of the sound wave. 
I0 is the reference level used for comparison purposes.   
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Source Intensity (W/m2)Intensity Level (dB)

Jet Plane 100 140 

Pain Threshold 1 120 

Siren 1x10-2 100 

Busy Traffic 1x10-5 70 

Conversation 3x10-6 65 

Whisper 1x10-10 20 

Rustle of leaves 1x10-11 10 

Hearing Threshold1x10-12 1 

 
The reference intensity in air is typically 1 x 10-12 W/m2.  Using this simple definition you see 
that intensities spanning 14 orders of magnitude become intensity levels between 1 and 140.  
This is an appealing scale because our ears seem to judge loudness on a logarithmic vice linear 
scale.  Additionally, if you tried to graph various intensities, say as a function of frequency, your 
scale would likely only display the loudest noise with all others jammed along the abscissa.  
When intensity levels are plotted, the graph becomes much more useful. 

 
 

The units of decibels were constructed for intensity level definition.  A “bel” was named 
after Alexander Graham Bell and defined:  

0

I"bel" log
I

≡  

A “decibel” adopts the standard metric prefix and is 1/10th of a bel.   

3-2 



Reference Intensity 

We have already noted above that the reference intensity when calculating intensity level 
for sounds in air is conventionally 1 x 10-12 W/m2, the hearing threshold.  This is not always the 
case.  In fact for water, it is conventional to use a standard reference pressure, po.  The most 
common reference pressure for water is 1µPa.  This should not alarm you since the two can be 
converted using the specific acoustic impedance and assuming a plane wave. 

2
0

0
pI =

cρ  

Thus for water with a nominal density, ρ=1000 kg/m3 and the nominal speed of sound, c = 1500 
m/s, the reference intensity would be: 

( )
( )( ) 2

19
3

2

0 m
W 10x676

sm 1500mkg 1000
Pa 1I −=

µ
= .  

 
Similarly, one can work backwards from the reference intensity in air and determine that 

the reference pressure is about 20 µPa (ρ = 1.21 kg/m3, c = 343 m/s). 
 
Unfortunately, you must be very observant when using decibels to understand the 

reference level used in the calculation of an intensity level.  While the numbers stated here for 
water and air are the most common today, up until the early 1970’s, the standard reference 
pressure level for sound in water was the microbar (µbar).  To remove any ambiguity, intensity 
levels are generally stated with the reference included as follows: 

re 1 PaL 40 dB µ=  
Of course, this puts additional burden on you when submitting answers on homework, tests and 
quizzes. 

Sound Pressure Level (SPL) 

If the reference is provided as a pressure, and we know the about the pressure of the 
sound wave, we do not actually need to convert both to intensities because we can relate the 
pressure of a sound wave directly to the reference pressure using our basic rules for logarithms. 

2
2

22

2 2
00 0

p
ppI cL 10log 10log 10log 10log

pI p
c

⎛ ⎞
ρ ⎜ ⎟= = = =

⎜ ⎟⎜ ⎟
⎝ ⎠ρ

0p
 

A better equation for the intensity level is then: 

2

rms

0 o

p pL 20log 20log
p p

⎛ ⎞
⎜ ⎟= =
⎜ ⎟⎜ ⎟
⎝ ⎠

        where,  
2

2 max
rms

pp = p =
2
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In this form, the intensity level is often called the “sound pressure level.”  The sound pressure 

level and the intensity level must be equal provided the reference values correspond (
2
0

0
pI =

cρ
).  

Note that the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1log10
X
X  is used for energy quantities (power, intensity).  These a

sometimes called “mean squared” quantities.  The form 

re 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1lo20

and other “root mean squared” quantities such as voltage. 

g
x
x  is used for acoustic pressure 

 
As a quick example, a sound wave in water with an rms pressure of 100 µPa would have 

an intensity level or sound pressure level (in dB): 

Pa 1 redB 40
Pa 1

Pa 100log20

µ

µ
µ

=

=

L

L
 

As stated above, the reference pressure is given in this answer so that we know the 
intensity level is a comparison of the intensity to the reference pressure. In the future, all 
intensity levels for sound in water can be assumed to be referenced to 1 µPa unless otherwise 
stated.  For sound in air, the standard reference pressure is 20 µPa. 

About the Decibel (dB) 

A couple of things to note about this new unit, dB:   

1) Remember that decibels are often used to deal with values that differ over many orders of 
magnitude thus allowing for much smaller differences in dB.  For instance, a hydrophone 
with a source level of 120 dB emits a sound wave with a rms pressure of 1,000,000 Pa.  A 
hydrophone with a source level of 100 dB emits a sound wave with an rms pressure of 
100,000 Pa.  Thus in this instance, a difference of 20 dB equals a difference of 900,000 
Pa.   

 
2) Every time you see the units of dB, you should think of a ratio.  By definition, a level in 

dB is related to the ratio of rms pressure to a reference pressure (in water pref = 1µPa).  
When expressing a sound pressure level referenced to 1 µPa, the units are noted as dB/1 
µPa or dB re 1 µPa.  Sound levels in air use 20 µPa as the reference level, the average 
human hearing threshold at for a 1 kHz signal.  Acoustic signals in water were originally 
referenced to 1 µbar.  You can show that sound levels referenced to the new 1 µPa 
reference level are therefore 100 dB higher than those referenced to 1 µbar.  

510  Pa20log 100 dB
1 Pa

µ
µ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

Later we will see how a difference of levels of two sources, in dB, is related to the ratio 
of the pressure (or intensity) of the two sources. 
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3) Since 
0

10log
I

L
I

= , a 10 dB intensity level means that I  is 10 times greater than I0 

and a 3 dB intensity level increase corresponds to a doubling of the energy level. 
 
4) Intensity levels and sound pressure levels both use the symbol, L.  As we move through 

the course, we will discuss source levels, noise levels, and reverberation levels.  A 
common procedure in the Navy is to assign a subscript such as LS for a source level.  
Several standard textbook have adopted the convention of putting the subscript before the 
“L.”  In this case, SL would mean source level.   

Working with intensity levels 

 For this course, we will need to work with intensity levels in many ways.  Some 
examples of using intensity levels are given below: 
 

Subtracting Intensity Levels 
  
Finding the difference between two intensity levels is a little bit different.  The difference in the 
two intensity levels represents the ratio of the intensities or pressure: 

[ ]

1

2
12

1212

010212

0

1

0

2
12

I
I

10LL

I10I10LL

I10I10I10I10LL
I
I

10
I
I

10LL

log

loglog

loglogloglog

loglog

=−

−=−

−−−=−

−=−

 

or substituting in the definition for the intensity: 

1

2
12

2
1

2
2

12

2
1

2
2

12

p

p
20LL

p

p
10LL

c
p

c
p

10LL

log

log

log

=−

=−

ρ

ρ=−

 

3-5 



So if a noisy sub was emitting a source level of 140 dB and a quiet sub was emitting a 
source level of 80 dB, the difference between the two intensity levels would be: 

 
dB 60dB 80dB 140LL 12 =−=−  

For perspective, this represents a ratio of the intensity of both submarines To find the 
actual ratio (not in dB): 

1
6

2

10
LL

1

2

1

2
12

I10I

or  10
I
I

or  
I
I

10LL

12

∗=

=

=−

−

log

 

Or ratio of the acoustic pressures emitted: 

2 1

2
2 1

1

L L
2 20

1

3
2 1

p
L L 20log   or

p

p
10   or

p

p 10 p

−

− =

=

= ∗

 

In other words, the acoustic pressure of the sound wave from the louder sub is 3 orders of 
magnitude or a thousand times greater than that of the quiet sub. 
 

This example illustrates why it is so much more efficient to reference all intensities or 
pressures to intensity levels to provide an easier comparison between numbers that can be so 
many orders of magnitude different. 
 

Adding Incoherent Intensity Levels 

 Noise in the ocean is the combination of noise from many different sources.  How can we 
add two intensity levels together? We want to add two intensity levels, L1 and L2, where: 
 

1 2
1 2

0 0

I I
L = 10log    and    L = 10log

I I
 

tot
1 2

0

tot 1 2

I"L L " 10log
I

but I I I

+ =

= +
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1
1 1

0

First, let's rewrite equation, L 10log  to solve for =
I

I
I

 

1

11

0

110

0

log
10

10

=

=
L

IL
I

I
I

 

2L
210

0

I
similarly,   10

I
=  

1 2

1 2

1 2

L L
10 10

1 0 2 0

L L
10 10

tot 0

tot
tot 1 2

0

L L
10 10

tot

therefore I I 10  and I I 10

so  I I 10 10

IL L L 10log
I

L 10log 10 10

= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⊕ = ⎜ ⎟
⎝ ⎠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

 

We used the notation with a circle around the plus sign to represent the power sum of two 
decibel quantities.   

21tot LLL ⊕=  

 To add intensity levels, there are two shortcuts that can be used for some problems to 
make it easier than using the above equation: 

1. 
1 2L L

10 10
1 2 tot 1if L L   then  L 10log 10 10 L 3 dB

⎛ ⎞
= = + =⎜ ⎟

⎝ ⎠
+  this is because: 

[ ]
1 1 1 1L L L L

10 10 10 10
tot 1L 10log 10 10 10log 2 10 10log 10 10log 2 L 3 dB

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤
= + = = + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
  

The rules of logarithms, specifically the second rule above, tells us the only time it is appropriate 
to actually add dB would be when intensity was multiplied by some quantity as in the case of the 
gain provided by an amplifier.  In this example, if an amplifier had doubled the intensity as if 
there were two source intensities, we say the amplifier provided a 3 dB increase and we simply 
add the 3 dB to the initial intensity level.   

 
2. if L1>>L2 (or vice versa), then Ltot≈L1 (or vice versa).  Here, “much more than” is defined as 

10 dB or I1>10*I2, 
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Problems 
 

1. Using the rules for logs:   
a) Simplify the following relationship for this empirical sound level of a signal in water 

(dBre 1µPa):  Pa1 re10 dB  log20 µ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= c

ba

z
yxL .   

b) If x=5, y=8, z=10, a=10, b=5, and c=11, what is the resulting level (in dBre 1µPa).  
 
2. Cavitation may take place at the face of a sonar transducer when the sound peak pressure 

amplitude being produced exceeds the hydrostatic pressure in water. 
a) For a hydrostatic pressure of 600,000 Pa, what is the highest intensity that may be 
radiated without producing cavitation? 
b) What is the intensity level in dB re 1 µPa? 
c) How much acoustic power is radiated if the transducer face has an area of 1/3 m2? 
  
3. If P2 rms = 100 µPa and P1 rms = 25 µPa, what is:   

a)  =
1

2

I
I

?   

b)  L2 – L1 =? 
 
 
4. If L1 = L2 = 60 dBre 1 µPa, L3 = 57 dBre 1 µPa, L4 = 50 dBre 1 µPa, and L5 = 65 dBre 1 µPa, what 

is Ltot, the some of all the levels. 
 
5. What is the intensity of a 0 dB(re 1 µPa) acoustic wave in water? 

 
6. If L1 = L2, then prove that Ltot = L1+3 dB (the 3 dB rule). 

 
7. If P1,rms = 200 µPa and P2,rms = 10µPa, determine (assume P0 = 1µPa):   
a)  L1,  
b)  L2,  
c)  L1⊕L2,  
d) L1-L2,  
e)  What does the previous result tell us? 
 
8. If L1=30 dB re 1µPa and L2=65 dB re 1µPa, what is P2/P1? 
 
9. Show that a plane wave having an effective acoustic pressure of 1 µbar in air has an 

intensity level of 74 dB re 0.0002 µbar. 
 

10. Find the intensity (W/m2) produced by an acoustic plane wave in water of 120 dB sound 
pressure level relative to 1 µbar. 
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11. What is the ratio of the sound pressure in water for a plane wave to that of a similar wave 
in air of equal intensity?  cair = 343 m/s, ρair = 1.21 kg/m3, cwater = 1500 m/s, ρwater = 1000 
kg/m3

. 
 

12. If the intensity level in seawater is 160 dB re 1 µPa, what is the rms acoustic pressure in 
µPa? 

a) What is the rms acoustic pressure in µPa if the intensity level is 160 dB re 1 µbar? 
b) What is the rms acoustic pressure in µPa if the intensity level is 160 dB re 0.0002 µbar? 
 
13. Over a certain band of frequencies in the deep ocean basis, the noise level due to surface 

water turbulence (due to wind) is 62 dB and the noise level due to distant shipping is 65 
dB.  What is the total noise level? 

 
14. The rms pressure from a low frequency sound source is 200 µPa.  What is the combined 

rms pressure for both sources?  What is the combined source level in dB re 1 µPa?  
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THE ELUSIVE DECIBEL:
THOUGHTS ON SONARS AND MARINE MAMMALS

David M.F. Chapman and Dale D. Ellis
Defence Research Establishment Atlantic, P.O. Box 1012, Dartmouth, N.S., B2Y 3Z7

dave.chapman@drea.dnd.ca

INTRODUCTION

A few years ago, there was considerable controversy over the
effects of a proposed global acoustic experiment designed to
measure the temperature of the world's oceans1. The focus of
concern was the possible effect of the acoustic signals on
whales and other marine life. There is continued interest in
the effects of underwater sound on marine animals, according
to a recent news item in The Economist2 based on related
scientific correspondence in Nature3. The thesis is that loud
signals from experimental sonars harm marine mammals, or
at least harass them enough to unacceptably alter their
behaviour patterns. In the various discussions of this
important issue that can be found in the press and on the
internet, one often sees questionable comparisons being
made, such as the acoustic output of a naval sonar being
compared with the noise from a jet aircraft. Some
misunderstandings between professionals in different fields
can be traced to the multiple uses of the term "decibel".
Acoustical terms can be confusing, even for experts. It is
not at all surprising that well-intentioned articles sometimes
fail to present situations clearly. By definition, the decibel is
a relative unit, not an absolute unit with a physical
dimension; unless the standard of comparison is cited, the
term "decibel" is to all intents and purposes useless. The
confusion is not helped by the use of the decibel to specify
distinctly different physical quantities, or the same physical
quantity with different reference levels. Some reporters—and
even some scientists—are getting their "apple" decibels
mixed up with their "orange" decibels, as it were.

The decibel (abbreviated dB) is simply a numerical scale used
to compare the values of like quantities, usually power or
intensity. Acousticians introduced the decibel to devise a
compressed scale to represent the large dynamic range of
sounds experienced by people from day to day, and also to
acknowledge that humans—and presumably other
animals—perceive loudness increases in a logarithmic, not
linear, fashion. An intensity ratio of 10 translates into a
level difference of 10 decibels4; a ratio of 100 translates into
a level difference of 20 dB; 1000 into 30 dB; and so on. (The
term "level" usually implies a decibel scale.) In a uniform
acoustic medium, the magnitude of the acoustic intensity is
proportional to the square of the pressure for a freely-
propagating sound wave. Accordingly, the level difference in

decibels associated with two sound pressure values (measured
in the same medium) is determined by calculating the ratio
of the pressures, squaring this number, taking the logarithm
(base 10), and multiplying by 10.5 If one chooses a standard
reference pressure value, then sound pressure levels can be
specified in decibels relative to that reference, but this should
be stated along with the number, for clarity6.

The following is a typical erroneous statement found in the
press, on radio, on television, and on internet discussion
groups. Referring to an experimental sonar source that
produces very loud low-frequency sound, The Economist
wrote: "It has a maximum output of 230 decibels, compared
with 100 decibels for a jumbo jet." Regardless of the
author’s intention, the implication is that a whale would
experience an auditory effect from the sonar that would be
substantially greater than that of a person exposed to the jet
aircraft. However, this type of comparison is misleading for
at least three reasons: (1) the reference sound pressures used
in underwater acoustics and in-air acoustics are not the same;
(2) it compares a source level with a received level; and (3)
there is no obvious connection between an annoying or
harmful sound level for a human in air and an annoying or
harmful sound level for a marine animal in water. In the
remainder of this note, we will expand on these topics
somewhat, attempt to correct the mistaken impression, and

230 dB re 1 µPa @ 1 m

100 dB(A)

3 d
B

 d
o

w
n????

90 dB re 1 µPa/√Hz

!
20 µPa?  1 µPa?
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try to direct attention to the real issue at the heart of the
controversy.

1 . STANDARD REFERENCE SOUND
PRESSURES IN AIR AND IN WATER

The standard reference pressures used in underwater acoustics
and in-air acoustics are not the same. In water, acousticians
use a standard reference sound pressure of 1 micropascal (i.e.
10-6 newtons per square metre), abbreviated µPa. In air,
acousticians use a higher standard reference sound pressure of
20 µPa. The in-air standard was chosen so that the threshold
of hearing for a person with normal hearing would
correspond to 0 dB at a frequency of 1000 Hz. Adopting
different standards for air and water inevitably leads to a
confusing consequence: the same sound pressure that
acousticians label 0 decibels in air would be labelled 26
decibels in water. Presumably, both factions of acousticians
had equally good reasons for proposing their respective
standards, and this dichotomy is now entrenched in an ANSI
standard6, which is unlikely to change. Accordingly, the
following dictum should always be observed, especially
when dealing with cross-disciplinary issues: It is essential
that sound levels stated in decibels include the reference
pressure.

2 . SOURCE LEVEL AND RECEIVED
LEVEL

The erroneous statement compares a source level with a
received level. In underwater acoustics, a source level usually
represents the sound level at a distance of one metre from the
source, while a received level is the sound level at the
listener's actual position, which could be considerably more
distant with a correspondingly reduced sound level. In an
unbounded uniform medium, loudness decreases rapidly with
increasing source-receiver distance, 6 dB less per doubling of
distance. For example, The Economist (and even Nature), in
referring to the 230 dB sonar source level, neglected to
mention the reference distance of 1 metre. In contrast, the
100 dB number that The Economist associated with a jumbo
jet is not a source level at all, but is typical of a received
noise level measured during jet airplane take-off, averaged
over several microphones situated several hundred to some
thousands of metres from the runway7. It is incorrect to
compare a source level at 1 metre with a received noise level
at an unspecified (and probably much larger) distance.

Combining these two remarks, the output of the sonar
source should have been written as 230 dB re 1 µPa at 1 m,
while the jumbo jet noise level should have been written as
100 dB re 20 µPa. The inclusion of the reference values
shows that these are not like quantities, and that the
numbers are not directly comparable. The Encyclopedia of

Acoustics8 offers 120 dB re 20 µPa as a typical noise level
associated with jet aircraft take-off measured at 500 m
distance (although there is sure to be a wide variation about
this number, depending on the type of aircraft, etc.). With
the assumption of spherical spreading, referencing this level
back to 1 metre distance adds 54 dB. Switching to the 1 µPa
standard reference adds another 26 dB. Accordingly, the
source level of a large jet looks more like 120 + 54 + 26 =
200 dB re 1 µPa at 1 m, compared with 230 dB re 1 µPa at
1 m for the sonar.  Both of these are loud sources, but now
at least the comparison is sensible. The ratio of sound
pressures is around 32, rather than over 3 million, as some
commenters would have you believe!

There are other minor issues that could be discussed. The
signal from the sonar source is narrowband, and the
concentration of all the signal at one frequency may be
particularly troublesome for an animal who has a cavity that
resonates at that frequency. On the other hand, the jet noise
is broadband, and the acoustic signal was probably passed
through a filter that approximately matches the sensitivity
of the human ear before the measurement was made, so this
measurement would be meaningless for an animal with a
different hearing sensitivity curve. Much more could be said
about these issues, but the principal reason for raising them
is to underscore the message that the sonar / jet plane
comparison has little validity.

3 . WHAT HURTS?

There is no clear connection between a harmful sound level
for a human in air and that for an animal in water.  All
creatures have evolved and adapted to their respective
environments and there is no reason why human hearing
characteristics should apply to any other animal, including
whales. If a given sound pressure hurts a human, would the
same sound pressure level in water hurt a whale (or a fish, or
a shrimp)? Is the threshold of pain higher? Is it lower?
Particularly when comparing acoustic effects in media of
widely different impedance, is acoustic pressure the relevant
acoustic quantity, or is it acoustic intensity?9  In the end, it
is the answers to these and related questions that really
matter, not juggling decibels. To properly answer these
questions and to determine the “community” noise standards
for marine animals, scientific research is necessary—just as
it was for humans. Some of this work has already been
done, and an excellent review10 of the state of knowledge up
to 1995 is a good starting point for acousticians and
biologists interested in deepening their understanding.  A
single example cannot represent the whole range of species
under consideration, but is typical: The response threshold
(determined through behavioural studies) of a Beluga at 1000
Hz is just over 100 dB re 1 µPa.  Of course, this says
nothing about the Beluga’s threshold of pain, and says
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nothing about what sound level would unacceptably alter its
behaviour. It is unwise to assume that the auditory
experience of any animal would be the same as that of a
human exposed to the same sound level.

CONCLUSION

As sonar engineers, marine biologists, and environmentally
conscious citizens continue to discuss these important
issues, we should at least agree to use the same acoustical
units to convey our points of view, to avoid confusion and
misrepresentation. Some sensible acousticians have
advocated abandoning the use of the decibel—which is partly
to blame for our woes—in favour of good old SI (i.e.,
metric) units for sound pressure, acoustic intensity, power,
etc. Until that happy day dawns, let us include reference
values with our decibels, so we don't end up with fruit salad
dBs. Ultimately, what is important is to determine what
underwater sound levels are harmful to marine life. We must
develop mitigation measures to allow underwater acoustic
systems to be operated while ensuring the protection of the
marine environment with due diligence.
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Lesson 3 - Logs and Levels

( )x
10y 10   then  log y x= =

( ) ( ) ( )log xy = log x + log y

( ) ( )xlog log x log y
y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

( ) ( )xnxn log10log10 =

Math Prereqs

Examples
• Without using your calculator, find the following: 

(log10(2) = 0.30)
• log10(10-3) =
• log10(1 x 1012) =
• log10(2 x 1012) = 
• log10(200) = 
• log10(200) - log10(10) = 
• log10(210) = 

-3, 12, 12.3, 2.3, 1.3, 3 

Pitch is frequency

>20000 HzUltrasonic

< 20 HzInfrasonic
20 Hz – 20000 HzAudible 

Middle C on the piano has a frequency of 262 Hz.
What is the wavelength (in air)?

1.3 m

Intensity of sound
• Loudness – intensity of the wave.  Energy 

transported by a wave per unit time across a unit 
area perpendicular to the energy flow. 

701x10-5Busy Traffic
653x10-6Conversation
201x10-10Whisper

1201Pain Threshold

101x10-11Rustle of leaves
11x10-12Hearing Threshold

1001x10-2Siren

140100Jet Plane
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• Ears judge loudness on a logarithmic vice 
linear scale

• Alexander Graham Bell

• deci = 

• 1 bel = 10 decibel

Why the decibel?
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Reference Level Conventions

1 uPa6.67 x 10-19 W/m2Water

20 µPa1 x 10-12 W/m2Air

Reference 
Pressure

Reference 
IntensityLocation

2
0

0
pI =

cρ

Historical Reference

• 1 microbar
• 1 bar = 1 x 105 Pa
• 1 µbar = 1 x 105 µPa

• So to convert from intensity levels referenced to 
1 µbar to intensity levels referenced to 1 µPa, 
simply add 100 dB

510  Pa20log 100 dB
1 Pa

⎛ ⎞
=⎜ ⎟

⎝ ⎠

µ
µ

Sound Pressure Level
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Subtracting Intensity Levels
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Two Submarines

• If  a noisy sub was 
emitting a source level of 
140 dB and a quiet sub 
was emitting a source 
level of 80 dB, 

• What is the difference in 
noise levels?

• what does this mean in 
terms of relative intensity 
and acoustic pressure?

Adding Levels
1 2

1 2
0 0

I I
L = 10log    and    L = 10log

I I
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1 2
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Total Noise

• On a particular day, 
noise from shipping is 
53 dB and noise from 
rain and biologics is 
50 dB.  What is the 
total noise level from 
the two sources?

Adding Equal Noise Levels

• Two transducers are both transmitting a 
source intensity level of 90 dB.  What is the 
total source intensity level? 

1 2 Total 1 2 1If   L L   then L L L L 3dB= = ⊕ = +

Two Submarines

• If  a noisy sub was 
emitting a source level 
of 140 dB and a quiet 
sub was emitting a 
source level of 80 dB, 
what is the total noise 
from the two 
submarines?

Adding DecibelsAdding Decibels

Backups
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Reference Values
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Speed of Sound in the Sea 

 The speed of a wave propagating through a medium is not a constant.  This is especially 
true for the non-homogeneous medium, the ocean.  The speed of sound through water has been 
found to be mainly a function of three factors.  They are temperature, pressure or depth and 
salinity.  Because the speed is not constant, sound does not travel along straight paths. 
 
Temperature 

In general, for most areas of the ocean, the water temperature decreases from the surface 
to the bottom, but there are many local variations.  Shallow layers see the most variation with 
time and depth (ie. Surface mixing, solar heating, currents, seasonal variations, etc).  In vary 
deep water, the temperature eventual becomes constant with depth at about 4 C. 

 
Depth 

Hydrostatic pressure makes sound velocity increase with depth because of variations in 
the bulk modulus, B.  This effect is linear in the first approximation with an increase of 0.017 
m/s per meter increase in depth.   

 
Recall in Physics I we showed that pressure varies with depth according to the simple 

formula, 
oP P gh= +ρ  
 

Leroy formula (1968) gives a precise hydrostatic pressure: 
 

( )3 6 2P 1.0052405 1 5.28 10 sin z 2.36 10 z 10.196 10  Pa

 - latitude in degrees
z - depth in meters

− −⎡ ⎤= + × φ + × + ×⎣ ⎦
φ

4

 

 
(From:  Lurton, X. An Introduction to Underwater Acoustics, 1st ed.  London, Praxis Publishing 
LTD, 2002, p37)  
 
Salinity 
 

The change in the mix of pure water and dissolved salts effects sound velocity.  Salinity 
is expressed in practical salinity units (p.s.u.).  These unit have the same magnitude as the 
traditional parts per thousand (‰).  Most oceans have a salinity of 35 p.s.u., although salinity can 
vary locally based on hydrological conditions.  Closed seas have a greater difference in their 
salinity (38 p.s.u. for Mediterranean Sea due to evaporation, 14 p.s.u. for Baltic Sea due to large 
freshwater input).  Salinity varies very little with depth, but there can be stronger variations near 
river estruaries, melting ice, etc. 
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Velocity Models 
 
 In the 1940’s, sound velocity variations and their affect on acoustic propagation were first 
noticed and studied.  It is very difficult to locally measure sound velocity, but easy to measure 
the parameters that affect it (temperature, salinity, and depth).  Several models have been created 
to predict sound velocity.  A good first approximation is that developed by Medwin (1975).  It is 
simple but limited to 1000 meters in depth: 
 

( ) ( )( )2 2 4 3 2 2c t, z,S 1449.2 4.6t 5.5x10 t 2.9x10 t 1.34 10 t S 35 1.6x10 z

with the following limits:
0 t 35  C
0 S 45 p.s.u.
0 z 1000 meters

− − −= + − + + − − +

≤ ≤ °
≤ ≤
≤ ≤

−

 

Where c is the speed of sound as a function of temperature, t, depth, z, and salinity, S. 
 

Sound Speed Variations with Temperature and Salinity 
(z = 0 m)
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(From:  Lurton, X. An Introduction to Underwater Acoustics, 1st ed.  London, Praxis Publishing LTD, 2002, p37) 
  
More recent and accurate models have been developed and include Chen and Millero (1977).  
Their model is endorsed by UNESCO and used as the standardized reference model: 
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2 2 4 3 6 4 9 5
o

4 6 2 7 3
1

3
2 3 22

0 1 2 3

P Pressure from Leroy Formula
c 1402.388 5.03711t 5.80852x10 t 3.3420x10 t 1.478x10 t 3.1464x10 t

c 0.153563 6.8982x10 t 8.1788x10 t 1.3621x10 t 6.1185 1.362

c = c + c P+ c P + c P + AS+ BS + CS

− − −

− − −

=

= + − + − +

= + − + − + 10 4

5 6 8 2 10 3 12 4
2

9 10 12 2
3

2 3
o 1 2 3

5 5 8 2 8 3
1

1x10 t
c 3.126x10 1.7107x10 t 2.5974x10 t 2.5335x10 t 1.0405x10 t
c 9.7729x10 3.8504x10 t 2.3643x10 t

A A A P A P A P

A 9.4742x10 1.258x10 t 6.4885x10 t 1.0507x10 t 2.01

−

− − − − −

− − −

− − − −

= − + − +

= − + −

= + + +

= − − + −

( )

10 4

7 9 10 2 12 3
2

10 12 13 2
3

2 5 5 7

6 3

22x10 t
A 3.9064x10 9.1041x10 t 1.6002x10 t 7.988x10 t
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Where, 
t - temperature (  C)
z - depth (m)
S - salinity (p.s.u.)

°
 

As you can see, the speed of propagation has a very complicated dependence on these 
three factors.  Some thumbrules that you can use to relate the dependence of the speed of sound 
in seawater to each of the factors are:  

 

speedin  increase m/s 1.3 salinity in  increaseppt  1
speedin  increase m/s 1.7 depth  of meters 100

speedin increasem/s3turein temperaincrease C 1

⇒
⇒

⇒°
 

(From: Principles of Naval Weapons Systems, Edited by Joseph B. Hall, CDR, USN, Dubuque, IA:  Kendall/Hunt 
Publishing Co, 2000, p.179) 

 
Seawater contains many inhomogenieties, including bubble layers close to the surface, 

mineral particles in suspension, and living organisms.  These are all potential scatterers of 
acoustic waves, especially at higher frequencies. 

Measuring the Speed of Sound in the Ocean 

 To predict the direction of propagation of a sound wave in the ocean, we must know the 
speed of sound as a function of position (or depth) in the ocean water.  To measure the speed of 
sound in water, the Navy has developed several tools to measure the temperature of the seawater 
as a function of depth or the velocity of sound directly. 
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 The most widely used tool is an Expendable BathyThermograph or XBT (picture 
compliments of ES419).  XBTs are launched from submarines, surface ships and even aircraft.  
These measure the temperature of the water as the device sinks at a known rate and transmits this 
back to the launching platform.  This provides a detailed plot of temperature as a function of 
depth.  Neglecting salinity, the Sound Velocity Profile or SVP can be calculated as a function of 
depth and temperature (since these cause the greatest variation in the speed of sound in 
seawater.) 

Expendable BathythermographExpendable Bathythermograph

LAUNCHER

RECORDER

Wire Spool

Thermistor

PROBE (XBT)

Canister Loading Breech

Terminal
Board

Stantion

Launcher Recorder
Cable (4-wire
shielded)

Alternating Current 
PowerCable (3-wire)

Optional
Equipment

Depth/Temperature
Chart

Canister Loading Breech

Many modern submarines are often equipped with velocimeters that calculate the speed 
of sound in situ.  Other submarines have systems that calculate and record sound speed using 
temperature and depth measurements from onboard ships instruments. 

 
Expendable Bathythermographs produce graphs of water temperature and sound speed as 

a function of water depth as seen below.  In the next lesson we will examine typical plots in more 
detail for tactical significance.  For now you should familiarize yourself with the basic shape of 
these typical plots. 

Typical Deep Ocean
Sound Velocity Profile (SVP)

Typical Deep Ocean
Sound Velocity Profile (SVP)

Sonic Layer
Depth (LD)

Deep Sound
Channel Axis

T P
C

4-4 



    
 

Using a Sound Velocity Profile and Snell's Law 

 We will now shift from thinking of sound as a wave and using the wave equations to 
sound as a ray and using Snell’s Law.  We can look at either the grazing angles, referenced to the 
horizontal and used when looking at refraction, or incidence angles, referenced to the vertical 
and used for refraction and backscattering. 
 

In the below sketch, a plane wave is moving towards a boundary beyond which the speed 
of sound is much slower.  As the wavefronts hit the boundary they slow down and bend more 
normal to the boundary.  Specific examination of the wave after the right edge hits the boundary 
at point A shows that the left side of the wavefront must travel a distance from B to D expressed 
as the product of the sound speed c1 and some time interval ∆t.  In that same time interval the 
right edge of the wave front moves from A to E expressed as the product of sound speed c2 and 

some time interval ∆t.  Using trigonometry we see that the ratio of the cosine of the grazing 
angle to the speed of sound remains constant across the boundary.  This observation is called 
Snell’s Law.   

Refraction

A

B

D
1θ

E

2θ

1= ∆BD c t

2= ∆AE c t

( ) 1
1cos ∆
= =

BD c t
AD AD

θ

( ) 2
2cos ∆
= =

AE c t
AD AD

θ

( ) ( )1 2

1 2

cos cos 1
= =

∆ ∆c t c t AD
θ θ

High c1

Low c2

1θ

( ) ( )1 2

1 2

cos cos
=

c c
θ θ

 
Snell's law and ray theory are well suited for each other.  Imagine that a sound ray is 

transmitted through a series of mediums label 1 through 4 with sequentially increasing sound 
speed.  In each medium, the angle the ray makes with the horizontal, θ, will depend on the angle 
it has in the previous medium and the speed of sound for each medium.  The figure below 
depicts the relation. 
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                      where c1 < c2 < c3 < c4       and θ1 > θ2 > θ3 > θ4  

According to Snell's Law 

( ) ( ) ( ) ( ) constant
cccc n

n

3

3

2

2

1

1 =
θ

==
θ

=
θ

=
θ cos....coscoscos  

Notice that when a ray is in a layer and horizontal, θ = 0° and the cos(θ) = 1.  We call the speed 
of sound when the ray is horizontal, co. 
 

Sound Rays Travel in Arcs 
  
Using Snell's Law from above, we can approximate the behavior of a sound ray as it travels 
through a medium where the speed of sound is changing at a constant rate.  Let's take the 
example where the speed of sound increases as a function of depth as shown.   
 
 If the speed of sound increased in each layer as shown, a sound ray would travel in a path 
the same as the one already shown.   

1 
2 
3 
4 

c1 c2 c3 c4 

d 
e 
p 
t
h 

1 
2 
3 
4 

θ1 

θ2 

θ3 

θ4 

1 
2 
3 
4 

 

(Notice that the sound ray is bending back towards the layers where the sound 
speed is lower.  This can be used later to qualitatively determine the ray path for 
sound in water.)  
 
More realistically though, the speed of sound changes as a continuous function.  If we use a 
continuous function instead of the step function for the speed of sound vs. depth, the speed of 
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sound as a function of depth can be described by a simple linear equation.  This result can be 
used to find functions for the radius of the path of the sound ray as well as other quantities.  

1 
2 
3 
4 

d 
e 
p 
t
h 

speed of sound  

 
(Korman, M.S. Principles of Underwater Sound and Sonar, the preliminary edition.  Dubuque, IA:  Kendall/Hunt 
Publishing Company, 1995, pgs 145-147) 
 
The speed of sound, shown as the dotted line, can be expressed as (c1 is the surface temperature): 

1c c gz= +  
where g is the gradient, 

z
c

g
∆

∆
= .  From Snell's Law and inserting our relation ship for c, yields: 

( )

1

1

1 2

1 1

1

cos cos
c c

cos cos
c c gz

z R cos cos

θ θ
=

θ θ
=

+

= θ− θ

 

where R is defined as:  1

1

cR
g cos

≡
θ

 .  Soon we will show R is the radius of curvature of the 

sound ray.  θ is always measured clockwise from the horizontal axis. 

  

Ray Theory Geometry

Positive gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R
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In polar coordinates we know that the slope of a line is 
dz tan
dx

= θ  

From above we see that dz .  To find how the ray angle varies with distance x, R sin d= − θ θ
sindx R d R cos d
tan

θ
= − θ = −

θ
θ θ  

Integrating both sides gives the result that: 
[ ]1 1x x R sin sin− = − θ− θ  

Integrating both sides of dz gives: 
[ ]1 1z z R cos cos− = θ− θ  

Rearranging these two equations: 
1 1

1 1

x x R sin R sin
z z R cos R cos
− − θ = − θ
− + θ = θ

 

Or 
p

p

x x R sin

z z R cos

− = − θ

− = θ
 

With 
p 1 1

p 1 1

x x R sin

z z R cos

= − θ

= + θ
 

Squaring the top two equations and adding the results gives the equation of a circle, 

( ) ( )2 2 2
p px x z z R− + − =  

Specificically, the circle has radius, 1

1

cR
g cos

≡
θ

, and is centered at the point (xp,zp).  Thus we 

have shown that a sound ray in a layer of constant sound speed will travel along the arc of a 
circle. 
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To sum up the results then: 

 

 

n

n

g
cR
θ

=
cos

 Radius of arc of the circle 

    
z
cg

∆
∆

=  
Gradient 

(How fast the speed of 
sound changes per meter 

change in depth.) 

constant c

n

n =
θcos

 Snell's Law 

(  Rzzz 1212 )θ−θ=−=∆ coscos Vertical Displacement 

( 1212 Rxxx )θ−θ−=−=∆ sinsin
 

Horizontal Displacement 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
−

2
tan

2
tan

ln1
1n

n

n
n g

t
θ

θ

 

Time to travel in layer n 

( 1
1

1

cos −
−

− −= n
n

n
n g

cs θθ
θ

) Curvilinear Path Length 

 These equations will only work for one specific sound ray emanating from a source in an 
environment with a constant gradient.  The last two equations in the table are presented without 
proof, but are useful results from many standard sources. 
 
Example 1 
 
Let’s look at the following example. 
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csurface=1500 m/s 

θII=30° 

θI=20° 

c100 m=1510 m/s 

 Sound leaves the ship at two different angles, θ1 and θ2.  Note the path travelled by each 
ray is different and if we calculate the parameters R, ∆x and ∆z, each of these will be different 
for each ray.   
  
For both rays, the gradient, g, is a constant.  This is calculated as such: 

( )
( )

1-sec 1.0
m100-0

m/s15101500

=

−
=

∆
∆

=

g
z
cg

 

We must now calculate the radius of curvature, R of each ray separately: 

( )( )
meters 000,16

20cossec 0.1
m/s 1500

cos 1-
1

=
°

==

I

I

R
g

cR
θ  

and  

( )( )II -1
II

II

c 1500 m/sR
g cos 0.1 sec cos30

R 17,300 meters

= =
θ °

=

 

The skip distance, X, is the distance between successive places where the sound ray 
stikes the surface.  The easiest way to calculate this is to calculate the displacement, ∆x, from 
where the sound strikes the surface first to where the sound has leveled off or gone horizontal (θ2 
= 0°).  Thus: 

( )
θ

θ
sin2

sin0sin22
RX

RxX
=

−°−=∆=  

where θ is the angle of reflection from the surface.  So for each ray: 
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( )
m 000,11

20sinm 000,162
=

°=

I

I

X
X

 

and 
( )

m 300,17
30sinm 300,172

=
°=

II

II

X
X

 

The results of the calculations for each ray are significantly different from each other and 
show how the ray paths depend on the initial angle of the ray. 

We can do the same for the depth the rays to.  The maximum depth excursion of the ray 
below its starting depth occurs when the ray goes horizontal again (θ2 = 0°) or: 

( )
( )θ

θ
cos1

cos0cos

max

max

−=∆
−°=∆

Rz
Rz

 

so for each ray: 

feet) (7600 m 2320
feet) (3170 m 965

max,

max,

=∆

=∆

II

I

z
z

 

Example 2 

Also try the following example problem.1

c0

c2

c1 
0° θ2

θ1 

Use the figure above and the following information to answer the questions. 
 
 a.  If θ2 = 30°,  c2 = 1299 m/s, c1 = 964 m/s, what is θ1? 
  Using Snell's Law we have: 

°=⎥⎦
⎤

⎢⎣
⎡ °=

=

=

− 5030cos
1299
964cos

cos
cos

coscos

1
1

2

2
11

2

2

1

1

θ

θ
θ

θθ

c
c

cc

 

                                                           
1 From:  Korman, M. S. Principles of Underwater Sound and Sonar, the preliminary edition, p. 144.  
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 b.  Determine c0. 
  Again using Snell's law and the θ0 = 0° 

m/s 1500
cos30

/ 1299
cos

0

0
2

2

=
°

=

=

smc

cc
θ  

 c.  What is the gradient if ∆z = 3000 m between points "1" and "0"? 

1-

10

s 18.
3000

/964/1500

=

−
=

∆
−

=
∆
∆

=
m

smsm
z
cc

z
cg  

d. What is the radius of the sound ray path? 

( ) ( )( )
meters 8330

50coss 0.18
m/s 964

cos

1-

1

1

=
°

=

=

R

R

g
cR
θ
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Problems 

1. A submerged submarine is at 10 meters. 
a) Use Medwin’s Equation to determine the speed of sound in the water if the salinity is 

35.0 ppt and the seawater injection temperature is 20.0°C. 
b) If the submarine in the problem above submerges to 200. meters and the seawater 

injection temperature goes down to 5.00°C, what is the new sound speed? 
c) Determine the average gradient between the two depths in the problems above. 
d) Is this a positive or negative sound gradient? 
e) Sketch the SVP and sketch the approximate of several sound rays emanating from the sub 

when it is at a depth of 10.0 meters. 
f) If sound radiates from the sub at a depth of 10.0 m at an initial angle of 15° with respect 

to the horizontal, determine the angle of depression of the sound when it has reached a 
depth of 500. meters (assume the gradient is constant.) 

g) Determine the Radius of Curvature of the sound ray. 
h) Determine the horizontal displacement of the sound ray as it goes from 10.0 meters to 

500. meters. 
 
 c (m/s) 1498.1 1500.2 

surface 

100 

50 

depth (m) 

2. Use the following SVP to 
complete the next problems: 
a) Calculate the gradient of 

the SVP. 
b) If a sound ray exits 

horizontally from a sub 
that is at 50.0 m, what 
will be its grazing angle 
when it hits the surface 
of the ocean? 

c) If a ray reflects off the 
surface of the ocean at an 
angle of 2.15° (assume 
the surface is perfectly 
flat), what will be the 
skip distance of the 
sound ray? 

d) This is an example of: 
i) a positive gradient 
ii) a negative gradient 

e) If a sub is at 50.0 m, what is the largest angle below the horizontal where the ray will not 
reach 100. m? 

f) What is the skip distance of the limiting ray? 
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Use the following SVP for the remaining problems: 

Sound velocity profile in the deep sound channel

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1490 1500 1510 1520 1530 1540 1550 1560

sound velocity (m/s)

De
pt

h 
(m

)

c1

c2

Bottom 

 
3. Compute the sound speed gradients for 0 < z < 1
 
4. A ray starts at 1525 m with a grazing angle if 15

pointed below the horizontal).  
a) What are the sound speeds at depths of 1525 
b) Does the ray curve upward or downward? 
c) What is the grazing angle at 2440 m? 
d) At what sound speed will the ray become hor

of 0 degrees)? 
 

4-14 
c1 = 1517.9 m/s  (surface) 
 
c2 = 1493.5 m/s  (1200m) 
 

c3 = 1556.0 m/s  (4800 m) 
 

c3

200 m and 1200 < z < 4800. 

 degrees (recall a positive grazing angle is 

m and 2440 m? 

izontal (a horizontal ray has a grazing angle 



5. A sound source is at a depth of 1200 m.   
a) At what angle with respect to the horizontal does the ray have to make at 1200 m so that 

that when it reaches the surface the grazing angle is 0 degrees?  This is called the surface 
limiting ray. 

b) What angle with respect to the horizontal does a ray have to make at 1200 m so that when 
it reaches the bottom at 4900 m, the angle is 0 degrees?  This is called the bottom limiting 
ray. 

c) At what depth below 1200 m is the sound speed equal to that at the surface? 
d) At what angle with respect to the horizontal does a ray have to make at 1200 m so that 

when it reaches the the depth found in c), the grazing angle is 0 degrees?  This is called 
the lower limiting ray 

e) Compute the radius of the surface limiting ray. 
f) Compute the radius of the bottom limiting ray. 
g) Compute the radius of the lower limiting ray. 
h) Compute the horizontal distance that the bottom limiting ray travels from the source until 

it grazes the bottom. 
i) Compute the horizontal distance that the surface limiting ray travels from the source until 

it just grazes the surface. 
 
6. A ray leaving a sound source at 1200 m points downward with an angle of 30 degrees with 

respect to the surface.  
a) How far will it travel horizontally until its angle with the horizontal is 25 degrees? 
b) At what depth does the ray in a) make an angle of 25 degrees with respect to the 

horizontal. 
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Speed of Sound in WaterSpeed of Sound in Water
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SalinitySalinity PressurePressure TemperatureTemperature

Medium Effects:  Elasticity and DensityMedium Effects:  Elasticity and Density

Salinity                     Pressure             TemperatureSalinity                     Pressure             Temperature
Variable Effects of:Variable Effects of:

Speed of Sound Factors

• Temperature
• Pressure or Depth
• Salinity

speedin  increase m/s 1.3 salinity in  increaseppt  1
speedin  increase m/s 1.7 depth  of meters 100
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Temperature, Pressure, and Salinity
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Typical Deep Ocean
Sound Velocity Profile (SVP)

Typical Deep Ocean
Sound Velocity Profile (SVP)

Sonic Layer
Depth (LD)

Deep Sound
Channel Axis

T P
C

Refraction

A

B

D
1θ

E

2θ

1= ∆BD c t

2= ∆AE c t

( ) 1
1cos ∆
= =

BD c t
AD AD

θ

( ) 2
2cos ∆
= =

AE c t
AD AD

θ

( ) ( )1 2

1 2

cos cos 1
= =

∆ ∆c t c t AD
θ θ

High c1

Low c2

1θ

( ) ( )1 2

1 2

cos cos
=

c c
θ θ

Multiple Boundary Layers

1
2
3
4

θ1

θ2

θ3

θ4

where c1 < c2 < c3 < c4 and θ1 > θ2 > θ3 > θ4

( ) ( ) ( ) ( ) constant
cccc n

n

3

3

2

2

1

1 =
θ

==
θ

=
θ

=
θ cos....coscoscos

1
2
3
4

1
2
3
4

c1         c2        c3         c4

d
e
p
t
h

Simple Ray Theory
1

1

c c cgradient g
z z z

∆ −
= = =

∆ −

z

c

(c,z)(c1,z1)

1c c gz= +

1

1

1

1 1

cos cos
c c

cos cos
c c gz

θ θ
=

θ θ
=

+

Snell’s Law

1

1

cR
g cos

=
θ( )1z R cos cos= θ− θ

Ray Theory Geometry

Positive gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R

The z (Depth) and x (Range) Directions

θI=20°

csurface=1500 m/s

( )1z R cos cos= θ− θ

1

1

cR
g cos

=
θ

dz R sin d= − θ θ

z

x

1 1

z

z
dz R sin d

θ

θ
= − θ θ∫ ∫

( )1 1z z R cos cos− = θ− θ
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The z (Depth) and x (Range) Directions 

θI=20°

csurface=1500 m/s

( )1z R cos cos= θ− θ

1

1

cR
g cos

=
θ

dz R sin d= − θ θ

z

x

1 1 1 1

x z

x z

dz sin ddx R R cos d
tan tan

θ θ

θ θ

θ θ
= = − = − θ θ

θ θ∫ ∫ ∫ ∫

dztan
dx

θ =

( )1 1x x R sin sin− = − θ− θ

Why is R = Radius?

Positive gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R

( )1 1z z R cos cos− = θ− θ

( )1 1x x R sin sin− = − θ− θ

px x R sin− = − θ

p 1 1x x R sin= + θ

pz z R cos− = θ

p 1 1z z R cos= − θ

θ1
1R cosθ

1R sinθ
( )p px , z

( ) ( ) ( )2 2 2 2 2 2
p px x z z R sin R cos− + − = − θ+ θ

( ) ( )2 2 2
p px x z z R− + − =

Summary

Positive gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R

( )1 1x x R sin sin− = − θ− θ

( )1 1z z R cos cos− = θ− θ

1

1

cR
g cos

=
θ

1

1

cos cos
c c
θ θ

=

1

1

c c cg
z z z

∆ −
= =
∆ −

Negative Gradient

Negative gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R

( )1 1x x R sin sin− = − θ− θ

( )1 1z z R cos cos− = θ− θ

1

1

cR
g cos

=
θ

1

1

cos cos
c c
θ θ

=

1

1

c c cg
z z z

∆ −
= =
∆ −

Example 1

• Given:  c1 = 964 m/s, c2 = 1299 m/s, θ2 = 30o

∆z(between 1 and 0) = 3000m

• Find:     θ1, co, g (between pt 1 and 0), R

c0

θ1

θ2 0°
c1

c2

Example 2

• Find gradient, g
• Find Radius of Curvature, R, for each ray.
• Skip distance – i.e. the distance until the ray hits 

the surface again
• Max depth reached by each ray

θI=20°

θII=30°

csurface=1500 m/s

c100 m=1510 m/s
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Backups 1

1

1

1 1

cos cos
c c

cos cos
c c gz

θ θ
=

θ θ
=

+

( )1z R cos cos= θ− θ

1 1 1 1c cos gz cos c cosθ + θ = θ

( )1
1

1

cz cos cos
g cos

= θ− θ
θ

1

1

cR
g cos

=
θ

Slope = tanθ

x1

z1

z2

x2

θ

2 1

2 1

z z z dztan
x x x dx

− ∆
θ = = =

− ∆
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Regions of the Sound Velocity Profile 

 When we plot the speed of sound as a function of depth in the ocean, it is called the 
sound velocity profile or SVP.  An SVP is a very useful tool for being able to predict the path of 
propagation of sound in the ocean.  A nominal SVP is shown in the following figure. 

This example shows that the oceans waters are divided into three main layers.  First, the 
surface or seasonal layer has varying depth and profiles depending on many conditions such as 

season, time of day, currents, latitude, etc.  It is the most variable layer.  The second layer, the 
Main Thermocline connects the seasonal layer to the deep isothermal layer.  The deep isothermal 
layer, below about 500 to 1000 meters, is at a temperature of about 34°F and the speed of sound 
only increases due to the increase in pressure. 

Speed of Sound
4850ft/s 4900 ft/s 4950 ft/s

     300 
     600 
 
 
    3000 
 
 
 
 
    6000 
 
 
 
 
    9000 

Depth 
 (ft) 

Surface Layer 
Seasonal 

Main 
Thermocline 

Deep 
Isothermal 
Layer 

The layer of most interest is the surface layer because it is the one that varies most.  
During the warm summer months, the water near the oceans surface is warmer than the water 
below and there is a sharp negative gradient in the speed of sound.  In the winter, the water is not 
heated as much because the air is cooler and the warmer water from below tends to rise and 
create more mixing in the upper layer.  Additionally, there is more mixing of the surface layer 
due to effects of strong winter storms and larger waves. 

Ray Tracing 

 Now that we know how the speed of sound varies as a function of depth, we can begin to 
predict the path of sound propagating through the ocean.  As we said before, sound rays tend to 
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bend toward layers of water that are cooler (where speed of sound in the water is lower.)  Let's 
develop some thumbrules for picturing the path of the sound rays.  Knowing the gradient gives 
us insight into the direction the sound ray will refract or bend. 
 

Constant Velocity Profile, g = 0 
c →

z 
 
↓ 

c →

c→

z 
 
↓ 

z 
 
↓ 

Acoustic rays are rectilinear, meaning rays travel 
in straight paths.  This is not an isothermal layer.   
An isothermal layer would have a slight positive 
gradient due to the effect of the increase in 
pressure with increasing depth on the speed of 
sound.  
 
g = "+" 
 
Typical for the deep isothermal layer or surface 
layer in the winter.  Temperature is constant or 
increasing.  For isothermal case, c increases due 
to pressure with g = 0.017 s-1.  Most often the 
water is isothermal because of the mixing effect 
of wind near the surface.  Because of this 
isothermal layers are called “mixed layers.”  + g 
causes acoustic rays to be refracted upward and 
can result in a Surface Channel. 
 
g = "-" 

This is a typical SVP for the surface layer during the summer months.  Results from temperature 
decreasing faster than pressure effect increases.  A negative gradient produces shadow zones.   
 
 Note that when sound is generated by a source in the ocean, the sound is radiated in all 
directions spherically around the source.  Thus sound may travel several different paths away 
from the source and may travel into other layers.  Some common propagation modes of sound 
are shown below: 

Surface Duct 

 If the surface layer has a positive gradient and that layer is deep enough, the sound may 
be bent back towards the surface then reflected back into the layer.  After it is reflected back 
downward, it is bent back towards the surface again only to be reflected at the surface again.  
This effectively traps the sound in the surface layer. 
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SVP 

If, on the other hand, a negative SVP exists near the surface, surface shadow zones are created 
that provide safe havens for submerged platforms. 
 
 

SVP  

 
 
 

 
 
Originally referred to as the afternoon effect, the below sketch shows how a submarine cannot be 
detected by either a passive or an active sonobuoy.  

 

 

 

Convergence Zone 

 The phenomenon of sound bending back towards the surface in a surface duct should not 
be confused with sound that is bent back towards the surface due to the positive sound speed 
gradient in the deep isothermal layer.  If the ocean depth is great enough, sound rays that travel 
into the deep isothermal layer will also get bent back towards the surface.  These rays travel great 
distances though before being bent back up to the surface.   

 
The main difference between a surface duct and a convergence zone (CZ) is that in the 

latter case, all sound rays return to the surface in a small concentrated area called a convergence 
zone.  These zones can be at distances of up to 60 km or more from the source (typically 40 km 
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in Mediterranean Sea and 60 km in Atlantic Ocean).  In other words, the rays all follow more or 
less the same path and undergo very small geometric spreading, therefore a contact may only be 
detected when it is within the annulus of the convergence zone.  Additionally, after the sound 
reflects from the surface at the first convergence zones, additional CZs may also occur at integer 
multiples of the first convergence zone distance with a widening of the beam causing a blurring 
of the CZ.   

 

Upper 
limiting ray 

Lower 
limiting ray 

In the above figure, notice that there is a ray leaving the surface nearly horizontal that 
must be horizontal again when the sound speed is the same as that on the surface.  This ray is 
termed the “upper limiting ray.”  Additionally, there is another ray leaving the surface at a 
downward angle that just barely grazes the bottom before being bent back to the surface.  This 
ray is termed the “lower limiting ray.  All sound energy leaving the source between these too 
limiting rays must return to the surface in the annulus of the convergence zone.  

  
This lower limiting ray becomes horizontal at a higher sound speed than at the surface or 

horizontal depth of the upper limiting ray.  Since it is the increasing pressure with depth that 
causes this higher sound speed to bring the lower limiting ray horizontal, there must be an 
adequate “depth excess” in order for the two limiting rays to bracket most of the energy leaving 
the source.   As a practical rule of thumb, depth excess is generally considered adequate when it 
is greater than 300 fathoms.  This will provide adequate velocity excess for the lower limiting 
ray to bracket most of the energy leaving the source.  Seasonal decreases in the surface sound 
speed may cause adequate depth excess to exist in the winter in locations that do not support 
convergence zones in the summer when the surface sound speed is higher. 

 
The significance of convergence zones is that they affect the transmission loss 

experienced by sound leaving a source.  During our discussion of the passive sonar equation we 
pointed out that transmission loss is due principally to geometric spreading (we will soon 
develop equations to quantify this loss due to spreading).  The dashed line in the below figure 
represents a nominal transmission loss as a function of distance from a source.  Convergence 
zones modify this spreading effect by significantly reducing transmission loss in the areas where 
the sound is all focused back to the surface.  This is termed “transmission gain” and is shown in 
the below diagram as solid spikes at multiples of the distance to the first convergence zone. 
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TL (dB) 

Deep Shadow Zone 

Note that where the positive gradient changes to a negative gradient can create a sonic 
layer.  Some of the rays from the surface or near the surface will travel into the negative gradient 
region but get bent downward more sharply.  This will create a shadow zone where a receiver 
may not be able to detect a submerged source.  Submariners have always sought to hide in these 
shadow zones. 
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 A thumbrule to select a best keel depth (BD) which keeps the entire submarine safely 
below the layer depth is called Amos’ Rule: 
 

BBDD  ==  1177((LLDD))11//22            iiff  LLDD  <<  6600mm..  
BBDD  ==  LLDD  ++  6600mm          iiff  LLDD  >>  6600mm..  

 
Deep Sound Channel 

 Where the negative gradient of the main thermocline meets the positive gradient of the 
deep isothermal layer, a sound channel called the “deep sound channel” is created.  Deep Sound 
Channels occur in most deep ocean basins.  In the deep sound channel, sound traveling near the 
deep sound channel axis is continually bent back towards the axis and can travel down the axis 
for many miles.  Above the depth of the axis of the deep sound channel, the temperature of the 
water has the most significant affect on sound velocity.  As the water gets deeper, it reaches a 
steady temperature of 2-4° C at deep depths.  Since the temperature is not changing, below the 
sound channel axis, pressure has the dominant affect on sound velocity.  Thus as you go further 
down in depth, pressure increases and so does sound velocity.  Hence the positive gradient of the 
sound velocity below the deep sound channel axis.  
 

If the sound source is close to the channel axis (minimum c), acoustic rays are 
successively refracted by the two gradients without interacting with the interfaces.  This type of 
propagation is called SOFAR (Sound Fixing And Ranging).  It allows for very large transmission 
ranges because of the absence of energy loss by reflection at the interfaces and concentration of a 
large number of multiple paths, thereby minimizing geometric spreading.  We can achieve 
ranges of several thousands of kilometers by using low frequencies. 
 Sound 

Depth 

  
Down

charges that 
 

 

speed Range 

ed pilots used this phenomenon during WW II.  They carried small explosive 
they would release if they were forced down into the water.  These charges then 
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sank down and exploded.  The sound from these explosions would then travel many miles across 
the oceans in the deep sound channel and would be picked up by several receivers to give an 
approximate location of the downed pilots. 
 
An Example in the Surface Mixed Layer 
 

Wind driven surface waves mix the water near the surface and can produce an isothermal 
layer of water.  The depth of this layer can vary from zero to more than 100 m.  As we pointed 
out earlier, the increase in pressure with depth causes a positive gradient of 0.017 s-1.  A mixed 
layer is capable of producing a surface duct discussed earlier.  In this example we will describe 
the limiting rays of the trapped sound in the duct. 

 
In the below figure, two sound rays from a source, S, at a depth, D, are is a mixed layer 

of depth, L.  The two rays shown are the limiting rays in that any ray leaving S at an angle 
greater than θs will pass out the bottom of the mixed layer, creating the deep shadow zone 
discussed previously.  These rays designated 1 and 2, leave at equal angles above and below the 
surface and can be seen in the following way.  The angle θ1 at which ray 1 strikes the surface is 
related to θs by Snell’s law.  The angle of reflection from the surface is also θ1 since the angle of 
reflection is equal to the angle of incidence.  The angle of reflection, θ1, is also related by Snell’s 
Law to the angle at which ray 1 crosses the depth of S, so this angle is also θs.  Since both rays 
become horizontal at the bottom of the layer, again, by Snell’s Law, they must have the same 
angle at the depth of the source.  Thus we have shown that the two limiting rays just remaining in 
the surface duct start at S with angles of s±θ . 

 

  

X Surface 

D 

S 

Bottom of the Mixed Layer 

In this example, start with 3 items that are normally known: 
 

Source depth = D = 40 m 
Layer depth = L = 100 m 

Sound speed at the surface = c1 = 1500 m/s 
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a.  First find the speed of sound at the source (denoted by cs) and at the bottom of the mixed layer 
(denoted by co). 
Since the gradient is a constant, g = 0.017 s-1, 
 

1
s 1

m mc c 0.017D 1500 0.017s x40m 1500.68
s s

−= + = + =  

and 
1

o 1
m mc c 0.017L 1500 0.017s x100m 1501.7
s s

−= + = + =  

 
b.  Find the angle of the rays at the source.  This can be done using Snell’s Law, applied between 
S and the bottom of the layer. 
 

scos 1
m m1500.68 1501.7
s s

θ
=  

o
s 2.11θ =  

 
c.  Find the angle of the rays at the surface.  This can be done by applying Snell’s Law between 
the surface and the layer bottom.  

1cos 1
m m1500 1501.7
s s

θ
=  

o
1 2.73θ =  

 
d.  Find the Radius of curvature of the ray. 

o
1

m1501.7c sR 88335.3m
g 0.017s−= = =  

 
e.  Find the skip distance, X.  this is the distance between two successive reflections off the 
surface. 

( ) ( ) ( )1 1X x x R sin sin 88335.3m sin 2.73 sin 2.73 8404m= − = θ − θ = − − =⎡ ⎤⎣ ⎦  

5-8 



Definitions: 
 
Surface Layer:  Heated daily by the sun and mixed by the wind.  Usually isothermal.  Depth 
proportional to the winds.  Daytime heating effects.  Also known as the Mixed Layer. 
 
Seasonal Thermocline:  Temperature decreases with depth.  During the winter, it may not exist 
due to deep mixing of the surface layer. 
 
Main (Permanent) Thermocline:  Start of the layering not affected by mixing.  Characterized 
by decreasing temperature and sound speed.  Minimum temperature is 4°C (39°F).  Associated 
with the minimum sound speed.  (At higher latitudes the depth of the minimum, sound speed is 
much shallower. 
 
Deep Isothermal Layer:  Deep ocean.  Constant water temperature:  4°C (39°F).  Sound speed 
increases as depth increases due to increase in pressure. 
 
Thermocline:  A constant temperature variation with depth, most often a negative change 
(temperature decreasing with depth).  Can be seasonal or permanent. 
 
Surface Limited Ray:  A ray that has a zero angle at the surface (θsurface = 0°)  where the ray is 
refracted and not reflected at the surface.  Any ray with an initial angle greater than that of the 
Surface Limited Ray will reflect off the surface and will not be refracted.  Any ray with an initial 
angle less than the Surface Limited Ray will not reflect off the surface.  
 
Bottom Limited Ray:  A ray that will refract back upwards just as it reaches the bottom (θbottom 
= 0°).  Any ray with an initial angle greater than the Bottom Limited Ray will reflect off the 
bottom, not refract. 
 
Surface Channel:  Corresponds to a layer with sound velocity increasing  from the surface 
down.  Caused by a shallow isothermal layer appearing during winter, can also be caused by very 
cold water at the surface (melting ice or river influx) 
 
Deep Sound Channel Axis:  The depth where the speed of sound is a minimum.  This depth 
marks the end of the Main Thermocline and the beginning of the Deep Isothermal Layer.  SVP of 
large ocean basins has Deep Channel Axis between @200 m and 2000 m. 
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The following image provided courtesy of NAVOCEANO provides a good visual representation 
of the effects we have discussed in this section. 
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Problems: 

1. State whether the gradient for each of the following layers is positive, negative or zero and 
state why?  
a) Surface layer,  
b) Seasonal Thermocline   
c) Main Thermocline   
d) Deep Isothermal Layer. 
 

2. What happens to the range at which the shadow zone occurs when the source (or receiver) is 
moved from the top to the bottom of the mixed layer? 

 
3. Since the speed of sound increases as depth increases solely due to increasing pressure in the 

deep isothermal layer, what is the gradient in the deep isothermal layer? 
 

Sound velocity profile in the deep sound channel
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c1 = 1517.9 m/s  (surface) 
 
c2 = 1493.5 m/s  (1200m) 
 

c3 = 1556.0 m/s (4800 m)
 

c3



4. A sound source is at a depth of 0 m (just below the surface).  There are two primarily 
important rays that form the boundaries of a convergence zone.  One is called the “upper 
limiting ray.”  The other is called the “lower limiting ray.”   
a) Draw a ray from the source making an angle of 0 degrees with respect to the horizontal 

and draw it until it reaches the surface again (the upper limiting ray) 
b) Draw a ray from the source making an angle of θ with respect to the horizontal.  The 

angle, θ is chosen such that the ray just grazes the bottom and can return to the surface 
again. Draw the ray until it reaches the surface again.  Compute the angle, θ below. 

Upper Limiting Ray 
c)  What is the radius of the upper limiting ray between the surface and 1200 m? 
d) At what angle does this ray reach 1200 m? 
e) What is the horizontal distance traveled by this ray between the surface and 1200m? 
f) What is the radius of the upper limiting ray below 1200 m? 
g) At what depth does the ray become horizontal? 
h) What is the horizontal distance traveled by the ray between the point where the ray is at 

the depth of 1200 m and the point where it is horizontal? 
i) What is the horizontal distance traveled by the ray between the source and the point 

where it is horizontal? 
Lower Limiting Ray 
j) At what angle does the lower limiting ray leave the surface? 
k) At what angle does this ray reach 1200 m? 
l) What is the radius of the upper limiting ray between the surface and 1200 m? 
m) At what horizontal range does the ray reach 1200 m? 
n) What is the radius of the lower limiting ray below 1200 m? 
o) What is the horizontal distance traveled by the ray between the point where the ray is at a 

depth of 1200 m and the point where the ray grazes the bottom. 
p) What is the total horizontal distance traveled by the ray from the surface until it grazes 

the bottom? 
Convergence Zone 
q) What is the distance to the first convergence zone? 
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5. On the SVP below, draw the continuation of the rays from the source until they hit the 
bottom, surface or reach the right hand side of the page.  Draw and label any limiting rays 
and any shadow zones. 

 

Sound velocity profile 
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6. Continue these rays until they hit the surface, the bottom or reach the right hand side of the 
page.  Draw other rays to show how a sound channel is formed. 

Sound velocity profile 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1495 1500 1505 1510 1515 1520

sound ve locity (m /s )

D
ep

th
 (m

)

 
 
 
 
 

5-14 



7. Continue these rays until they hit the surface, the bottom or reach the right hand side of the 
page. 

Sound velocity profile 
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8. In the following sound velocity profile draw rays leaving the source towards the right hand 
side of the page at a large variety of angles with respect to the horizontal to show any: 
Surface duct ray paths  
Bottom bounce ray paths 
Shadow zones 
Convergence zones 
Limiting rays 
The depth excess 
Or other phenomena 

Sound velocity profile 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1495 1500 1505 1510 1515 1520

sound ve locity (m /s )

D
ep

th
 (m

)

 
  
 

5-16 



1

Nominal SVP (Sound Velocity Profile)
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2

CZ Effect on Transmission Loss (TL)

TL (dB)

Deep Shadow Zones

BD = 17(LD)1/2      if LD < 60m.BD = 17(LD)1/2      if LD < 60m.
BD = LD + 60m     if LD > 60m.BD = LD + 60m     if LD > 60m.

Deep sound channel
Sound speed

de
pt

h

range

Mixed Layer Example

• Find sound speed at S and at bottom of layer
• Angle of the rays at the source
• Angle of the rays at the surface
• Radius of curvature of the ray
• Skip distance , X

D = 40 m
L = 100 m
C1 = 1500 m/s
g = 0.017 s-1

S

Mixed Layer Summary

Positive gradient, g

z1

z2

x1 x2

c1

c2

θ1

θ2

R

( )1 1x x R sin sin− = − θ− θ

( )1 1z z R cos cos− = θ− θ

1

1

cR
g cos

=
θ

1

1

cos cos
c c
θ θ

=

1

1

c c cg
z z z

∆ −
= =
∆ −
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Boundary Losses 

Let’s revisit Snell’s Law and investigate what happens to a sound wave incident upon a 
boundary. 

 
 Using the figure below, we will try to determine how much of the sound energy of an 
incident wave is actually reflected at the boundary.  According to Snell’s Law,  
 

ti

1 2

coscos
c c

θθ
=  

  
Additionally, we expect that the 
incident angle and the reflected 
angle are the same.  This follows 
logically from Snell’s Law as well 
since the speed of sound for the 
incident and reflected waves are the same. 

Incident 
Wave 

ρ2,c2

ρ1,c1

Reflected 
Wave 

θt 

θi θr 

Transmitted 
Wave 

 

i r
i r

1 1

cos cos
c c
θ θ

= ⇒ θ = θ  

Reflection Coefficient 

 The reflection coefficient expresses the ratio of the intensity of the reflected wave to the 
intensity of the incident wave (Ir = RIi).  In all cases we are referring to the time average of the 
acoustic intensities and the rms acoustic pressures and particle velocities.  The equation for the 
reflection coefficient would be: 
 

2
r

2
r 1 1

2 2
ii i

1 1

p
I c pR

pI p
c

ρ
= = =

ρ

r  

To figure out how much energy is reflected, we must examine the following boundary 
conditions:   
 
1) The pressure at the boundary is continuous.  
2) The normal component of the velocity must also be continuous at the boundary.   
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To say that a property is continuous means that it is the same on both sides of the 
boundary.  Let’s look at the first condition concerning the pressure. To state this condition in 
equation format: 
 

i rp p pt+ =  

Since both the incident and reflected wave are on the same side of the boundary, their rms 
acoustic pressures added together must equal the rms acoustic pressure of the transmitted wave.  
  
 To satisfy the second condition, the component of the velocity normal to the boundary 
must also be continuous at the boundary.  An equation for this would be: 
 

i i r r tu sin u sin u sin tθ − θ = θ

u

 
 

The negative sign in the reflected term is because it is moving in the opposite direction as the 
other two velocities.   
 

We can relate the rms particle velocity to the rms acoustic pressure using the following 
relationship: 

ap zu c= = ρ  

where z=ρc is the acoustic impedance of the medium.  Thus: 

ti r
i r

1 1 1 1 2 2

pp psin sin sin
c c c tθ − θ =

ρ ρ ρ
θ  

If we substitute in the value of transmitted acoustic pressure from the pressure boundary 
condition we have, 
 

i r i r i r
i r t t

1 1 1 1 2 2 2 2 2 2

p p p p p psin sin sin sin sin
c c c c c t

+
θ − θ = θ = θ + θ

ρ ρ ρ ρ ρ
 

 
Remembering that the incident and reflected angles are the same, we will rearrange to bring 
terms with reflected pressure and incident pressure on opposite sides of the equation. 
 

i i r r
i t i

1 1 2 2 1 1 2 2

p p p psin sin sin sin
c c c c

θ − θ = θ + θ
ρ ρ ρ ρ t  

 
Rearranging, 

( ) ( )i 2 2 i 1 1 t r 2 2 i 1 1 tp c sin c sin p c sin c sinρ θ −ρ θ = ρ θ +ρ θ  
Or, 
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( )
( )

2 1
i t

2 2 i 1 1 t 1 2r

i 2 2 i 1 1 t 2 1
i t

1 2

csin sin
c sin c sin cp

p c sin c sin csin sin
c

⎛ ⎞ρ
θ − θ⎜ ⎟ρ θ −ρ θ ρ⎝ ⎠= =

ρ θ +ρ θ ⎛ ⎞ρ
θ + θ⎜ ⎟ρ⎝ ⎠

 

 
Using this result, we can easily establish an expression for the Reflection Coefficient, R. 
 

( )
22

i tr
i t 2

i i

2 1

1 2

msin n sinpR ,
p msin n sin

cwhere m   &  n
c

t

⎡ ⎤θ − θ
θ θ = = ⎢ ⎥θ + θ⎣ ⎦

ρ
= =
ρ

 

Notice that the subscripts are reversed in the equations for m and n.  From this equation we can 
see that the Reflection Coefficient is dependent upon not only the mediums on each side of the 
boundary, but also the angle of incidence and the transmitted angle of the wave.   
 
Further, we can express θt in terms of θi using Snell’s Law and some trigonometric identities.  
 

ti

1 2

coscos
c c

θθ
=  

2 i
t i

1

c cocos cos
c n

sθ
θ = θ =  

2
2 i

t t 2

cossin 1 cos 1
n
θ

θ = − θ = −  

  
A more useful expression for R then becomes: 
 

( )
2

2 2
i i

i 2 2
i i

msin n cos
R

msin n cos

⎡ ⎤θ − − θ
⎢ ⎥θ =
⎢ ⎥θ + − θ⎣ ⎦

 

where m and n are as expressed earlier. 

Normal Incidence 

A useful case to study is when the incident wave arrives at an angle of 90° or normal to 
the boundary surface.  Substituting θi = 90°, we get the following for the reflection coefficient: 
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2m nR
m n
−⎛ ⎞= ⎜ ⎟+⎝ ⎠

 

dB Loss 

A logical definition for the loss at a boundary is to subtract the reflected level from the 
incident level in dB.  Applying the definition of the decibel level and the rules for subtraction, 

 

( )ref refin in
loss in ref

o o ref in

I II IdB L L 10log 10log 10log 10log 10log R
I I I I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Total Reflection  

One special case is when there is total reflection (R=1).  This occurs when the incident 
angle is less than a special angle called the critical angle.  For there to be a critical angle, the 
speed of sound in the incident medium MUST BE less than the speed of sound in the second 
medium or: 

 
1

2

c 1
c

<  

If this condition exists, the critical incident angle can be calculated using Snell’s Law and letting 
the transmitted angle go to its minimum possible value of zero: 
 

1 1
c

2

ccos
c

− ⎛ ⎞
θ = ⎜ ⎟

⎝ ⎠
 

Transmission Coefficient 
 
 We will define the Transmission Coefficient in a manner consistent with the Reflection 
Coefficient. 

2
t

2 2
t t2 2 1 1

2 2 2
ii 2 2 i

1 1

p
I pc c nT

pI c p
c

ρ ρ
= = = =

ρ
ρ

t

i

p
m p

 

  
The Transmission Coefficient can be easily derived if we take a look at the rate at which 

energy of the wave crosses the boundary.  Since the energy of the incident wave must be 
conserved, it must equal the energy in the reflected plus transmitted wave.  To express this in 
terms of an equation: 
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( ) ( )

i t r

t r

i i

i i

I I I   or,
I I1
I I

1 T R
thus,
T 1 R

= +

= +

= +

θ = − θ

 

Rather than establishing a separate equation for the transmission coefficient, we will generally 
first calculate the reflection coefficient using the equation above and then solve for the 
transmission coefficient by subtracting the reflection coefficient from one. 
 
 dB loss on transmission across a boundary would be defined similar to that for the dB 
loss on reflection. 
 

( )trans transin in
loss in trans

o o trans in

I II IdB L L 10log 10log 10log 10log 10log T
I I I I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Angle of Intromission 

 One special case for the Transmission Coefficient is when the Transmission Coefficient 
equals one (T(θi)=1) and there is complete transmission of the incident wave and none of the 
energy is reflected.   This occurs only at one angle (if it occurs at all) and that angle is referred to 
as the angle of intromission, θb.  Using the equation for Reflection Coefficient when R = 0, and 
solving for the angle, we find: 
 

( )
( )

2 2
1

b 2

m n
cos

m 1
−
⎡ ⎤−
⎢ ⎥θ =
⎢ ⎥−
⎣ ⎦

 

(Note that the quantity 
( )
( )

2 2

2

m n

m 1

−

−
 must be positive and less than 1 for the angle to exist.  This is 

a rare case for most acoustics problems.) 

Example 

 An example to illustrate how each of the coefficients vary as a function of angle is 
shown.  For this example we will use m = 0.65, n = 0.98 and plot the Reflection Coefficient and 
Transmission Coefficient as a function of the angle of incidence (θi).   
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If we solve for the critical angle and angle of intromission we find: 

Reflection and Transmission
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( )1

c

c

c

cos n
0.20 radians  or,
11.5

−θ =

θ =

θ = °

 

and 

( )
( )

2 2
1

b 2

b

b

m n
cos

m 1

0.26 radians or,
15.2

−
⎡ ⎤−⎢ ⎥θ =
⎢ ⎥−
⎣ ⎦

θ =
θ = °

 

as seen on the plot above.  Also of interest to note is that the Reflection Coefficient is equal to 1 
below the critical angle, θc, but the Transmission Coefficient is equal to 1 only at the angle of 
intromission. 
 

6-6 



Reflection from a Rough Surface 

This entire discussion has assumed reflection from a sound ray bouncing off a smooth 
surface.  This is called “specular reflection.”  Often the boundary is not smooth as in the case of 
a coral filled or rocky ocean floor, or a wind blown wave filled surface.  In this case sound 
comes of the surface at various angles and the result is referred to as scattering. 

 
Some of the energy comes back in the direction toward the source of the incident sound and is 
called backscattering.  In the operation of an active sonar system this backscattering results in the 
reception of unwanted sound which tends to mask the target echo.  This unwanted sound is 
called “surface reverberation.” 
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Problems 

1. Given m = 0.5 and n = 0.7, determine: 
 

a) The angle of intromission if it exists. 
b) The critical angle if it exists. 
c) Sketch a plot of the reflection (dashed line) and transmission coefficients (solid line) as 

functions of angle from .  Also 0 9o θ≤ ≤ 0o compute R(90o) and T(90o). 
 

θ

Amplitude

45 60 75 903015
0

1

 
 

d) Using your graph above, if Ii = 0.2 W/m2, determine Ir and It if: 
i) 1 cθ θ≤ ? 
ii) 1 bθ θ= ? 
iii) ? 1 90oθ =

 
2. An SH-60F produces noise with an intensity of 750 KW/m2 in a hover just above a glassy 

smooth sea.  Given c1 = 343 m/s, ρ1=1.2 kg/m3, c2 = 1500 m/s, and ρ2 = 1000 kg/m3, 
determine the level of sound transmitted underwater in dB re 1 µPa (strikes sea surface θ1 = 
90o). 

 
3. If the transmitter is positioned at an angle where the reflection coefficient is 0.57, determine 

the intensity of a sound wave immediately below the surface of the sand if the incident 
intensity is 75 W/m2. 

 
4. For a sound wave in water incident onto a specially coated material,  

m = 0.85 
n = 0.95 

Sketch a plot of R = Ir/Ii and T = It/Ii as a function of θ from 0o to 90o.  (note that T = 1 – I) 
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5. Given the following data for the sediments in the Arctic Ocean bottom and for sea water near 

the bottom: 
Density  Sound Speed

Sea Water  1050 kg/m3  1520 m/s 
Artic Bottom  1300 kg/m3  1440 m/s 
 

a) For a plane acoustic wave incident on the bottom from the water, is there a critical angle?  
If so, calculate it. 

b) Is there an angle of intromission?  If so, calculate it. 
c) Express the reflection loss in dB (assume normal incidence).  The db loss would be found 

from 10 log (R). 
d) Sketch a plot of R = Ir/Ii and T = It/Ii as a function of θ from 0o to 90o.      

(note that T = 1 – I) 
 

6. A plane sound wave is incident normally from air onto a smoth ocean surface.   Given the 
following data: 

Density  Sound Speed
Air    1.20 kg/m3  350 m/s 
Artic Bottom  1000 kg/m3  1500 m/s 
 

a) If the intensity of sound in air is 10-2 W/m2 incident normal to the air-water interface, 
what is the intensity of the sound in the water just below the surface? 

b) What is the level in dB re 1 µPa below the surface? 
 

6-9 



1

Transmission and Reflection

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

ti

1 2

coscos
c c

θθ
=

i rθ θ=

Reflection Coefficient

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

2
r

2
r 1 1 r

2 2
ii i

1 1

p
I c pR

pI p
c

ρ

ρ

= = =

Boundary Conditions

• The pressure at 
the boundary is 
continuous. 

• The normal 
component of the 
velocity must 
also be 
continuous at the 
boundary.

θrθi

θt

ρ1,c1

ρ2,c2

Incident 
Wave Reflected 

Wave

Transmitted 
Wave

tri ppp =+

ttrrii uuu θθθ sinsinsin =−

Reflection Coefficient

( )
22

i tr
i t 2

i i t

2 1

1 2

msin n sinpR ,
p msin n sin

cwhere m   &  n
c

θ θθ θ
θ θ

ρ
ρ

⎡ ⎤−
= = ⎢ ⎥+⎣ ⎦

= =

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

( )
2

2 2
i i

i 2 2
i i

msin n cos
R

msin n cos

θ θ
θ

θ θ

⎡ ⎤− −
⎢ ⎥=
⎢ ⎥+ −⎣ ⎦

Snell’s Law

Normal Incidence

2

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
nm
nmR

( )
2

2 2
i i

i 2 2
i i

msin n cos
R

msin n cos

θ θ
θ

θ θ

⎡ ⎤− −
⎢ ⎥=
⎢ ⎥+ −⎣ ⎦

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave
Reflected Wave

Transmitted 
Wave

2 1

1 2

cm   &  n
c

ρ
ρ

= =

Critical Angle

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

2

11cos
c
c

cθ

1
2

1 <
c
c

Incident Angles less than the critical angle cannot have a transmitted wave

Lesson 6



2

Transmission Coefficient
2
t

2 2
t t t2 2 1 1

2 2 2
ii 2 2 i i

1 1

p
I p pc c nT

pI c p m p
c

ρ ρ
ρ

ρ

= = = =

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

( ) ( )

i t r

t r

i i

i i

I I I   or,
I I1
I I

1 T R
thus,
T 1 Rθ θ

= +

= +

= +

= −
2 1

1 2

cm   &  n
c

ρ
ρ

= =

Angle of Intromission

( )
( ) ⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

−
−

= −

1
cos 2

22
1

m
nm

bθ

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

( )
2

2 2
i i

i 2 2
i i

msin n cos
R 0

msin n cos

θ θ
θ

θ θ

⎡ ⎤− −
⎢ ⎥= =
⎢ ⎥+ −⎣ ⎦

T 1=

2 1

1 2

cm   &  n
c

ρ
ρ

= =

Example: m = 0.65, n = 0.98 
Reflection and Transmission

0

0.2

0.4
0.6

0.8

1

theta 0.38 0.78 1.18 1.58
Angle (radians)

C
oe

ffi
ce

nt

R

TAngle of Intromission (θb)

Critical Angle

Find the critical angle and the angle of intromission

Non-specular Reflection

Backscattering
Reverberation

Summary

( )
( ) ⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

−
−

= −

1
cos 2

22
1

m
nm

bθ

2 1

1 2

cm   &  n
c

ρ
ρ

= =

θrθi

θt

ρ1,c1

ρ2,c2

Incident Wave Reflected Wave

Transmitted 
Wave

ti

1 2

coscos
c c

θθ
=

i rθ θ=

1 T R= +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

2

11cos
c
c

cθ

2

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
nm
nmR

( )
2

2 2
i i

i 2 2
i i

msin n cos
R

msin n cos

θ θ
θ

θ θ

⎡ ⎤− −
⎢ ⎥=
⎢ ⎥+ −⎣ ⎦

Backup Slides

Lesson 6



3

ap zu cuρ= =

ti r
i r t

1 1 1 1 2 2

pp psin sin sin
c c c

θ θ θ
ρ ρ ρ

− =

i r i r i r
i r t t t

1 1 1 1 2 2 2 2 2 2

p p p p p psin sin sin sin sin
c c c c c

θ θ θ θ θ
ρ ρ ρ ρ ρ

+
− = = +

i i r r
i t i t

1 1 2 2 1 1 2 2

p p p psin sin sin sin
c c c c

θ θ θ θ
ρ ρ ρ ρ

− = +

( ) ( )i 2 2 i 1 1 t r 2 2 i 1 1 tp c sin c sin p c sin c sinρ θ ρ θ ρ θ ρ θ− = +

( )
( )

2 1
i t

2 2 i 1 1 t 1 2r

i 2 2 i 1 1 t 2 1
i t

1 2

csin sin
c sin c sin cp

p c sin c sin csin sin
c

ρ θ θ
ρ θ ρ θ ρ
ρ θ ρ θ ρ θ θ

ρ

⎛ ⎞
−⎜ ⎟− ⎝ ⎠= =

+ ⎛ ⎞
+⎜ ⎟

⎝ ⎠

ti

1 2

coscos
c c

θθ
=

2 i
t i

1

c coscos cos
c n

θθ θ= =

2
2 i

t t 2

cossin 1 cos 1
n
θθ θ= − = −

( )
2

2 2
i i

i 2 2
i i

msin n cos
R 0

msin n cos

θ θ
θ

θ θ

⎡ ⎤− −
⎢ ⎥= =
⎢ ⎥+ −⎣ ⎦

2 2
i imsin n cos 0θ θ− − =

( )2 2 2 2 2 2 2 2
i i i im sin n cos m 1 cos n cos 0θ θ θ θ− + = − − + =

( )2 2 2 2 2 2 2 2 2
i i im m cos n cos m n 1 m cos 0θ θ θ− − + = − + − =

( )2 2 2 2
im n m 1 cos θ− = −

2 2
2

i 2

m ncos
m 1

θ −
=

−

Lesson 6



Fourier Analysis 

 In our Mathematics classes, we have been taught that complicated functions can often be 
represented as a long series of terms whose sum closely approximates the actual function.  
Taylor series is one very powerful application of this idea. In the case of Taylor series, the 
function is approximated by a constant value of the function at a particular point added to 
successive derivatives evaluated at that same point and multiplied by specific constants or 
coefficients.  Another type of series is the Fourier series.  Here specific constants are multiplied 
by sine and cosine terms to generate the series that approximates the function. 
 
 As an example, consider the following series of five terms that represent the oscillating 
pressure sensed by a hypothetical detector as a sound passes by: 
 

( ) 51 1 1 1 1f t  + cos[5 t] + cos[10 t] +  sin[5 t] + sin[10 t] x10 Pa
2 3 4 3 4

⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

 
Notice some things about this series.  The first term is a constant, sometimes called the “DC” 
term using an analogy to electrical voltages and currents.  The second and third are cosine terms.  
The angular frequency of the second term is 5 rad/sec and the amplitude is 1/3 .  The 
third term has twice the angular frequency so it oscillates twice as fast, but has and amplitude of 
only 1/4 .  The fourth and fifth terms have the same frequency and amplitude as the 
second and third but are shifted in phase by 90 degrees relative to the cosines.  When plotted for 
5 sec, this series looks like this:   

5x10 Pa

5x10 Pa

  

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

 

f(t)  5x10 Pa

t (sec) 

 
Most often in experimental acoustics, we have a detector to receive a signal like this one and it is 
our purpose to work backwards and determine the frequencies and the amplitudes of the tones 
(terms in the series) that make up the periodic signal.  The method of finding these tones is called 
“Fourier Analysis.”  Finding the frequencies is simply a matter of determining the overall period 
of the repeating signal.  The fundamental frequency, or frequency of the first sine or cosine term 
in the series (in Hertz), is simply the reciprocal of that frequency.  Higher frequency terms are 
just multiples or harmonics of the fundamental frequency.  Generally the frequency is given in 
rad/sec instead of Hz. 
 
Finding the coefficients or amplitude of each term occurs using a very clever bit of mathematics 
discovered by Fourier.  This method is sometimes called “Fourier’s Hammer” because it is used 
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to hammer out each of the coefficients (amplitudes) in the series.  We’ll study this method in 
some detail below.     
 

In fact, many sounds are combinations of discrete frequency components that we hear as 
one sound.  In class, we will use spectrum analyzers and digital oscilloscopes which use digital 
signal processing algorithms to find the magnitude (proportional to the Fourier Series 
Coefficient) and frequency of each component of a signal.   

Calculating Coefficients 

Starting with a periodic function (such as a sound wave), we can breakdown this 
function into separate frequency components by using Fourier Analysis.  Note that we must 
KNOW the period of the wave and BE ABLE TO DEFINE the function, f(t), over that period to 
be able to use Fourier Analysis.  Often the function will be zero, a constant, or a straight line 
with constant slope.  Whatever it is, we must be able to write a math expression (or a good 
approximation) for the function over the entire period.   

 
First let us be very specific about the frequency in rad/sec.  Once we have identified the 

period over witch the function repeats, the angular frequency is:  
2
T
π

ω =  

In the example plot of the periodic function above, the period is approximately 1.25 sec by 
inspection of the time scale.  This is consistent with the equation we plotted since  
 

2 2 rad 5rad / sec.
T 1.25sec
π π

ω = = ≈  

 
Other terms in the Fourier series will have frequencies that are multiples of 5 rad/sec, e.g. 10 
rad/sec, 15 rad/sec, 20 rad/sec,…..  

 
Calculating the amplitudes is somewhat more complicated.  First consider the equation 

we plotted above (where I have dropped the units and constant 105): 
 

( ) 1 1 1 1 1f t  + cos[5 t] + cos[10 t] +  sin[5 t] + sin[10 t]
2 3 4 3 4

=  

 
Even though we know the amplitude of the first cosine term is 1/3, let’s try to develop a method 
to unmask it.  First, multiply each term by cos(5t). 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1f t cos 5t cos 5t  + cos[5 t]cos 5t  + cos[10 t]cos 5t  
2 3 4

1 1                       +  sin[5 t]cos 5t  +  sin[10 t]cos 5t
3 4

=
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Next, we find the time average of each term in the series using the normal definition for the time 
average of a function.  This is a reasonable approach because we are looking for a representative 
value for the amplitude averaged over at least one cycle, not an instantaneous value. 

( ) ( )
T

0

1f t f t dt
T

= ∫  

The result looks complicated and long but will quickly simplify. 

( ) ( ) ( ) ( ) ( )

( ) ( )

T T T T

0 0 0 0
T T

0 0

1 1 1 1 1 1 1f t cos 5t dt cos 5t dt + cos[5 t]cos 5t dt +  cos[10 t]cos 5t dt 
T T 2 T 3 T 4

1 1 1 1                                         +   sin[5 t]cos 5t dt +  sin[10 t]cos 5t dt
T 3 T 4

=∫ ∫ ∫ ∫

∫ ∫
 

A quick inspection of the left side of the equal sign reveals that most of the terms integrate to 
zero.  In fact all but one term are zero since, 

T T T

0 0 0

sin n t cos m tdt sin n t sin m tdt cos n t cos m tdt 0ω ω = ω ω = ω ω =∫ ∫ ∫  

unless m=n.  In that case, (sine would be identical) 
T T

2

0 0

1 1cos n t cos m tdt cos n tdt
T T

1
2

ω ω = ω =∫ ∫  

This leaves us with the following: 

( ) ( )
T T

0 0

c 21 1 1 1 1f t cos 5t dt 0+ os [5 t]dt+0+0+0
T T 3 3 2

⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫= =  

Rearranging slightly shows that the coefficient we were trying to find, i.e. the 1/3, must be 
calculated as follows: 

( ) ( )
T

1
0

1 2 f t cos 5t dt a
3 T
= =∫  

The name we will give to this coefficient is a1.  We arbitrarily decide to call all the coefficients 
for cosine terms “a” and for sine terms “b.”  The subscript tells us which harmonic of the 
fundamental frequency the coefficient is associated with.  In this case, n=1 is the fundamental 
term.   
 

Hopefully you see that this approach can be used to find any coefficient (any value of an 

or bn).  All we have to do is multiply the series by either cosnωt or sinnωt and time average the 
result.  Since most of the terms average to zero, the result can be summarized in the following set 
of rules.  In truth, finding Fourier coefficients can be a very mechanical procedure that you can 
perform simply by learning these rules. 

 
Let us start with any time varying signal, f(t).  If f(t) is periodic over the interval 0≤t≤T, it 

can be broken down into a series of frequency components (coefficients) where: 
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( ) ( )

( ) ( )

T

n
0
T

n
0

2   
T

the coefficients are calculated by:

2a f t cos n t dt  for n 0,  1, 2, 3, ....
T

2b f t sin n t dt  for n 1, 2, 3, ....
T

π
ω =

= ω =

= ω =

∫

∫

 

Note that n goes from 0 to ∞ for an but n goes from 1 to ∞ for bn.  That is because there is no b0 
term. The sin of (nωt) where n=0 is always 0, thus b0 is always 0. 
 

The coefficents a0, a1, a2, …, and b1, b2, b3, … are the Fourier coefficients of the function, 
f(t).  Now the original function f(t), can be described as the summation of many different sine 
and cosine functions.   

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 2 3

1 2 3

0
n n

n 1

1f t a a cos t a cos 2 t a cos 3 t
2

        b sin t b sin 2 t b sin 3 t
or,

af t a cos n t b sin n t   
2

∞

=

= + ω + ω + ω + ⋅⋅⋅

+ ω + ω + ω + ⋅⋅⋅

= + ω + ω⎡ ⎤⎣ ⎦∑

 

Example 

Given the periodic function :  ( )
0  when 0 t

f t
1  when t 2

< < π⎧
= ⎨ π < < π⎩

 

which repeats every 2π seconds.  A sketch of the function would look like: 
 

 1 

f(t) 

(sec) t 

-2π 2ππ

The function can be expanded into a series of sine and cosine terms that when added together, 
replicate the original function.  It is our job to find the coefficients of those terms.     
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First we must identify the period of the repeating function.  Hopefully it is obvious that T = 2π 
seconds.  From this we find the angular frequency, ω. 

2 2 rad 1 rad / sec.
T 2 sec
π π

ω = = =
π

 

This is a convenient result since the angular frequency of harmonic terms is just nω = n rad/sec. 
 
The coefficients are then found as follows.  Notice that we break the integral up into 2 pieces 
where the function has two different constant values, zero and one. 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2

n
0 0

2
2

n

n

2 1 1a f t cos nt dt 0 cos nt dt 1 cos nt dt
T

1 1a cos nt dt sin nx
n

1a sin n 2 sin n 0
n

π π π

π

π
π

π
π

= = ∗ + ∗
π π

= =
π π

= ∗ π − ∗π =⎡ ⎤⎣ ⎦π

∫ ∫ ∫

∫  

and 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )( )

2 2

n
0 0

2
2

n

n

n n

n

2 1 1b f t sin nt dt 0 sin nt dt 1sin nt dt
T

1 1b sin nt dt cos nx
n

1b cos n 2 cos n
n
1b 1 cos n   for n  odd numbers  otherwise b 0

n
2b   for n  odd numbers

n

π π π

π

π
π

π
π

= = ∗ +
π π

= = −
π π

= − ∗ π − ∗π⎡ ⎤⎣ ⎦π

= − − π = =
π

= − =
π

∫ ∫ ∫

∫

and 

( ) ( )
2 2

0
0 0

2

0

2 1a f t cos 0* t dt 0*dt 1*dt
T

1a dt 1

π π

π

π

π

= =
π π

= =
π

∫ ∫

∫

1 π

+ ∫
 

thus, the original function can be expanded to: 
 

( ) ( ) ( ) ( ) ( ) ( )0
n n

n 1

sin 1t sin 3t sin 5ta 1 2f t a cos n t b sin n t ...
2 2 1 3

∞

= 5
⎡ ⎤

= + ω + ω = − + + +⎡ ⎤ ⎢ ⎥⎣ ⎦ π ⎣ ⎦
∑  
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 If we added up all the terms of the Fourier Expansion, a graphical representation would 
look like this: 

Fourier Analysis

-0.5

0

0.5

1

1.5

time

f(t
)

a0

a0+b1

a0+b1+b3

a0+b1+b3+b5

a0+b1+b3+b5+b7

a0+b1+b3+b5+b7+b9

 The important thing to note is that the original square wave function can be composed 
from adding components of multiple sine and cosine functions with frequencies that are 
multiples of the base frequency.  The base frequency of the components is the same as the base 
frequency of the square wave.   

Odd or Even Functions 
 
By looking at the form of the input signal, f(t), we can come up with some shortcut rules 

for deriving the coefficients.  If we can determine if the f(t) is an odd or even function, we can 
determine whether the a or b coefficients are equal to zero as in the last example.  A function is 
odd or even based on the following: 

 
( ) ( )
( ) (tft-f    :Function Odd

tft-f  :FunctionEven 
−= )

=
 

 
Even functions are thus functions that are symmetric about the y-axis.  Odd functions are 

functions that are symmetric about the x-axis AND are mirror images of each other (symmetric 
about the origin).  Many functions are neither odd nor even, but understanding this characteristic 
function type lets us anticipate which Fourier coefficients might be zero.  
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Some samples of even and odd functions. 

 
An odd function  f(t) = sin (ωt) 

 
 
 
 
 
 
 
 
 
 

An even function  f(t) = cos(ωt) 
 
 
 
 
 
 
 
 
 
 
 
 
 

An odd function  f(t) = t 
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An even function  f(t) = t2

 
 
 
 
 
 
 
 
 
 
 
 
 
Since cosines are even, other even functions are made up only of cosines.  On the other hand, 
odd functions are made up only of sines.  Thus the coefficients for the different type functions 
are: 

( ) ( ) ( )

n
T

n
0

a 0
If f x  is odd then  2b f t sin n t dt  for n 1, 2, 3, ....

T

=⎧
⎪
⎨ = ω =⎪
⎩

∫
 

( ) ( ) ( )
T

n
0

n

2a f t cos n t dt  for n 0,  1, 2, 3, ....
If f t  is even then T

b 0

⎧
= ω =⎪

⎨
⎪ =⎩

∫  

Remember, some functions are neither even or odd in which case you must simply calculate all 
the Fourier coefficients and see what results are obtained. 
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Problems 
 

1. Given the following pressure function, p(t), which can be described as a square wave of 1 Pa 
for T/3 sec, and 0 Pa for 2T/3 sec shown below where T = 1 sec : 

t ( s )

1 P a

2 T5 T / 34 T / 3TT / 3 2 T / 3

P ( t )

 

p t
Pa t T

Pa T t T
( )

,

,
=

< <

< <

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

1 0
3

0
3

 

a) Is this function odd, even, both, or neither?  How do you know? 

b) What is the base or fundamental frequency of the square wave? 

c) Perform the integrations to calculate the coefficient, “ao”. 

d) Perform the integrations to calculate the coefficient, “an” coefficients. 

e) Perform the integrations to determine the “bn” coefficients. 
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f) Fill out the following table for 0 9≤ ≤n : 

n an    (Pa) bn   (Pa) Tn    = T / n 

(sec) 

fn    = 1 / Tn 

(Hz) 

0  N/A N/A N/A 

1     

2     

3     

4     

5     

6     

7     

8     

9     

 
g) What is the pattern here?  List the frequencies of the first nine non-zero harmonics of the 

fundamental that go make up the first nine terms of the Fourier Expansion. 
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1

Fourier Series – Periodic Functions
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( ) ( )
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==
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=

∫

∫
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ω
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0
n n

n 1

0 1 2

1 2

af t a cos n t b sin n t   or,
2
1f t a a cos t a cos 2 t
2

        b sin t b sin 2 t

∞

=

= + ω + ω⎡ ⎤⎣ ⎦

= + ω + ω + ⋅⋅⋅

+ ω + ω + ⋅⋅⋅

∑
Example
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⎧
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<<

=
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f(t)
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t
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2 radT 2  sec 1
T sec
π

= π ⇒ω = =Note:

Coefficients
( ) ( ) ( ) ( )

( ) ( )

( ) ( )[ ] 0sin2sin1

sin1cos1

cos01cos11cos1

2
2

2

0

2

0

=∗−∗=

==

∗+==

∫

∫ ∫∫

ππ
π

ππ

πππ
π

π

π
π

π

π

ππ

nn
n

a

nx
n

dtnta

dtntdtntdtnttfa

n

n

n

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )( )

2 2

n
0 0

2
2

n

n

n n

n

1 1 1b f t sin nt dt 1sin nt dt 0 sin nt dt

1 1b sin nt dt cos nx
n

1b cos n 2 cos n
n
1b 1 cos n   for n  odd numbers  otherwise b 0
n
2b   for n  odd numbers

n

π π π

π

π
π

π
π

= = + ∗
π π π

= = −
π π

= − ∗ π − ∗π⎡ ⎤⎣ ⎦π

= − − π = =
π

= − =
π

∫ ∫ ∫

∫
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Odd and Even Functions
( ) ( )
( ) ( )tft-f    :Function Odd

tft-f  :FunctionEven 
−=

=

Even Odd
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2

Odd and Even Functions
( ) ( )
( ) ( )tft-f    :Function Odd

tft-f  :FunctionEven 
−=

=

Even Odd

( )
( ) ( )

n
T

n
0

a 0                                                             If f t  is odd then  
2b f t sin n t dt  for n 1, 2, 3, ....
T

⎧
⎪

=⎪
⎨
⎪ = ω =
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=

=ω= ∫
                                                         0b
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Spectrum Level and Band Level 

Intensity, Intensity Level, and Intensity Spectrum Level 

 As a review, earlier we talked about the intensity of a sound wave.  We related the 
intensity of a sound wave to the acoustic pressure where: 

2
a max

2 2
a a  rms

pI   or
2 c

p pI
c c

=
ρ

= =

,

ρ ρ

 

 Next we defined the Intensity Level, L, as the decibel quantity defined to be consistent 
with the fact that our ears registered intensity on a logarithmic vice linear scale. 

ref

I
L 10log

I
≡  

In this definition, Iref was determined by a standard convention.  Intensity Levels in water were 
most usually referenced to 1 µPa pressure which is equivalent to an intensity of 6.67 x 10-19 
W/m2.  In air the intensity reference is most usually 1 x 10-12 W/m2 which is equivalent to a 
reference pressure of 20 µPa.   
 

We will now define a new quantity, the spectrum level or intensity spectrum level (ISL). 
 
The intensity spectrum level (ISL) is the intensity level of the sound wave within a 1 Hz 
band. 
  
This is accomplished by comparing the intensity in a 1 Hz band to the reference level in a 1 Hz 
band.  The equation for the ISL is: 
 

( )
( )

( )
ref ref

I in 1 Hz band I in 1 Hz band 1Hz
ISL 10log 10log

I in 1 Hz band I
∗

= =  

While this might seem a needless distinction, we can easily show in the lab that a pure tone with 
an intensity of 0.01 W/m2 is painfully loud.  On the other hand, the same intensity spread as 
noise over the entire audible frequency bandwidth (20 Hz to 20 kHz) is nowhere near as loud.  
The ISL gives us the intensity in the 1 Hz band compared to the reference level (normally 1 µPa 
corresponding to 6.67 x 10-19 W/m2 in water).  This allows us to truly compare apples to apples.  
We saw in our brief study of Fourier analysis that most sound waves are made up of the 
combination of many different frequencies of sound waves.  To compare one level to another, we 
must compare both levels within the same 1 Hz band.  But what if the bandwidth of our 
equipment is different than 1 Hz? 
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Band Level 
 
  Let’s describe the processing within a typical sonar system.  In this system, a sound wave 
is incident upon a transducer or hydrophone, which converts the varying acoustic pressure to a 
voltage level using a piezoelectric material such a naturally occurring quartz crystals or man 
made ceramic materials like PZT.  Piezoelectric materials respond to external applied stresses by 
building up charge on their surfaces.  This charge redistribution is sensed as a voltage by 
electrodes attached to the surfaces of the piezoelectric material.   
 

This voltage is then passed through a set of parallel band pass filters to separate the 
voltage signal into the different frequency bands.  After passing through the band pass filters, all 
frequencies outside the particular band are eliminated.  The voltage representing pressure in the 
band is then converted to an rms power level by squaring the voltage and taking the average over 
a period of time called the integration time.  An intensity level is created by dividing by the 
reference intensity, taking the logarithm and multiplying by 10. 

 

band 
pass 
filter 
#1 

band 
pass 
filter 
#2 

band 
pass 
filter 
#3 

( ) refband Rf
V

∆

2

 

( ) refband Rf
V

∆

2

 

( ) refband Rf
V

∆

2

 

hydrophone 

acoustic 
pressure 

Output 

The result is then an average intensity level in each of the bands that we have split the 
signal into, as shown on the following graph.  This is called a “Band Level” and given the 
symbol, BL.  In this simple example system, there are only 3 bands.  Real systems have many 
more bands.  After the display is created as a plot of average intensity level in a band versus the 
frequency of the band, we see we have essentially created the Fourier Transform of the time 
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domain signal.  Devices capable of measuring and displaying frequency components of a signal 
in this manner are called spectrum analyzers.  
 

band 
level  

 

 

 
band #2 band #3 band #1 

frequency  

The Band Level is the intensity level over a band other than 1 Hz. 

 Below is a plot representing the spectrum level of environmental noise within an 
imaginary environment.  To determine the band level in the frequency band shown on the plot, 
we can use the following equation: 
 

( )tot

ref ref

I in a 1 Hz band fIBL 10log 10log
I I

∆
= =  

 
The Intensity in a 1 Hz band is often called the 
Intensity Spectral Density.  Using the 
multiplication rule for logarithms,  
 

( )

( )
ref

 band x1Hz f10log
I 1

ave

2 1

I in a 1 Hz
BL 10log

BL ISL 10log f
where ∆f f f

Hz
∆

= +

= + ∆

= −

ISLave

f2 f1 frequency 

ISL 

 

This equation can be used to compare the energy in a band other than a 1 Hz band.  It might 
appear in the second term that we are taking the logarithm of quantity that has units.  This is only 
because it is conventional to drop the 1 Hz in the denominator when writing the equation. 

Example 

 Using the plot of ISL as a function of frequency shown below, calculate a) the band level 
of every band and b) the total band level. 
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355282200100
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Intensity
Spectrum 
Level 
(dB) 
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30 

frequency (Hz) 

a) To calculate the band levels: 

( )
( )

1 ave

1

1

2

3

BL ISL 10log f

BL 60 10log 100
BL 80 dB
BL 49.1 dB
BL 68.6 dB

= + ∆

= +

=
=
=

 

b) To calculate the total band level: 

dB 3.80

101010log10 101010
321

=

⎟
⎠
⎞

⎜
⎝
⎛ ++=

tot

BLBLBL

tot

BL

BL  

Types of Spectrums 

A broadband spectrum is one where the sound pressure levels are spread continuously 
across a spectrum.  A tonal spectrum is one where there is a discrete non-continuous spectrum 
with different frequency components.  Sound pressure level measurements may contain 
components of broadband sounds as well as tonals as shown below. 
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tonals 

broadband 
noise 

Spectrum 
Level 

frequency 

To calculate the total band level of broadband and tonal spectrums, we must add in the 
band level (or ISL if they have a 1 Hz bandwidth) of each tonal separately with the band level of 
the broadband noise.  An equation would be: 

 
( )tot ave BB tonal  #1 tonal  #2BL ISL 10 log f L L ...= + ∆ ⊕ ⊕ ⊕  ⎡ ⎤⎣ ⎦

Example 

In the following figure, the background noise is constant (40 dB) over the band width from 500 
to 600 Hz.  There are two tones with levels of 60 dB and 63 dB respectively.  What is the total 
Band Level? 

Spectrum containg both noise and tones
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( )
( )

tot ave BB tonal  #1 tonal  #2

tot

BL ISL 10log f L L

BL 40dB 10log 100Hz 60dB 63dB 66dB

= + ∆ ⊕ ⊕⎡ ⎤⎣ ⎦
= + ⊕ ⊕ =
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Bandwidth and Common Bandwidths 

 Using the example above, let’s describe some features of the frequency bands.  First, it is 
often easier to describe a frequency band by stating the center frequency and the bandwidth 
versus stating the bottom and top frequency of the band.  The center frequency or “average” 
frequency (though it is not a true average) of a frequency band can be found by using the 
following definition: 
 

21 fffc =  

 Mathematically this frequency is the geometric mean of the upper and lower frequencies.  
The bandwidth is simply: 
 

12 fff −=∆  

Constant Bandwidth 

 Where all bands are the same number bandwidth, i.e. all bands are 10 Hz wide. 

Proportional Bandwidth 

 Where the ratio of the upper frequency to the lower frequency are constant. 

One-octave bandwidth 

 The first band from 100 Hz to 200 Hz, used in the previous example is an example of a 
one-octave bandwidth.  A one-octave bandwidth is where: 
 

1
1

2 2 ff =  

Also, using the definition to calculate the center frequency we find it is 141 Hz. 

Half-octave bandwidth 

 The second band is an example of a half-octave bandwidth.  A half-octave bandwidth is 
where: 

1
2

1

2 2 ff =  

Note also that the center frequency of the one-octave band above is where the octave is split into 
two half-octave bands.  An octave band with a 200 Hz lower frequency has an upper frequency 
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of 400 Hz.  The center frequency is 200Hz 400Hz 283Hz∗ = , exactly the same number 
calculated from the definition of the half octave band.  It may have seemed odd that the center 
frequency was not the simple average of the upper and lower frequencies.  Hopefully this 
observation explains the use of the geometric mean for calculating the center frequency.   
 
 

60 
 Spectrum 

Level 
(dB)  50 

 
30  

  
 
 
 
 

355200 283100 fc=141 
 frequency (Hz) 
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Appendix A – Why is center frequency a geometric mean vice a 
simple arithmetic average? 

It has been observed that noise in the sea from the wind driven surface is not flat across 
all frequency bands.  Instead we see that noise decreases with increasing frequency.  The exact 
shape of non constant noise is called a Knudsen spectrum and Intensity Spectral Density is 
proportional to 1/f2.   

Sample Knudsen Spectrum
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Spectral Density av e

 

The exact mathematical description of a Knudsen spectrum is: 

 2

AdI df
f

=  

where A is a constant.  The intensity in a band from f1 to f2 is then:  

 ( )
2

1

f

Band 2 12
1 2 1 2 1 2f

A 1 1 A AI df A f f
f f f f f f f

⎛ ⎞
= = − = − =⎜ ⎟

⎝ ⎠
∫ f∆  
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If the noise spectrum where constant, the total intensity in the band is just the Intensity Spectral 

Density x bandwidth.  In the case of the non-constant spectral density, the term 
1 2

A
f f

represents 

the best average value of the Intensity spectral density.  It is evaluated at the center frequency. 

 ave 2
ave1 2 c

A dSpectral Density
f f df f

= =
I A

=  

 
As such, we see that the center frequency must be: 

 c 1f f f= 2  

Simply looking at the Knudsen spectrum above shows us the problem with using the arithmetic 
average for the center frequency.  Our knowledge of approximate integration tells us the area 
above and below the average Intensity Spectral Density must be approximately equal.  This is 
clearly not the case.  Instead, a lower average value must be to balance the equal areas.     

Sample Knudsen Spectrum
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Problems 
1. Given the following FFT for pressure p(t) {where T = 1 sec, po = 1 µPa, ρ = 1000 Kg/m3, and 

c = 1500 m/s}:  
 

( )( ) [1 4cos 2 1 / 3cos(2 2 / ) 6cos(2 5 / )
2sin(2 1 / ) 5sin(2 3 / ) 8sin(2 5 / )]

= + − +

+ +

p t t T t T t T
t T t T t T Pa

π π π
π π π

+  

a) Complete the table below for : 0 6n≤ ≤

n an (Pa) bn (Pa) Tn (sec) fn (Hz) P2
rms 

(Pa) 

<In>W/

m2

BLn 

(dB) 

0        

1        

2        

3        

4        

5        

6        

 

b) Plot the Cosine Amplitude spectrum an (Pa) vs f (Hz).  Use your own graph paper 
c) Plot the Sine Amplitude spectrum bn (Pa) vs f (Hz).  Use your own graph paper. 
d) Plot the time averaged Intensity spectrum, <In> (W/m2) vs f (Hz).  Use your own graph 

paper. 
e) Plot the discrete Band Level spectrum, BLn (dB) vs f (Hz).  Use your own graph paper. 
f) Determine the total Band Level, BLTOT for 0 6Hz f Hz≤ ≤ and the average Intensity 

Spectrum Level, ISLAVE using the information above. 
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2. The intensity Spectrum Level (ISL) is given below for a source of noise: 

Intensity Spectrum Level 
for a particular noise source
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a) Over what frequency interval is the Intensity Spectrum Level a constant 60 dB? 
b) What is the Intensity Spectrum Level in the range 60 Hz <f < 100 Hz? 
c) What is the Band Level (BL) for the noise in the frequency range 20 Hz <f < 60 Hz? 
d) What is the Band Level (BL) for the noise in the frequency range 60 Hz <f < 100 Hz? 
e) What is the Band Level (BL) for the noise in the frequency range 20 Hz <f < 100 Hz? 
 

3. If the Band Level is 100 dB in a white noise bandwidth of 50 Hz, what is the (average) 
Intensity Spectrum Level?  

 
4. For aone-third octave band centered on a frequency of 1000 Hz, calculate the lower and 

upper frequencies and the bandwidth. 
 
5. The lower frequency of a one-third octave band is 200 Hz.  Find the upper frequency, the 

center frequency, and the bandwidth. 
 
6. a)  For a one-octave bandwidth, show that the bandwidth is about 71% of the center 

frequency. 
b)  For a half-octave bandwidth, show that the bandwidth is about 35% of the center 
frequency. 
c) For a third-octave bandwidth, show that the bandwidth is about 23% of the center 

frequency.   
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7. Given the following graph of “white noise” and tonals: 

 

ISL

I 
S 
L 

(dB) 

a) Compute the total band level BLtot, for a receiver having a one octave bandwidth centered 
around 637.4 Hz.  Assume each tonal has a ∆f=1 Hz. 

b) Compute the average “white noise” intensity spectrum level, ISLave. 
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8.  Using the figure below, estimate the noise level at 1 m from a U.S. Mark 48 torpedo traveling 

at 30 knots in the frequency band ranging 200 Hz to 10 kHz. 
 

Intensity Spectrum Level for a Mk 48 Torpedo

100

110

120

130

140

150

160

170

180

0.1 1 10

Frequency (Hz)

IS
L 

(d
B)

60 knot

30 knot

 
 

a) Repeat for a torpedo traveling at 30 knots. 
b) Repeat for a torpedo traveling at 30 knots but for a sonar receiver with a band ranging 

from 100 Hz to 10 kHz. 
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1

Intensity, Intensity Level, and 
Intensity Spectrum Level

2
a max

2 2
a a  rms

pI   or,
2 c

p pI
c c

=
ρ

= =
ρ ρ

ref

I
L 10log

I
≡

( )
( )

( )
ref ref

I in 1 Hz band I in 1 Hz band 1Hz
ISL 10log 10log

I in 1 Hz band I
•

= =

The spectrum level is the intensity level of the sound wave 
within a 1 Hz band.

A Sonar System

band 
pass 
filter 
#1

band 
pass 
filter 
#2

band 
pass 
filter 
#3acoustic 

pressure

hydrophone

Output

( ) refband Rf
V

∆

2

( ) refband Rf
V

∆

2

( ) refband Rf
V

∆

2

System Output

• Fourier Transform of the Time Domain Signal
• Frequency Analyzer

frequency

band 
level

band #1 band #2 band #3

Example
( ) ( ) ( ) ( ) ( ) ( )1p t 5cos 2 110Hz t 3cos 2 2 110Hz t 4cos 3 2 110Hz t Pa

2
⎧ ⎫= + π + π + π⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

( ) ( ) ( )

( ) ( )
0 1 2

1 2

1f t a a cos t a cos 2 t
2

        b sin t b sin 2 t

= + ω + ω + ⋅⋅⋅

+ ω + ω + ⋅⋅⋅

0.01 0.02 0.03 0.04 0.05
Time Hsec L

-5
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Pressure HPaL

Fourier Coefficients

43303

32202

1318.3 x 10-612.551101

1173.3 x 10-70.5100

L (dB)I (W/m2)P2
rms (Pa)Pmax (Pa)fn (Hz)n

110 220 330 440 f (Hz)

Pressure
(Pa)

1

2
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5

( ) ( ) ( ) ( ) ( ) ( )1p t 5cos 2 110Hz t 3cos 2 2 110Hz t 4cos 3 2 110Hz t Pa
2

⎧ ⎫= + π + π + π⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

2 2 2
max n nP a b= +

2
2 max
rms

PP
2

=

2 2
rms maxP PI
c 2 c

= =
ρ ρ

Band Level

frequency

ISL

f1 f2

ISLave

( )tot

ref ref

I in a 1 Hz band fIBL 10log 10log
I I

∆
= =

( )

( )
ref

ave

2 1

I in a 1 Hz band 1Hz fBL 10log 10log
I 1Hz

BL ISL 10log f
where ∆f f f

∆
= +

= + ∆

= −

The Band Level is the intensity level over a band other than 1 Hz.
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Example

• Using the plot of ISL as a function of frequency 
shown, calculate 
– the band level of every band
– the total band level
– the total band level in a band from 150 Hz to 300 Hz

100 200 282 355

frequency (Hz)

Intensity
Spectrum 
Level
(dB)

60

50

30

Types of Spectrums

frequency

Spectrum 
Level

broadband 
noise

tonals

( )tot ave BB tonal  #1 tonal  #2BL ISL 10log f L L ...= + ∆ ⊕ ⊕ ⊕⎡ ⎤⎣ ⎦

Example

Spectrum containg both noise and tones
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What is the total BL?

Common Bandwidths
• Constant Bandwidth

∆f = constant
• Proportional Bandwidth

– Octave Bandwidth
• f2 = 21 f1

– Half Octave Bandwidth
• f2 = 21/2 f1

• Center Frequency
100 200 282 355

frequency (Hz)

Spectrum 
Level
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30

fc=141

c 1 2f f f=

Preferred Octave Bands

Why do we care?

Source Level (SL) and Noise Level (NL) 
are both examples of Band Levels (BL) 
where the frequency band(s) are defined 
by the frequencies of our Sonar System
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Passive SONAR Equation Intro 
 There are many forms of equations that comprise the passive SONAR equation but what 
is common amongst all forms of the equation is that they try to quantify all the affects on passive 
detection of sound from a contact or target.  The form of the equation that will be presented this 
semester most often is: 
 

LS/N = SL-TL - (NL-DI) 

In the below schematic of the undersea battle space, the sound emitted by one of the submarine 
platforms is represented by Source Level, SL.  Losses sustained during sound propagation are 
represented by the Transmission Loss, TL.  Back ground noise in the battle space are represented 
by the Noise Level, NL, and receiver characteristic, Directivity Index, DI. 
  

 
 

Why are we presenting this now? 

 For the rest of the semester, we will take a closer look at each of the components of the 
passive SONAR equation.  The goal is for each of you to enhance your understanding about each 
of the components and understand what actions can minimize or maximize the factors as 
appropriate to your tactical undersea warfare situation.  Undersea warfare is a complex process 
where those with the best understanding of their craft, survive to fight again. 
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Parts of the Passive SONAR Equation 

Signal to Noise Ratio 
 

The intensity level on the left is the ratio of the signal received by a sonar receiver to the 
noise.  Anyone who has ever tuned a radio station manually has experienced the station’s signal 
in the static noise of the receiver.  Signal to noise ratio is an important concept because it 
represents the degree to which an amplifier can be successfully employed to improve this 
situation.  If signal to noise ratio (S/N or SNR) is two low, the noise is nearly equal to the signal.  
In this case, amplification will also increase the noise and provide no substantial improvement.   
For high signal to noise ratios, amplification will improve the magnitude of the signal relative to 
the noise. 
 

A very good question to ask is, how large a signal to noise ratio is necessary?  For 
consumer electronic audio, listeners demand a very high SNR.  If all that is necessary is the 
identification of information, low SNRs might be tolerated.  In fact, some systems adopt the 
convention that the minimum SNR required is 1.0.  Regardless of the exact nature of the 
detection criteria used, we refer to the criteria as Detection Threshold (DT).  Any actual signal 
above the Detection Threshold is referred to as Signal Excess.  Sometimes we set the minimum 
signal to noise ratio such that a trained sonar operator will be able to pick a target out of noise 
50% of the time.  We refer to this signal to noise ratio for 50% detection as the “Recognition 
Differential.” 

 
Remember that the passive sonar equation compares “levels” (in dB) vice the actual 

intensities.  As such, LS/N is defined  
required

S/ N

Signal
L 10log

Noise
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Detection Threshold and Recognition Differential are also a decibel quantities.  

Signal Level Received 
 
 The signal level received at the detector is the difference of the first two quantities on the 
right side of the SONAR equation above.  The origin of these two terms is the intensity of the 
signal that is transmitted to the water from the target.  This is called the   Source Level (SL).   
 

0

0

10log

 Signal Intensity
Reference Intensity

=

≡

≡

S

S

ISL
I

I
I

 

As the signal travels through the water, some of the signal is lost through various 
mechanisms.  The totality of this loss is quantified as the Transmission Loss (TL).   
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( )10log             For a plane wave

 Received signal intensity

=

≡

S

R

R

ITL
I

I
 

 
The source level minus the transmission loss determines how much signal is received at 

the detector.   
 

( ) Signal Level= − =sL SL TL  
 
As a general rule, Transmission Loss is a dependent on the distance between the source 

and the receiver.  Since this distance is often the tactically significant quantity in an undersea 
engagement, we often rearrange the passive sonar equation to solve for the Transmission Loss.  
The loss that can be tolerated and still meet the detection criterion is termed Figure of Merit.  
This quantity provides a means to estimate the distance at which detection can be achieved.   

 
TLallowable = Figure of Merit = SL- LS/N Threshold - (NL-DI) 

 There are several conventions we will adopt in refining these basic definitions.  Specific 
items to pay attention to are the location of the source level.  Additionally, the frequency bands 
that contain the signal and noise must always be considered. 

Noise Level Present 
 
 The Noise Level (Ln or NL) is the sum of the total effect of background and self-noise 
hindering our ability to detect the target signal.  Background noise much be estimated from a 
variety of sources including wind and weather, shipping, biologic activity, and  industrial activity  
 

0

10log

Noise intensity

=

≡

n

n

INL
I

I
 

 
 The Directivity Index (DI) is a ratio of the noise level detected by the detector, to the total 
noise level over 360°.   
 

10 log

 Noise power from non-directional receiver
 Noise power generated by actual receiver

=

≡

≡

ND

D

ND

D

NDI
N

N
N

 

 
When a detector is omni-directional, the power ratio is one, corresponding to 0 dB.  If a sonar 
receiver is an array of elements, beams (directions) are formed where the system is more 
responsive due the interference of coherent sound.  In this case, all isotropic noise does not reach 
the receiver.  Since only the noise in the correct beam reaches the receiver, it is effectively 
lowered compared to the omni-directional case.  
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The Noise Level (Ln) is the sum of the total effect of background and self-noise hindering our 
ability to detect the target signal. 
 
     ( )nL NL DI= −

Nomenclature conventions and the Passive SONAR Equation 
 

There is little standardization in the symbols used in various references.  In writing the 
passive sonar equation above, the nomenclature adopted by various academic sources (Urick) 
was used.  In the Naval Warfare Publications (NWPs), the Navy has a slightly different set of 
symbols.   

 
An “L” quantity is an absolute level (dB referenced to a standard).  An “N” quantity uses 

level subtraction to compare two intensities or pressures.  These two acoustic parameters can be 
measured at different platforms or different times.  The below chart compares some of the terms 
used in the passive (and active) sonar equation. 

 
Urick Description Navy 
SL Source Level LS
TL Transmission Loss NW
NL Noise Level LN
DI Directivity Index NDI
DT Detection Threshold NRD
LS/N  SNR Signal to Noise Ratio NSN
RL Reverberation Level LR
TS Target Strength NTS

 

9-4 



Problems 
 
1.  A submarine is conducting a passive barrier patrol against a transiting enemy submarine.  The 

friendly sub has a sonar with a directivity index of 15 dB and a detection threshold of 8 dB.  
The enemy sub has a source level of 140 dB.  Environmental conditions are such that the 
transmission loss is 60 dB and the equivalent isotropic noise level is 65 dB. 

 a)  What is the received signal level? 
 b)  What is the received signal-to-noise ratio in dB? 
 c)  What is the figure of merit? 
 d)  Can the enemy sub be detected?  Why? 
 
2.  A submarine is attempting to detect an aircraft carrier transiting the Straits of Malacca.  The 

aircraft carrier has a source level of 90 dB.  The submarine’s passive sonar has a directivity 
index of 20 dB and a detection threshold of 15 dB.  Biological noise in the Straits is 54 dB.  
The submarine’s self noise is 50 dB.  Given that TL = 10 log r, where r is the range in yards 
(we will show you where this comes from soon), at what range can the carrier just be 
detected? 
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1

The Passive Sonar Equation

Will the sensor detect the red submarine?

Signal to Noise Ratio

Signal

Noise (quiet) Noise (Loud

Signal Signal Intensity
Noise Noise Intensity

=

The higher the SNR, the more likely 
you are to hear (detect) the signal.

Source Level and Transmission Loss

S

0

ISL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠SL

TL

RL SL TL= −

S

R

ITL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

S/ N R
0 0

Signal Noise Intensity Noise IntensityL 10log L 10log SL TL 10log
Noise I I

⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Sources of Noise
• Shipping Noise
• Wind and Weather
• Marine Life – Biologic Activity
• Self Noise

– Flow of Water
– Machinery

Omni directional Noise

Isotropic Noise
IN

IN

IN

IN

IN

IN

IN

Receiver

Detector

Directivity Factor
• Some detectors are only able to provide a voltage proportional to all 

incident sound from all directions.  (non-directional = ND)
• Other detectors use more sophisticated signal processing and form 

beams thereby providing a voltage proportional to sound incident
from a particular direction.  (directional = D)

IN

IN

IN

IN

IN

IN

IN

Receiver

Detector
IS

ND

D

Nd
N

=

DN Electrical power generated by actual directional receiver=

NDN Electrical power generated by equivalent non-directional receiver=

The Passive Sonar Equation

S/ N R
0 0

Signal Noise Intensity Noise IntensityL 10log L 10log SL TL 10log
Noise I I

⎛ ⎞ ⎛ ⎞⎛ ⎞= = − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( )S/ N R N Received
SignalL 10log L L SL TL NL DI
Noise

⎛ ⎞= = − = − − −⎜ ⎟
⎝ ⎠

( )S/ NL SL TL NL DI= − − −

S

0

ISL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

S

R

ITL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

N

0

INL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

( )DI 10log d=
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Figure of Merit
• Often a detection threshold is established such that a 

trained operator should be able to detect targets with 
that LS/N half of the time he hears them.  Called 
“Recognition Differential.” (RD)

• Passive sonar equation is then solved for TL allowable at 
that threshold.  Called “Figure of Merit.” (FOM)

TLallowable = Figure of Merit = SL- LS/N Threshold - (NL-DI)

• Since TL logically depends on range, this could provide 
an estimate of range at which a target is likely to be 
detected.  Called “Range of the Day.” (ROD)

• Any LS/N above the Recognition Differential is termed 
“Signal Excess.” (SE) Signal Excess allows detection 
of targets beyond the Range of the Day.

Example
• A hostile submarine with a 

Source Level, SL = 130 dB re 
1 µPa is near a friendly 
submarine in a part of the 
ocean where the Noise Level 
from all sources, NL = 70 dB re 
1 µPa.  The directivity factor is 
3000 for the friendly 
submarine’s sonar.  If the 
Recognition Differential for the 
friendly submarine is 20 dB, 
what is the Figure of Merit?

• If the actual Transmission Loss 
is 50 dB, what is the Signal 
Excess.

Signal to Noise Level

S/ N
0 0

Signal Intensity Signal Intensity Noise IntensityL 10log 10log 10log
Noise Intensity I I

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

But we will be measuring the signal 
intensity level at the receiver/detector, IR
(in the frequency band of the detector)

This is different from the signal intensity 
level leaving the target, IS
(in the frequency band of the detector)

S

S 0R R

S0 0 S

R

I
I II I

II I I
I

= =

Fraction of emitted intensity reaching receiver

S SR

0 0 R

I II10 log 10log 10log
I I I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

RL SL TL= −

OR

Noise Level and Directivity Index

IN

IN

IN

IN

IN

IN

IN

Receiver

Detector
IS

ND

D

Nd
N

=

DN Electrical power generated by actual directional receiver=

NDN Electrical power generated by equivalent non-directional receiver=

N Received N

0 0

I I 1
I I d

= ( )N Received N
N Received

0 0

I IL 10log 10log 10log d
I I

⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
OR

N

0

INL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

( )DI 10log d=

N ReceivedL NL DI= −

Adding DecibelsAdding Decibels
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Transmission Loss 

 The oceans form a very complex medium.  Sound in the medium does many things 
except follow a straight path as we would want it to.  We will study how the ocean affects the 
propagation of sound. 
 
 To this point we have introduced the passive SONAR equations and provided some 
mathematical definitions.  From this section on, we will break the equation into the individual 
terms and discuss all the factors that determine the value for each. 
 
 Our first parameter is Transmission Loss, TL.  Transmission Loss is the parameter that 
compares the amount of intensity of the signal at a specific range from the source to the source 
intensity at one yard.  The equation for this would be: 
 

( )
( )rI

ITL yd 1log10≡  

Note:  Due to early work in transmission loss being done referencing the intensity at one yard 
from the source, all quantities for the transmission loss equations typically are IN YARDS!  
Be careful. 

Why is transmission loss defined as it is? 

 As you should remember, levels are expressed in decibels and are just ratios of one 
quantity to another.  This allows us to express terms with large variations (several orders of 
magnitude or so) to each other rather easily.  It also makes calculating quantities in the SONAR 
equations much easier. 
   
 For example, let us look at the combination of the source level and transmission loss, 
which defines the quantity, the received source level, Ls.  If we substitute the definition of source 
level and transmission loss into the equation for the received source level, we get: 
 

( ) ( )
( )

( ) ( )
( )

( )
ref

s

ref
s

ref
s

I
rIL

I
rI

I
IL

rI
I

I
ITLSLL

log10

yd 1
log10yd 1log10

yd 1log10yd 1log10

=

+=

−=−=

 

We can now see that the resultant, the received source level, is the ratio (in dB) of the actual 
intensity at range, r, compared to the intensity of a reference signal with an rms pressure of 1 
µPa. 

10-1 



Transmission Loss results from: 

1. Geometric losses due to one of two types of spreading, spherical or 
cylindrical. 

2. Attenuation due to absorption, scattering, viscosity, and thermal 
losses.  This will be discussed more, later in the section. 

Spreading Loss 

 Let’s assume we have a point source, which emits a signal in all directions (that is in 
three dimensions.)  The source would produce wave fronts that were spheres that would grow in 
size as the wave propagates away from the source.  Note that the power in each wave front 

would be a constant, even though the size of the wave front would grow.  (This assumes no 
power is lost from the wave due to attenuation.)  The power of a wave front or sphere can be 
expressed in terms of the intensity of the wave where: 

r1 

r2 
r3 

 
( )24 rIIAP π==  

But again, we said the power of each wave front is a constant as the wave propagates so: 

2

1

2
2

1

2
2

2

1

2
22

2
11

21

4
4

44

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

=

=

r
r

r
r

I
I

rIrI

PP

π
π

ππ  
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Note the reversal of the subscripts on the right side of the last equation compared to the left side.  
As we see the intensity decreases as 1/r2. 
 
 Now using the definition of Transmission Loss: 

( )
( )

( )
( )

( )
( ) ( )

rTL

rTL

thus

rr
rI

I

rI
ITL

log20
1

log10

yd 1yd 14
4yd 1

where

yd 1log10

2

2

2

2

2

2

=

=

==

=

π
π

 

NOTE:  The range, r, is the range in yards since the definition references the intensity at 
range r, to the intensity at 1 yard. 
 
 The equation above is for transmission loss only due to spherical spreading.  Spherical 
spreading is the most dominant factor in the transmission loss portion of the passive SONAR 
equation but there are other factors that must be considered. 

Cylindrical Spreading 

 What if the sound wave from a source does not spread out in 3-dimension but gets 
trapped within some boundaries such as in a surface duct?  If we expand the picture that we 
previously used to show the wave fronts spreading out from a source, we see that the fronts at 
some point no longer form concentric spheres.  
 

When the wave fronts hit the surface and the bottom, as in the case shown below, the 
power in the wave fronts is reflected back into the ocean and power is not lost out of the “top” of 
the wave fronts.  All the power of the wave front is resident in the sides of the “cylinders” 
formed by the wave fronts.  We can think of the wave front as being a concentric cylinder that 
spreads out from the source.  Again, the power of each wave front is a constant but now the area 
of the cylinder where the power is resident is:   

 
rHA π2=  
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r1 

r2 
r3 

r5 

r4 

transition range 

H 

Can be 
approximated as the 
sides of a cylinder 
with a surface area 
of 2πr5H 

Note that we can neglect the surface area of the top and bottom of the cylinder because 
the power is reflected back at those surfaces and we assume no power is lost in the up or down 
direction. 

 
Using the same mathematical process as we used for the spherical spreading case, we can 

determine the transmission loss if we only consider cylindrical spreading where: 
 

( )
( ) ( ) ( )

( )
( )

rTL
rI

ITL

r
H

rH
rI

I

log10

yd 1log10

yd 1yd 12
2yd 1

=

=

==
π
π

 

The only limitation of this equation is that it does not take into account the spreading of 
the wave spherically until it reaches the “transition range” where the wave starts to spread 
cylindrically.  To derive an equation that takes both factors into account, we can use one of the 
properties of logarithms where: 

 
( )
( )

( )
( )

( )
( )rI
rI

rI
I

rI
ITL 0

0

log10yd 1log10yd 1log10 +==  
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where r0 is the transition range.  If the first term accounts for the spherical spreading and the 
second term accounts for the cylindrical spreading, substituting in our previous equations for 
each, the sum becomes: 
 

0
0 log10log20

r
rrTL +=  

 Thus, if there is a transition range, r0, we can calculate the total transmission loss due to 
both forms of spreading losses. 

Transition Range 

 The range at which spreading losses switch from spherical to cylindrical spreading is not 
easily determined.  The best method to determine the transition range would be to use a complex 
computer model of the ocean and determine the transition range.  One approximation that can be 
used is presented in Urick, Principles of Underwater Sound on page 153.  In the book, the 
author presents one formula where: 

dH
HRHr
−

=
80  

where the terms in the equation are defined as: 

ray sound of curvature of radius
cos

source  theofdepth 
knesslayer thic mixed

==

=
=

n

n

g
cR

d
H

θ

 

 This equation has some severe limitations.  One, it is only good for the case of a well-
defined surface layer (the most likely case where cylindrical spreading will occur) of depth, H, 
with a constant gradient, g.  Two, this is only valid for one particular ray of sound from the 
source.  Any other ray that leaves the source at a different angle θ will have a different transition 
range.  Thus, at best this equation can only be used as a rough approximation. 
 
 In summary, the student may assume that only spherical spreading occurs unless told 
otherwise in a problem.  Further, the student should not expect to calculate the transition range 
but should be given a value when one is required.  
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Attenuation 

 Attenuation is the lessening of the intensity per unit distance the sound travels.  
Attenuation losses occur from both absorption losses and scattering losses.  Seawater is a 
dissipative medium, it absorbs part of the energy of the transmitted wave. 
 
 Absorption is the conversion of acoustic energy to heat in the fluid.  There are three main 
causes of absorption losses: 
 

1. Viscosity – Shear and Volume viscosity where as the molecules “rub” together, acoustic 
energy is converted to thermal energy heats up the fluid. 

2. Change in Molecular Structure – Molecules in the seawater are disassociated or broken 
down into component ions which then recombine after the sound wave travels over the 
molecule.  Above 100 kHz this involves the relaxation of MgSO4 and above 1kHz the 
relaxation  of (B(OH)3). 

3. Heat Conduction – This process is negligible and we will not present it here. 

This attenuation causes a decrease in the amplitude of the wave and an exponential decrease 
in the acoustics pressure resulting in more spreading loss.  To account for attenuation in the 
transmission loss equation, we must define a new term, α, the attenuation coefficient.  Using this 
new term, we can calculate the transmission loss using the equation: 

 
( ) dB 10)1( 3−×−= ydrTL nattenuatio α  

where r is in yards. 

Generally, since the range, r, is usually much greater than 1 yard, we can ignore the -1 
yard term in the equation.  Thus the transmission loss can be expressed as: 

 
( )dB 10 3−×= rTL nattenuatio α  

  The student should also note that α will be expressed in dB/kyd or dB per thousand 
yards.  In the equation, that is accounted for by the x10-3 to convert the range, r, from yards to 
kiloyards (kyd).   

 
The most difficult problem will be to determine a correct value for α, the attenuation 

coefficient. 

Viscosity 

 The viscosity losses are due to two distinct effects.  Each of these effects are dependent 
on not only how the molecules act together in the medium as defined by the coefficients of both 
shear and volume viscosity but also the frequency of the sound waves.   
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The first, shear viscosity must be accounted for due to the movement between layers in 
the medium itself or the shearing of the medium.  A theoretical prediction for how shear 
viscosity affects the attenuation coefficient, α, is given by the equation: 

 
2

3

2

3
16 f

c sshear µ
ρ
πα =  

where µs is the shear viscosity coefficient, which is a property of the medium. 

The second viscosity effect, volume viscosity, must be accounted for due to the “time 
lag” of molecules filling in holes in the molecular structure of the medium.  A theoretical 
prediction for the volume viscosity affect is given by the equation: 

 
2

3

2

4
3

3
16 f

c vvolume µ
ρ
πα ⎟

⎠
⎞

⎜
⎝
⎛=  

where µv is the volume viscosity coefficient, again a property of the medium. 

 When both terms are combined and nominal values used for the density, speed of sound 
and the coefficients, the value for the attenuation coefficient becomes: 
 

241075.2 f−×=α  

where f is the sound wave frequency in kHz.  This theoretical value is still 3 times less than 
actual measure values for higher frequencies.  Another factor must account for further 
attenuation. 

Ionic Relaxation 

 The most dominant disassociation-re-association process in the attenuation coefficient for 
seawater involves the finite time that it takes for magnesium sulfate (MgSO4) ions to dissociate 
and reassociate as a sound wave passes through the medium.   

3 2
4 2 4 2MgSO H O Mg SO H O+ −+ ↔ + +  

If the period of the wave is different than the time necessary for the molecule to recompose itself 
(relaxation time), the process is reproduced at every change in density as the wave moves by and 
permanently dissipates energy.  An equation to describe how this process affects the attenuation 
coefficient is: 

24100
40

4 f
f

MgSO +
=α  

where once again, the frequency, f, is in kHz.   
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It is particularly interesting that this process has such a large affect on the attenuation 
coefficient when MgSO4 makes up less than 5% (by weight) of the total dissolved salts in 
seawater.   

 
 Another disassociation-re-association process that becomes a dominant factor in 
determining the attenuation coefficient below approximately 1 kHz, is the boron-borate 
relaxation process.  

( ) ( ) ( )3 4
B OH OH B OH− −+ ↔  

 
Though many factors affect this complex process, simply suffice it to say that an equation for 
this process’ affect on α would be: 

2

2

1
1.0

f
f

borateboron +
=−α  

A non-absorption factor, scattering  

 The last factor that we will discuss is the scattering of sound energy due to 
inhomogeneities in seawater.  This factor we can approximate as a constant, not dependant on 
frequency and would only be a  dominant factor below 100 Hz or so.  This can be expressed as: 
 

kyd
dB 003.0=scatteringα  

Attenuation Summary 

 When all these factors are combined, the equation for transmission loss then becomes: 
 

( )

kyd
dB  1075.2

4100
40

1
1.0003.0

where
dB 10

24
2

2

2

2

3

⎟⎟
⎠

⎞
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f
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rTL
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A plot of the transmission coefficient, α, as a function of frequency, is shown below. 

 
 

(Source:  Principles of Underwater Sound, Third Edition, Robert J. Urick, McGraw-Hill Book 
Company, 1983, p. 111)  One should note from the graph that the attenuation coefficient is very 
small for any frequency below 10,000 Hz.  Below 10 kHz, the attenuation coefficient is less than 
1 dB per thousand yards.  Generally speaking, one can usually neglect attenuation at any 
frequency below 10,000 Hz. 

Francois-Garrison Attenuation Model 

(Source:  An Introduction to Underwater Acoustics, 1st Edition, Xavier Lurton, Springer-
Verlag, 2002, p. 21) 

2
3322

2

2
2

2222

2
1

11
1

fPA
ff

ffPA
ff

ffPA +
+

+
+

=α  

The first term is for Boric acid, the second for Magnesium Sulfate and the third for viscosity. 
For frequencies less then 1 kHz, this results in dB/km 01.0<α , for f = 10 kHz, dB/km 1≈α , for 
f = 100 kHz, dB/km 4030−≈α , resulting in max ranges of @ 1km, and for f = 1MHz limits the 
max range to @ 100m. 
 
Depth Dependence 
 
 Depth can have a large impact on sidescan sonar and underwater data transmission.  If the 
frequency is high enough so that MgSO4 is the major attenuation effect, we can multiply α by the 
pressure effect, P2.  As an example, α = 40 dB/km at the ocean surface, 30 dB/km at 2000 m, and 
22 dB/km at 4000 m. 
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Active Transmission Loss 
 
 For the case of active sonar, the one way transmission loss is determined exactly the same 
as the passive case.  The return echo experiences exactly the same transmission loss on its way 
back.  Because of this, the active transmission loss is twice that of the passive case for the same 
range.   Note that because spherical and cylindrical spreading are logarithmic, it would be 
incorrect to double the range. 

Summary 

 What is the dominant factor in transmission loss?  Does the frequency of the signal 
determine the amount of transmission loss?  Can any of the factors in the transmission loss 
equation be neglected?  These are some of the questions that the student should try to answer 
before using the transmission loss equations. 
 
 The most dominant factor in all of the transmission loss problems will be spherical 
spreading.  If we have a source level 1 yard from our source, at what distance will the received 
signal level drop by 3 dB (½ original intensity)?  In other words, due to spherical spreading, at 
what range, r, will the transmission loss be 3 dB?  Solving for this using the spherical spreading 
equation: 

( )
yds 4.1

yd 1log20dB 3

=∴

⎟
⎠
⎞⎜

⎝
⎛==

r

rTL
 

In other words, the intensity drops quickly due to spherical spreading.  If we do the same 
for a signal at 50 kHz and only consider attenuation, the range where the intensity drops to ½ its 
original intensity would be: 

 
( )( )

yds 950

abovegraph  from kyd
dB 16.3

10yd 1dB 3 3

=∴

=

×−== −

r

rTL

α

α

 

This is a significantly further range than calculated for the spherical spreading case.  
Notice also that the frequency was very high.  If the frequency were lower, the range for a 3 dB 
attenuation transmission loss would increase significantly.  Thus spherical spreading is usually 
the only significant factor in figuring transmission loss. 
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Problems: 

1. Calculate the transmission loss for the following: 
a) spherical spreading only at 10 yds, 100 yds, 1000 yds. 
b) cylindrical spreading only at 10 yds, 100 yds, 1000 yds. (assume transition range, ro=1yd) 
 

2. What is the transmission loss over a range of 70 kyds if the transition range is 30 kyds?  
(Ignore attenuation.) 

 
3. For only spherical spreading with absorptive losses, calculate the transmission loss for a 5 

kHz sound at: 
a) 1 km 
b) 5 kyds 
c) At what range would the transmission loss be 70 dB? 

 

The following information is to be used to do the next problem: 

4. An acoustic signal is used to control a remote sub.  The signal has a source level of 220 dBre 1 

µPa at 1 yard from the source attached to the bottom of the research ship. 
a) If the absorption coefficient of seawater at a particular frequency is 0.095 dB/Kyd, at 

what distance would the acoustic signal lose ½ of its intensity due to absorption? 
b) Given the signal above, at what range from the source would the signal lose ½ its 

intensity due to spherical spreading? 
c) What is the absorption coefficient of seawater if the frequency of the transmitter is raised 

to 10 kHz? 
 
5. Where is cylindrical spreading more likely to occur? 

6. A Sonarman on an Aegis is trying to calculate the expected two-way transmission loss of an 
active sonar ping directed at a target 20,000 yards away.  If he assumes that absorption losses 
are negligible and IMAT tells him that the transition range is 6000 yards for the current 
environment, what is the two-way transmission loss? 

 
7. A submarine is attempting to detect an aircraft carrier transiting the Straits of Malacca.  The 

aircraft carrier has a source level of 90 dB.  The submarine’s passive sonar has a directivity 
index of 20 dB and a detection threshold of 15 dB.  Biological noise in the Straits is 54 dB.  
The submarine’s self noise is 50 dB.  Assuming spherical spreading and neglecting 
attenuation, at what range can the carrier be detected. 

 
8. Arctic transmission loss measurements are made at the three frequencies as a function of 

range in km and shown in the below graph.  Theoretical spherical spreading is also shown for 
comparison by the dashed line.  If 100 Hz frequency signals with a source level of 150 dB 
are propagating, find the detection range of the source using an omni directional hydrophone 
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(DI = 0 dB) operating in a total noise level of 60 dB.  The signal to noise level of detection 
(DT) is 10 dB.  Ignore attenuation at 100 Hz. 

 

Artic Transmission Loss
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9. The intensity level 200 m from a sound source is measured as 100 dB re 1 µPa.  What is the 

intensity level at 2000 m assuming: 
a) Spherical spreading 
b) Cylindrical spreading 

 
10. For a given shallow water homogeneous bounded water column, the transition range between 

spherical and cylindrical spreading occurs at 1500 yards.  Assuming only geometric 
spreading losses (no attenuation), plot transmission loss vs. range from 500 yds to 10,000 
yds. 

 
11.  The absorption coefficient is 2 dB/kyd.  Calculate the transmission loss due to spherical 

spreading and absorption: 
a) At a range of 5,000 yds. 
b) At a range of 10,000 yds. 

 
12.  The intensity level at 4,000 yards from a source is 150 dB and at 12,000 yards is 130 dB.  

Assuming that this loss is due to spherical spreading plus absorption, calculate the absorption 
coefficient in dB/kyd. 
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Transmission Loss

Review of Passive Sonar Equation

TerminologyTerminology

• Signal to Noise

• Detection Threshold (DT)

The ratio of received echo from target
to background noise produced by everything else.

The measure of return signal required for an operator using 
installed equipment to detect a target 50% of the time. 

LS/N= LS - LN > DT

Passive Sonar EquationPassive Sonar Equation
LS/N=SL - TL – (NL – DI) > DT

The Passive Sonar Equation

( )S/ NL SL TL NL DI= − − −

S

0

ISL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

S

R

ITL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

N

0

INL 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

( )DI 10log d=

Making the Sonar Equations Useful
Passive Example

Making the Sonar Equations UsefulMaking the Sonar Equations Useful
Passive ExamplePassive Example

SL - TL - NL + DI > DTSL - TL - NL + DI > DT

KnownKnown

Can MeasureCan Measure

Function of
Equipment
Function of
Equipment

Can Measure
Experimentally
Can Measure
Experimentally

ONLY UNKNOWN

Figure of Merit
• Often a detection threshold is established such that a trained 

operator should be able to detect targets with that LS/N half of 
the time he hears them.  Called “Recognition Differential.”
(RD)

• Passive sonar equation is then solved for TL allowable at that 
threshold.  Called “Figure of Merit.” (FOM)

TLallowable = Figure of Merit = SL- LS/N Threshold - (NL-DI)

• Since TL logically depends on range, this could provide an 
estimate of range at which a target is likely to be detected.  
Called “Range of the Day.” (ROD)

• Any LS/N above the Recognition Differential is termed “Signal 
Excess.” (SE) Signal Excess allows detection of targets 
beyond the Range of the Day.
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Range ???Range ???
• FOM helps to predict RANGE.

– The higher the FOM, the higher the signal loss that can 
be suffered and, therefore, the greater the expected 
detection range.

• Probability of Detection
– Passive

• If FOM > TL then > 50% prob det
• If FOM < TL then < 50% prob det

• Use Daily Transmission Loss (Prop Loss/FOM) 
curve provided by Sonar Technicians

HW Example
• A submarine is conducting a passive barrier patrol against 

a transiting enemy submarine.  The friendly sub has a 
directivity index of 15 dB and a detection threshold of 8 
dB.  The enemy sub has a source of 140 dB.  
Environmental conditions are such that the transmission 
loss is 60 dB and the equivalent isotropic noise level is 65 
dB.

• What is the received signal level?
• What is the signal to noise ratio in dB?
• What is the figure of merit?
• Can the sub be detected?  Why?

Prop Loss CurveProp Loss Curve

Max Range DP

Max Range BB

FOM = 70 dB

Prop Loss CurveProp Loss Curve

Max Range DP
Max Range CZ

FOM = 82 dB

Transmission LossTransmission Loss

• Sound energy in water 
suffers two types of losses:
–Spreading
–Attenuation

Combination of these 2 losses:Combination of these 2 losses:

TRANSMISSION LOSS (TL)TRANSMISSION LOSS (TL)

SpreadingSpreading
• Spreading

– Due to divergence
– No loss of energy
– Sound spread over wide area
– Two types:

• Spherical
– Short Range: ro < 1000 m

• Cylindrical
– Long Range: ro> 1000 m

Spherical component
o

o

rrTL 10log 20log
r 1

= +

TL 20log r=
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Spherical Spreading

S

R

ITL 10 log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

r1
r2

r3

2

1

2
2

1

2
2

2

1

2
22

2
11

21

4
4

44

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

=

=

r
r

r
r

I
I

rIrI

PP

π
π

ππ

2

1

r rTL 20log 20log 20log r
r 1

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

r1
r2

r3

Can be 
approximated as 
the sides of a 
cylinder with a 
surface area of 
2πr5H

H

transition range

r4
r5

Cylindrical Spreading
( )
( )

( )
( )

( )
( )rI
rI

rI
I

rI
ITL 0

0

log10yd 1log10yd 1log10 +==

0
0 log10log20

r
rrTL +=

r4r5

spherical cylindrical

ro

Spherical to Cylindrical Transition Range 
in a Mixed Layer

dH
HRHr
−

=
80

ray sound of curvature of radius
cos

source  theofdepth 
knesslayer thic mixed

==

=
=

n

n

g
cR

d
H

θ

AttenuationAttenuation
• 2 Types
• Absorption

– Process of converting acoustic energy into heat.
• Viscosity
• Change in Molecular Structure
• Heat Conduction

– Increases with higher frequency.
• Scattering and Reverberation

– All components lumped into Transmission Loss Anomaly (A).
– Components:

• Volume:  Marine life, bubbles, etc.
• Surface:  Function of wind speed.
• Bottom Loss.

– Not a problem in deep water.
– Significant problem in shallow water; combined with refraction and 

absorption into bottom.

Absorption

• Decrease in intensity, proportional to:
– Intensity
– Distance the wave  travels

• Constant of Proportionality, a

dI aIdr= −
( )2 1a r r2

1

I e
I

− −=

Absorption Coefficient

( )2 1a r r1

2

ITL 10log 10log e
I

−= =

( ) ( )2 1 2 1TL a r r 10log e 4.343a r r= − = −

( )2 1TL r r= α −

4.343aα = Has units of dB/yard

( ) 3
2 1TL r r x10−= α − α Has units of dB/kiloyard
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Example

• Spherical Spreading
• Absorption coefficient, α = 2.5 dB/kyd
• Find the TL from a source to 10,000 yards
• Find the TL from 10,000 yards to 20,000 yards

( ) 32
2 1

1

rTL 20log r r x10
r

−⎛ ⎞
= + α −⎜ ⎟

⎝ ⎠

General Form of the Absorption 
Coefficient

2
r

2 2
r

Af f
f f

α =
+

fr = relaxation frequency.  It is the reciprocal of the relaxation 
time.  This is the time for a pressure shifted equilibrium to 
return to 1/e of the final position when pressure is released

f = frequency of the sound

When f << fr, 
2

r

Af
f

α =

Estimating Absorption Coefficient

• Viscosity – Classical Absorption - Stokes
2

2
3

16 f
3 c
π

α = µ
ρ

s v
3
4

µ = µ + µ Shear and volume viscosity

4 22.75x10 f−α = For seawater, dB/m, f in kHz

Chemical Equilibrium

3 2
4 2 4 2MgSO H O Mg SO H O+ −+ ↔ + +

2

2

40f
4100 f

α =
+

Magnesium Sulfate:

Boric Acid:

( ) ( ) ( )3 4
B OH OH B OH− −+ ↔

2

2

.1f
1 f

α =
+

f in kHz

f in kHz

Scattering
• Scattering from inhomogeneities in seawater

• Other scattering from other sources must be 
independently estimated 

0.003dB / kydα =

All lumped together as Transmission Loss Anomaly

Attenuation Summary

( )

kyd
dB  1075.2

4100
40

1
1.0003.0

where
dB 10

24
2

2

2

2

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+

+
+

+
+=

×=

−

−

f
f

f
f
f

rTL

α

α

Note that below 10000Hz, 
attenuation coefficient is 
extremely small and can be 
neglected,
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Example
• Submarine sonar systems include a forward 

looking, high resolution active sonar whick can be 
used to detect moored mines and ice keels.  This 
system operates at 30 kHz and emits a source level 
of 130 dB re 1 µPa.
– Calculate the attenuation coefficient
– Assuming a transition range of 1000 yards, what is the 

transmission loss at a range of 5000 yards?
– What is the Signal Intensity Level received by a second 

submarine 5000 yards away.
– At this frequency, Noise Level is 40 dB and DI for the 

receiving sub is 20 dB.  What is the signal to noise 
level?

– If the Detection Threshold is 25 dB, will the second sub 
detect the first?

Transmission Loss EquationsTransmission Loss Equations

TL = 10 log R + 30 + α R + A

Range ≥ 1000 meters

TL = 20 log R + α R + A

Range < 1000 meters

Cylindrical Spreading

Absorption

Transmission Loss Anomaly

Spherical Spreading

Absorption

TLA

TerminologyTerminology
• Source Level (SL)

– For ACTIVE sonar operations:
• The SONAR’s sonic transmission (transducer generated)

– For PASSIVE sonar operations:
• Noise generated by target

• Noise Level (NL = NLs ⊕ NLA)
– Self (NLs)

• Generated by own ship at the frequency of interest.

– Ambient (NLA)
• Shipping (Ocean Traffic), Wind and Weather - Sea State 

(Hydrodynamic)
• Biologic and Seismic obtained from other methods

TerminologyTerminology

• Directivity Index (DI)
– Receiver directional sensitivity.
– LN = NL - DI

• Transmission Loss (TL)
– Amount the Source Level is reduced due to 

spreading and attenuation (absorption, 
scattering).

Passive SONAR Equation
(Signal Radiated by the Target)

Passive SONAR Equation
(Signal Radiated by the Target)

• SNR required for detection = DT
• To achieve detection > 50% of the time…

– SNR > DT
– LS – LN > DT

• LS = SL – TL (one way)
• LN = NL – DI 

– Remember NL = NLs ⊕ NLa

• Therefore…

LS/N=SL - TL – (NL – DI) > DT
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Ambient Noise  
The background noise of the sea. 

 When trying to detect a target or contact out in the ocean, one of the most difficult parts 
is to “hear” the target through all the background noise.  This is just like trying to hear a friend 
talk while standing in a crowd of people at a noisy rock concert.  But out in the ocean, what are 
the sources of the background noise?   

Major sources of background noise in deep water 

Tides  

 A small contribution to ambient noise is the movement of water due to tides.  This 
movement can create large changes in ambient pressure in the ocean.  These changes will be 
most significant at very low frequencies (<100 Hz) but will decrease in strength with increasing 
depth.  Overall though, tides contribute little to the ambient noise level. 

Seismic 

  Another source of very low frequency noise is that due to the earth’s seismic activity.  
The noise due to seismic activity is not significant though, above 10 Hz.  As with tides, we will 
treat seismic sources as being insignificant in our calculations of ambient noise levels. 

Turbulence 

 This can be a significant factor in ambient noise levels below 100 Hz but generally, we 
will not consider the affect of turbulence in our calculations. 

Ship Traffic 

 In the North Atlantic, there can be more than 1000 ships underway at any one time.  The 
noise from this shipping traffic can sometimes travel up to distances of 1000 miles or more.  The 
frequency range where this man-made noise is most dominant is from 10 Hz to 1000 Hz.  Noise 
levels depend on area operating in and “shipping density”.  Close proximity to shipping lanes 
and harbors increases noise levels.  Shipping traffic is one of the two dominant factors we will 
use to determine ambient noise levels.  The below chart shows how shipping density varies 
throughout the oceans of the world. 
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Sea State 

 Sea State (or more importantly wind speed) is the dominant factor in calculating ambient 
noise levels above 500 Hz.  The noise levels depend on sea state and wind speed.  Less the 10 
Hz, wind-generated turbulence induces pressure variations similar to acoustic pressure 
variations.  Greater than 100 Hz, wind generated microbubbles in the shallow water layers burst 
and cause pressure changes. 

Wenz Curves 

 For ASW operators to predict the ambient noise levels for a given condition and 
frequency band, we have the Wenz Curves.  Wenz Curves are plots of the average ambient noise 
spectra for different levels of shipping traffic, and sea state conditions (or wind speeds ).  Below 
is a complex example given in the Naval Warfare Publication.  At the end of this handout are the 
simplified Wenz curves you will use for all homework, quizzes and exams. 
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10-100 Hz – Noise levels depend heavily on shipping density and industrial activities.  Levels 
are typically in range of 60-90 dB with very little frequency dependence. 
 
100-1000 Hz – Noise in this band is dominated by shipping (decreasing intensity with frequency 
increases).  A significant contribution is also from sea surface agitation.  Urick (1986) developed 
a model for predicting this shipping noise: 
 

⎟
⎠
⎞

⎜
⎝
⎛−=
100

log20100
fNLNLSHIPPING  

Where NL100 is 60-90 dB based on shipping density 
 

1-100 kHz – Sea surface agitiation is now the dominant factor, unless marine mammals or rain is 
present.  Knudsen (1948) presented a model to predict this contribution: 
 

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛−

<
=

Hz 1000f IF           
1000

log17

Hz 1000f IF                                   

1

1

fNL

NL
NL

K

K

SURF  

NL1K is in the below table, and is based on sea state. 
 

A new model has been developed by APL (1994), it is more accurate but is more complex. 
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The air is filled with foam and spray. Sea completely 
white with driving spray. Visibility very 
seriously affected.Hurricane64+912

Exceptionally high waves. The sea is completely 
covered with long white patches of foam lying 
in the direction of the wind. Visibility affectedViolent Storm56 - 63911

Very high waves with long overhanging crests. The 
surface of the sea takes a white appearance. 
The tumbling of the sea becomes heavy and 
shock like. Visibility affectedStorm48 - 55910

High waves. Dense foam along the direction of the 
wind. Crests of waves begin to roll over. Spray 
may affect visibilityStrong Gale41 - 4799

Moderately high waves, crests begin to break into 
spindriftGale34 - 4088

Sea heaps up and white foam blown in streaks along 
the direction of the windNear Gale28 - 3377

Large waves begin to form; white foam crests, 
probably sprayStrong Breeze68.5 - 7022 - 275 - 66

Moderate waves, many white horsesFresh Breeze66.517 - 2145

Small waves. Fairly frequent white horses.
Moderate 

Breeze64.511 - 1634

Large wavelets. Perhaps scattered white horsesGentle Breeze61.57 - 1023

Small wavelets. Crests do not breakLight Breeze554 - 612

Ripples but without foam crestsLight Air501 - 30.51

Sea like a mirrorCalm44.5000

dBKnotsStateForce Sea ConditionDescription

NL 1KWindspeedSeaBeaufort

The air is filled with foam and spray. Sea completely 
white with driving spray. Visibility very 
seriously affected.Hurricane64+912

Exceptionally high waves. The sea is completely 
covered with long white patches of foam lying 
in the direction of the wind. Visibility affectedViolent Storm56 - 63911

Very high waves with long overhanging crests. The 
surface of the sea takes a white appearance. 
The tumbling of the sea becomes heavy and 
shock like. Visibility affectedStorm48 - 55910

High waves. Dense foam along the direction of the 
wind. Crests of waves begin to roll over. Spray 
may affect visibilityStrong Gale41 - 4799

Moderately high waves, crests begin to break into 
spindriftGale34 - 4088

Sea heaps up and white foam blown in streaks along 
the direction of the windNear Gale28 - 3377

Large waves begin to form; white foam crests, 
probably sprayStrong Breeze68.5 - 7022 - 275 - 66

Moderate waves, many white horsesFresh Breeze66.517 - 2145

Small waves. Fairly frequent white horses.
Moderate 

Breeze64.511 - 1634

Large wavelets. Perhaps scattered white horsesGentle Breeze61.57 - 1023

Small wavelets. Crests do not breakLight Breeze554 - 612

Ripples but without foam crestsLight Air501 - 30.51

Sea like a mirrorCalm44.5000

dBKnotsStateForce Sea ConditionDescription

NL 1KWindspeedSeaBeaufort

 
 
>100 kHz – Noise is dominated by electronic thermal noise (we will discuss causes later) 

fNLTH log2075+−=  
 
The total ambient noise level is derived by calculating the level sum of the contributing noise 
factors given by the following equation: 

SSshipamient NLNLNL ⊕=  

The appropriate level of shipping is selected based on location.  The “heavy shipping” curves 
should be used when in or near the shipping lanes in the North Atlantic.  The “light-shipping” 
curves should be used for more southerly, remote areas of the ocean. 
  

The regions below 10 Hz and above 200 kHz are dominated by other factors that are 
quantified by the solid lines. 

 
General Rules –  

1.  NL generally decreases with frequency increasing 
2.  NL decreases at great depths since most noise sources are at the surface. 
3.  Ambient noise is greater in shallow water (noise is trapped between sea floor and the ocean 
surface). 
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Example 

 For a sonar receiver set with a band width of 100 Hz, centered around 200 Hz, what is the 
ambient noise level?  (Shipping is heavy, sea state is 3.) 
  
To calculate the upper and lower frequency of the band: 
 

( )

Hzf
Hzf

HzffHz

fffc

256
156

100200

2

1

11

21

=
=⇒

+=

=

 

From the Wenz Curves (end of handout): 

  ISLave shipping = 69 dB  ISLave sea state = 67 dB 

Thus: 

( ) ( )
tot ship SS

tot aveship aveSS

tot

tot

NL NL NL

NL ISL 10log f ISL 10log f

NL 89dB 87dB
NL 91dB

= ⊕

= + ∆ ⊕ +

= ⊕
=

∆
 

Transient Noise 

 Just for passing interest, there are numerous other sources of noise in the oceans.  Many 
of these sources are transitory in nature though which makes them hard to quantify. They may 
only affect detectability of contacts for short periods of time.  These sources may include but are 
certainly not limited to: 
 

• Human industrial sources ashore – particularly in coastal areas 

• Biological factors including 

o snapping shrimp – mostly in warm, shallow coastal areas 
 generate intense broadband noise, f = 1-10 kHz, SL =60-90 dB 

o whales, dolphins, etc – echolocation and communication 
 f = 12 Hz - @2-5 kHz for “whale songs”, SL up to 188 dB 
 Echolocation – 50-200 kHz – similar to active sonar, SL up to 180-200 dB 
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• Weather – rain 

o Rain drops impacting sea surface and implosion of air bubbles caused by rain, f = 
1-100 kHz, max SL @ 20 kHz, SL can be up to 30 dB above sea surface noise 
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Problems 

1. What is the principal cause of ambient noise at frequencies 
a. 1 to 20 Hz 
b. 20 to 500 Hz 
c. 500 to 50,000 Hz 
d. above 50,000 Hz 

 
2. Using the Wenz curves, determine the isotropic ambient noise level for an area with heavy 

shipping.  Assume that wind speeds are 14 knots and we are interested in the noise level at 
exactly 200 Hz (use a 1 Hz bandwidth). 

 
3. The SONAR receiver onboard ship operates in a frequency range from 50 Hz < f < 1000 Hz.  

Using the Wenz curves, determine the isotropic ambient noise level in the operating band of 
the receiver.  Assume that winds are light as 4-6 knots and shipping traffic is moderate.  
(Note:  You will have to determine an average ISL from the Wenz curves and calculate the 
appropriate band levels.) 

 
4. List three intermittent sources of ambient noise. 
 
5. Using the wenz curves for average deep water ambient noise, estimate the band level noise 

for heavy shipping and sea state 6 for the following conditions: 
a. Noise received in a band between 20 and 50 Hz. 
b. Noise received in a band between 2000 and 5000 Hz. 
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Major Sources of Noise

• Sea State – Dominant 
factor above 500 Hz

• Ship Traffic – Dominant  
factor 10 to 1000 Hz

• Minor Sources
– Tides
– Turbulance
– Seismic

• Transients

Wentz Curves

NWP Wenz Curves

100-1000 Hz

• NL100 is 60-90 dB depending on shipping.  
Below 100 Hz NL is the same.

• Above 100 Hz, the noise decreases with 
frequency

⎟
⎠
⎞

⎜
⎝
⎛−=
100

log20100
fNLNLSHIPPING

Wentz Curves

Lesson 11



2

1-100 kHz
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NL falls at 17 dB per decade above 1000 Hz
The air is filled with foam and spray. Sea completely 

white with driving spray. Visibility very 
seriously affected.Hurricane64+912

Exceptionally high waves. The sea is completely 
covered with long white patches of foam lying 
in the direction of the wind. Visibility affectedViolent Storm56 - 63911

Very high waves with long overhanging crests. The 
surface of the sea takes a white appearance. 
The tumbling of the sea becomes heavy and 
shock like. Visibility affectedStorm48 - 55910

High waves. Dense foam along the direction of the 
wind. Crests of waves begin to roll over. Spray 
may affect visibilityStrong Gale41 - 4799

Moderately high waves, crests begin to break into 
spindriftGale34 - 4088

Sea heaps up and white foam blown in streaks 
along the direction of the windNear Gale28 - 3377

Large waves begin to form; white foam crests, 
probably sprayStrong Breeze22 - 276 – 76

Moderate waves, many white horsesFresh Breeze17 - 2145

Small waves. Fairly frequent white horses.
Moderate 

Breeze11 - 1634

Large wavelets. Perhaps scattered white horsesGentle Breeze7 - 1023

Small wavelets. Crests do not breakLight Breeze4 - 612

Ripples but without foam crestsLight Air1 - 30.51

Sea like a mirrorCalm000

KnotsStateForce Sea ConditionDescription

WindspeedSeaBeaufort

The air is filled with foam and spray. Sea completely 
white with driving spray. Visibility very 
seriously affected.Hurricane64+912

Exceptionally high waves. The sea is completely 
covered with long white patches of foam lying 
in the direction of the wind. Visibility affectedViolent Storm56 - 63911

Very high waves with long overhanging crests. The 
surface of the sea takes a white appearance. 
The tumbling of the sea becomes heavy and 
shock like. Visibility affectedStorm48 - 55910

High waves. Dense foam along the direction of the 
wind. Crests of waves begin to roll over. Spray 
may affect visibilityStrong Gale41 - 4799

Moderately high waves, crests begin to break into 
spindriftGale34 - 4088

Sea heaps up and white foam blown in streaks along 
the direction of the windNear Gale28 - 3377

Large waves begin to form; white foam crests, 
probably sprayStrong Breeze68.5 - 7022 - 275 - 66

Moderate waves, many white horsesFresh Breeze66.517 - 2145

Small waves. Fairly frequent white horses.
Moderate 

Breeze64.511 - 1634

Large wavelets. Perhaps scattered white horsesGentle Breeze61.57 - 1023

Small wavelets. Crests do not breakLight Breeze554 - 612

Ripples but without foam crestsLight Air501 - 30.51

Sea like a mirrorCalm44.5000

dBKnotsStateForce Sea ConditionDescription

NL 1KWindspeedSeaBeaufort

Wentz Curves
Above 50 kHz

• Thermal Agitation of water molecules
• Thermal noise in electronics
• 6 dB per octave increase in noise

Total Noise

ambient ship SSNL NL NL= ⊕

Example

• For a sonar receiver set with a width of 100 
Hz, centered around 200 Hz,

• Shipping is heavy,
• Sea state is 3,
• What is the ambient noise level?
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Wentz Curves

Turbulence & 
Currents

Transients
• Human industrial activity
• Biological Activity

– Snapping Shrimp 1-10 kHz, SL = 60-90 dB
– Whales, dolphins 

• Whale songs 2 – 5 kHz, SL = 188 dB
• Echolocation 50 – 200 kHz, SL = 180 – 200 dB

• Weather – Rain
– 1 – 100 kHz, SL(20 kHz) is 30 dB above sea 

state noise

General Noise Rules

• NL generally decreases with frequency 
increasing

• NL decreases at great depths since most 
noise sources are at the surface.

• Ambient noise is greater in shallow water 
(noise is trapped between sea floor and the 
ocean surface).

( )

Hzf
Hzf

HzffHz

fffc

256
156

100200

2

1

11

21

=
=⇒

+=

= • From the Wenz Curves:
ISL ave shipping = 69 dB
ISL ave sea state = 67 dB

( ) ( )
tot ship SS

tot aveship aveSS

tot

tot

NL NL NL

NL ISL 10log f ISL 10log f

NL 89dB 87dB
NL 91dB

= ⊕

= + ∆ ⊕ + ∆

= ⊕
=
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Self-Noise 

 Self-noise is the noise that own ship produces and is detected by own ships sonar system, 
contributing to the overall noise interfering with the detection of other vessels.  Some of the 
sources of self-noise are: 
 

Propeller Noise  - Rotating propellers generate spectral lines in VLF band, f = 0.1-10 Hz.  
These frequencies depend on rotation speed of propeller and its geometry.  Cavitation induced 
creates broadband noise at higher frequencies.  Cavitation depends on: 

1.  Rotation speed of propeller 
2.  Type of propeller (fixed or variable pitch) 
3.  Depth of propeller (deep depths inhibit cavitation) 
 
Flow Noise – Turbulence generated by flow of water over ship’s hull.  Depends on ship 

speed, shape and placement of transducer. 
 
Machinery Noise – Ships have numerous noisy machines  - engines, reduction gears, 

generators and hydraulic machinery.  This machinery causes vibrations in the hull by solid 
transmission through internal structures or through the air.  These vibrations are then passed on 
to the water.  Machinery noise is independent of ship’s speed, therefore it is the major 
component of self noise at low speeds and is masked at high speeds by flow noise.  Both primary 
frequencies and harmonics are transmitted. 

 
Submarine Transient Noise  - Acoustic stealth can be degraded by transmission of short 

transient noises (from few milliseconds to several seconds).  These transients are caused by 
opening torpedo tube doors, control surface movement, and starting/stopping machinery.  These 
are very characteristic of submarines and can help classify them as such. 

 
Activity Noise – Civilian ship activities can be very noisy  (drilling, trawling, seismic 

surveys, etc). 
 
Ship Radiated Noise Model – Self noise represents continuous broadband noise 

spectrum whose level increases with ship speed.  The maximum level is typically around 100 Hz 
and generally decreases by 6 dB per octave above a few hundred hertz.  In VLF band, 
narrowband components (spectral lines) exceed broadband noise.  The combination of spectral 
lines and broadband forms a ship’s “acoustic signature” and can be used to classify a ship 
passively.   

 
The ship’s self noise can be modeled by two components: 

1.  RNL1K at f = 1 kHz, from which we can derive the level at other frequencies. 

⎟
⎠
⎞

⎜
⎝
⎛−=
1000

log20)( 1
fRNLfRNL K  

12-1 



 
 

2.  Radiated noise of the spectral lines RNLSL  - these lines are generally described by 
their maximum level. 

 
Considerable time and money has been spent to improve acoustic performance on 

submarines and other naval vessels since WWII.  In the below table from Lurton, we see how the 
RNL has decreased for French submarines since WWII (modern US submarines lower RNLs 
than those presented here.) 

              Radiated Noise at 4 kts 

 RNLSL RNL1K
WWII Deisel 

Sub 
(Electric) 

140 120 

Modern Diesel 
Sub 

(Electric) 

100 80 

Modern Diesel 
Sub 

140 120 

Modern SSN 110 90 
Modern SSBN 120 100 

 
Above 10-20 kts, flow noise becomes the dominant factor and significantly increases 

with speed (@1.5-2 dB/KT) 
 
Thermal Noise – In electronic circuits, resistors create some electric noise due to 

electronic agitation.  Nyquist formula describes the voltage created: 
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Noise Measurement 

There is no way to calculate the self-noise of a platform however it can be measured for a 
given platform.  Very difficult to assess the self-noise level of transducer, since it is a 
combination of several components: 

1.  Acoustic noise radiated in the water by the platform and received by the transducer 
through the water. 

2.  Mechanical vibrations passed on to the transducer. 
3.  Electronic noise radiated by other high-power electrical devices if inadequately 

shielded.   
 
Most modern sonars have self-monitoring capabilities to measure real-time self noise 

levels.  For this course, it will normally be given for students in a problem.  
  

How self-noise is taken into account in our evaluation of the sonar equations is that self-
noise is a second component of the overall noise level.  The total noise level of sources that 
interferes with detection of other vessels is the combination of the ambient noise (that we 
determined in the previous section) and the self-noise.  In other words: 

 
selfambienttot NLNLNL ⊕=  

Additionally, this self-noise level is the combination of the broadband and tonal noise.  
This must be added to the self-noise as shown below: 

 
( )...32 ⊕⊕⊕⊕= tonaltonaltonalBBself NLNLNLNLNL  

where BB BBNL ISL 10log f= + ∆  
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Problems: 

1. Determine the isotropic ambient noise level for a lightly traveled shipping lane.  Assume 
that winds are moderate at 12 knots, the sea state is equal to 3 and the receiver is set to 
look in the 100 Hz ≤ f ≤ 500 Hz range. 

 
2. Using the conditions from problem 1 above, and given the following table of data: 

a. Plot the total ISL as a function of frequency from 100 Hz to 500 Hz. 
b. Compute the total noise level. 
 

BLshrimp 76 dB 
ISLengine at 400 Hz 124 dB 
BLgenerators 99 dB 
BLpropellers 89 dB 
BLpumps 92 dB 
BLwhales 44 dB 
BLhull flow noise 80 dB 
BLrain 78 dB 
BLcrew noise 82 dB 
 
3.  a)  Using the figure below, compute the increase in radiated noise spectrum level when 
the cruiser’s speed is doubled from 6 knots.  Also compute the increase when the speed is 
increased by a factor of 5 from 6 knots.  
 

Cruiser Intensity Spectrum Level at 5 kHz
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b) If  , where k is the speed in knots, and n and A are constants.  Use the 

figure above to solve for n and A. 

nISL 10log k A= +
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4.  a)   Using the figure below, estimate the radiated noise level of the British sub traveling 
on the surface a 7 knots and in a band ranging from 50 to 200 Hz. 
 
 

British Submarine Radiated Noise Spectrum Level 
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b)  Estimate the radiated noise level of the sub traveling at 15 knots in a band from 50 to 200 
Hz. 
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Self Noise 

• Acoustic noise radiated in the water by 
the platform and received by the 
transducer through the water.

• Mechanical vibrations passed on to the 
transducer.

• Electronic noise radiated by other high-
power electrical devices if inadequately 
shielded.

Propeller Noise
• Rotating propellers generate spectral lines in 

VLF band, f = 0.1-10 Hz.  These frequencies 
depend on rotation speed of propeller and its 
geometry.  Cavitation induced creates 
broadband noise at higher frequencies.  
Cavitation depends on:

• Rotation speed of propeller
• Type of propeller (fixed or variable pitch)
• Depth of propeller (deep depths inhibit 

cavitation)

Flow Noise

• Turbulence generated by flow of water 
over ship’s hull.  Depends on ship speed, 
shape and placement of transducer.

Activity Noise
• Civilian ship activities can be very noisy           

(drilling, trawling, seismic surveys, etc).

Machinery Noise
• Ships have numerous noisy machines  -

engines, reduction gears, generators and 
hydraulic machinery.  This machinery causes 
vibrations in the hull by solid transmission 
through internal structures or through the air.  
These vibrations are then passed on to the 
water.  Machinery noise is independent of ship’s 
speed, therefore it is the major component of 
self noise at low speeds and is masked at high 
speeds by flow noise.  Both primary frequencies 
and harmonics are transmitted.

Submarine Transient Noise

• Acoustic stealth can be degraded by 
transmission of short transient noises 
(from few milliseconds to several 
seconds).  These transients are caused by 
opening torpedo tube doors, control 
surface movement, and starting/stopping 
machinery.  These are very characteristic 
of submarines and can help classify them 
as such.

Ship Radiated Noise Model
⎟
⎠
⎞

⎜
⎝
⎛−=
1000

log20)( 1
fRNLfRNL K

Radiated Noise at 4 kts

RNLSL RNL1K

WWII Deisel
Sub

(Electric)

140 120

Modern Diesel 
Sub

(Electric)

100 80

Modern Diesel 
Sub

140 120

Modern SSN 110 90

Modern SSBN 120 100

Above 10-20 kts, flow noise becomes the dominant factor and 
significantly increases with speed (@1.5-2 dB/KT)
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Total Noise

ambient ship SSNL NL NL= ⊕

tot ambient selfNL NL NL= ⊕

( )self BB tonal tonal2 tonal3NL NL NL NL NL ...= ⊕ ⊕ ⊕ ⊕

BB BBNL ISL 10log f= + ∆
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Beam Pattern Function for 
Two Element Array 

    
 

If we had a single hydrophone, with an omni-directional response, sounds would appear 
to come from all directions.  In other words, we could not determine what direction a sound 
came from.  If we could somehow limit the direction our system would listen, we could possibly 
determine the bearing a sound came from and maybe increase the ratio of the signal power 
received to the noise power received.  (Increase SNR which is a good thing.) 
   
 One way to do this is to use more than one hydrophone.  What if we use two 
hydrophones connected at a distance d apart from each other.  Recall from our previous studies 
that the hydrophone converts the mechanical sound signal to an electrical signal or voltage.  We 
can mathematically describe this process by introducing a quantity M, the transducer sensitivity 
constant.  M is used to convert the mechanical pressure quantity to an electrical signal, where: 
 

( ) ( )tpMtv ∗=  

Now let’s look at the arrangement of the two hydrophones and how their output is used. 
 

 First examine the diagram for a basic two-hydrophone array, sonar system.  The outputs 
of each hydrophone are combined in a beam former (they are added together), then the quantity 
squared to find the amount of power in the signal and noise incident on the hydrophones.  (See 
the following diagram.)  
 
 
 
   

( )2vvoutput +=  

Beam Former 
1 

 
2 

 

 

 If a sound wave is incident upon
perpendicular to the axis of the two hyd
distance ∆x further to reach the second

 

 

 

 

21

 the two hydrophones at some angle other than 
rophones, the sound wave will have to travel some 

 hydrophone.  (See diagram below.)   
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1 

2 
d 

θ 

∆x ( )2
21 vvoutput +=  

Beam Former 

θsinx where d=∆  
 
A phase factor, δ, can be inserted in the one-dimensional wave equation to describe the 

pressure of the wave as it is incident upon each hydrophone where: 
 

( ) ( )( )
( ) ( )( )

( ) ( )

1 1 max

2 2 max

1 2 max

v Mp t Mp cos k 0 t

v Mp t Mp cos k x t

v v Mp cos t cos t

where  k x kd sin

= = + ω

= = −∆ + ω

+ = ω + −δ + ω⎡ ⎤⎣ ⎦
δ = ∆ = θ

 

When the output is then squared it is actually measuring is the power of the incoming signal (or a 
signal proportional to the rate of sound energy incident on the hydrophones.) 
 

R
output

R
VPower

22

==  

( ) ( ) ( )[ ]2
2

max coscos tt
R

MpP ωδω +−+=  

If we then display the time-averaged power derived from the equation above, we get: 

( ) ( )

( ) ( ) ( ){ }

( ) ( )

( ) [ ]δ
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cos1
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⎢⎣
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R
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t
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tttt
R

Mp
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So depending on the value of δ (which is equal to kdsin(θ)), the time averaged power will be: 
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( )
R

MpP
2

max20 ≤≤  

Two-dimensional Beam Pattern 

 Why have we calculated the time-averaged power?  Since the value for δ depends on the 
angle of the incoming sound wave from the array axis, the power received depends on the angle 
at which the sound ray is incident on the array.  We can describe this angular dependence with 
one equation to relate the actual power received to the time averaged power on the axis (where 
θ=0° and the power is a maximum.)  This ratio is the two-dimensional beam pattern function of 
the array, b(θ) where: 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( )( )

( )
( )( )
2

sincos1

2

sincos1

0cos1

cos1
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2
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max

2
max
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θθ
θ

δ
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kd

R
Mp

kd
R

Mp

b

R
Mp

R
Mp

P
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+
=

+
=

°+

+
=

°=
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using a trigonometric identity that 21 cos 2 cos
2

⎛ θ⎛ ⎞+ θ = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎞ : 

( )
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⎢
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⎡
⎟
⎠
⎞

⎜
⎝
⎛=

⎥
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⎤
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⎡
⎟
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⎞

⎜
⎝
⎛=

λ
θπθ

θθ
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or 
2
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2

2

db

kdb

 

 The beam pattern function determines the magnitude of the received power at every 
angle, to the maximum received power, thus the beam pattern function will vary (as a function of 
angle) between 0 and 1. 
 

( ) 10 ≤≤ θb  

 The key now is to determine what important parameters we can determine from the beam 
pattern function.  Below is a polar plot of the beam pattern function for a two element array 
where the separation in elements is equal to twice the wavelength. 
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θnull 

θmax 

θBW 

Beam Pattern Function 
(λ/d = 0.5) 

array elements 

θ=0° 
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Maximum Power Angles (θmax) 

 Any angle where b(θ) = 1.  Using our previously derived formula for b(θ), there can be 
many angles where this occurs.  From b(θ): 

( )

⎥⎦
⎤

⎢⎣
⎡=

=

==

±=⎥⎦
⎤

⎢⎣
⎡
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⎡==

−

d
n

d
n

n
d

d

d
b

λθ

λθ

π
λ

θπ
λ

θπ
λ

θπ
θ

1
max

max

max

max

max2
max

sin

sin

.0,1,2,3,..n    where
sin

1
sin

cos

sin
cos1

 

Below are listed the max power angles for various ratios of λ/d: 

λ/d θmax 

(between 0° and 90°) 
2.0 0° 
1.0 0°,90° 
0.5 0°, 30°, 90° 

0.333 0°, 19.5°, 41.8°, 90° 
0.25 0°, 14.5°, 30°, 48.6°, 90° 

 

Notice that the lower the ratio of λ/d, the higher the number of maximum power angles. 

Null Angles (θnull) 

 The angles where the beam pattern function is equal to zero.  If any sound ray arrives at 
any of the null angles, little or no power from the incoming sound ray is received because of 
destructive interference between the signals received by each of the separate elements in the 
array.  We calculate the null angle by setting the beam pattern function equal to zero as shown 
below. 
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Below are listed the null angles for various ratios of λ/d: 

λ/d θnull 

(between 0° and 90°) 
2.0 90° 
1.0 30° 
0.5 14.5°, 48.6° 

0.333 9.6°, 30°, 56.4° 
0.25 7.2°, 22.0°, 38.7°, 61.0° 

Beamwidth (θBW) 

 The beamwidth of a beam is the angular displacement between the angles where the 
beam pattern function, b(θ), is greater than 0.5.  If any sound ray arrives at any angle within the 
beamwidth, the sound ray may be detectable.  We assume that if a ray arrives at an angle outside 
the beamwidth that the signal will not be detectable.  Within each beam, at least half of the 
power of the original wave will be received (not cancelled due to destructive interference 
between the elements of the array.)  
 
 The beamwidth is important because it is proportional to the bearing accuracy of the 
specific beam.   
 
 When we detect a sound, we can electronically determine which beam that the sound 
arrived in but not specifically at what exact bearing in that beam.  Thus, the smaller the beam 
width, the greater the bearing accuracy.  It is important to not then that beam width is not only a 
function of the frequency of the sound but what beam the sound arrives in. 
 
 Referring to the diagram on page 13-4, the beams on the “beam” of the array 
(perpendicular to the array axis) are much narrower than the beams on the array axis (also called 
the “end-fire” beams.) 
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Dependence Of Beam Pattern On Frequency 
 For most physical arrays, the separation distance between the elements, d, is a fixed 
distance.  Since all of the previous parameters depended on the ratio of λ/d, every one of the 
parameters will depend on the frequency (and thus the wavelength) of the sound incident on the 
array.  To show the dependence of the beam pattern of a fixed array on frequency, several beam 
patterns are shown below:   
 Frequency = 750 Hz  Frequency = 1500 Hz 

 Frequency = 3000 Hz  Frequency = 6000 Hz 

 

 Frequency  = 1975 Hz  Frequency = 5314 Hz 
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Three-Dimensional Beam Pattern 

 Lastly, we must remember that we live in a three-dimensional world.  So why did we 
spend so much time exploring the two-dimensional beam pattern?  The beam pattern is 
independent of the angle φ in a three-dimensional environment.  An example of a three-
dimensional beam pattern is shown below. 

 

array elements 

 The only difference between the two-dimensional beam patterns we previously derived 
and the three-dimensional beam pattern shown above is that the three-dimensional beam pattern 
is the two-dimensional pattern rotated about the array axis.  In the example above, the elements 
lie on the x-axis as shown. 
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Problems: 

1. You have a two element array as shown in the sketches below.  The separation between the 
elements is as indicated.   Each point element is omni-directional and calibrated to give 0.001 
volt per Pascal.  Find the total voltage generated from the array for a traveling wave 

( ) o
2p x p cos x tπ⎛ ⎞= −⎜ λ⎝ ⎠

ω ⎟  (with maximum amplitude po = 1 Pa) in each of the following 

situations.  The time is at the instant shown in the sketch 
a)   

 
b) 

 

-1

0

1

0 5 10 15 20 25

peak  peak 

trough 

λ 

45o

λ 

peak  

trough peak  

λ 
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c) Repeat b) for an angle of 30o. (Draw your own sketch) 
d) Repeat a) for the case where one of the elements is moved to the trough. (draw your own 

sketch) 
 
  
2. Given a 2 element array with a 1.0 m spacing between elements, determine the following 

assuming the frequency is 3000 Hz and c = 1500 m/s. 
 

a) The wavelength of the sound. 

b) The maximum power angles from 0° ≤ θ ≤ 90°. 
 
c) The null angles from 0° ≤ 

θ ≤ 90°. 
 

d) The beam width about 0° 
. 
e) The beam width about 30°. 
 
f) Complete a polar plot of 

b(θ).   
 

 
 
 

 
3. The half power beamwidth is 

defined as: 
a) The angular separation between the first two null angles of an array. 
b) The angular separation between the two “3dB down” angles of the main beam of the 

array. 
c) The directivity index of the array divided by 2. 
d) The area of the beam pattern of an array where there is no chance of detection. 

4.  You are given a two element array with identical omni directional hydrophones.  Let the 
spacing between the hydrophones be λ/2.  Calculate the beam width of the main lobe (beam 
width is the angular separation of the half power points) 

 
5.  An array consisting of two identical elements placed 40 cm apart is receiving sound of a 
wavelength of 12 cm. 

a)   Locate the angles where there are nulls in the beam pattern function. 
b)  Locate the angles where there are maxima (or side lobes). 
c) Calculate the value of b(θ) for a sufficient number of additional angles such that you can 

plot  b(θ) for 0<θ<90.  Plot b(θ) vs θ on polar graph paper. 
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6.  Design a 2 element array with a half –power full beam width of 25 degrees at 15 kHz.  The 
spacing between the two elements is:______________________ 
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Superposition Fourier Series

Constructive Interference of a pulse Destructive Interference of a pulse

Constructive Interference of 
Harmonic Waves

Destructive Interference of 
Harmonic Waves
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2 Dimensional Example
Single Hydrophone

Display1

( ) ( )tpMtv ∗=

“omni-directional”

hydrophone
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Beam Pattern Function
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3-d Beam Pattern Effect of Increasing Frequency
 Frequency = 750 Hz  Frequency = 1500 Hz 

 Frequency = 3000 Hz  Frequency = 6000 Hz 
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Directivity Index and Multi-element Arrays 

 At the beginning of the last section, we began discussing how it would be possible to 
increase the response and the signal-to-noise ratio by increasing the number of elements that we 
used to receive sound.  This also led to the formulation of the beam pattern function and drawing 
the response patterns for a simple two-element array.   
 
 We will quantify the affect of increasing the number of elements in our array by deriving 
an expression called the Directivity Index.  The Directivity Index is the ratio of the total noise 
power in an isotropic noise filled environment, incident on an array, compared to the power 
actually received by the system.   

omni directional noise

directional noise

NDI 10log
N

−=  

where Nomni-directional noise (NND) is the power of the isotropic noise incident on the array and 
Ndirectional noise (ND) is the power of the isotropic noise received by the array.  
  
 To calculate the Directivity Index of an array,  

( )

2
ND i

D i

N 4 r I

N I b , d

= π

= θ φ A∫∫
 

φ

dφ

z

y θ

dθ

rdθ

r cos dθ φ

x 
 

14-1 



As shown in the above sketch, θ is the latitude angle measured up from the plane of the equator 
(x-y plane) and φ is the longitude angle measured from the x-z axis.  The area of a small 
elemental area on this surface can be found from the following equation, obtained by multiplying 
the dimensions of the element. 
 
 2dA r cos d d= θ θ φ  

 
The integrations over θ must be from 0 to 2π and the integration over φ is from –π/2 to +π/2.  
When calculating the omni or non-directional power, b =1 and it is easy to show that the 
integration over θ and φ result in a factor of 4π.    Similarly, to calculate the directional noise 
level: 
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2
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2 2
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2

N I b , r cos d d
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π
π

π
−

= θ φ θ θ φ

= θ φ θ θ φ

∫∫

∫ ∫
 

Since the beam pattern function is independent of θ such that b(θ,φ)=b(θ) and because the beam 
pattern function is symmetrical about the x-axis, the double integrals can be evaluated as below. 
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When this is all combined to calculate the Directivity Index: 
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4 I r b cos d

1DI 10log

b cos d

π

π

=

π
=

π θ θ

=

θ θ θ

∫

∫

θ

 

If we can solve the integral of the beam pattern function in the formula above, we can determine 
the Directivity Index of a given array.  The key will be to determine the beam pattern function 
for the specific array and to evaluate the integral. 

Directivity Index for a 2-element Array 

 If we evaluate the integral in the equation above for a 2-element array, we get the 
following: 

 
( )
2DI 10log
2 dsin

1 2 d

=
⎡ ⎤π

λ⎢ ⎥+
π⎢ ⎥

λ⎣ ⎦

 

Since the denominator inside the logarithm is simply: 

 ( )
( )2 2

2

0 0

2 dsindsinb cos d cos cos d 1 2 d

π π π
π θ⎛ ⎞ λθ θ θ = θ θ = +⎜ ⎟ πλ⎝ ⎠ λ

∫ ∫  

 The student should note then that the Directivity Index of an array varies as a function 
of frequency (or wavelength) of the incident sound.  When we are evaluating the Directivity 
Index for an array, normally we will calculate the DI using the center frequency of the frequency 
band of the processor. 
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n-Element Array 
 

Beam Pattern Function 
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We will study an n-element array with separation, d, between elements and an acoustic wave 
incident at an angle θ just as we did for the two element array.  To find the total voltage from all 
n-elements we have to add up the voltage from each element and then square the result.  For the 
two element case we were able to accomplish this mathematical task using trigonometric 
identities.  The task is more complicated with 3 or more elements so we will use a technique 
borrowed from electrical engineering called phasor addition. 
 
Recall from our electrical engineering that we often used phasor addition to add up AC sin waves 
in three phase systems.  In this technique, the voltage from each array element is represented by 
a vector-like arrow whose direction is defined by the difference in phase that the element has 
from the voltage of the adjacent array elements.  This “phase angle” representation is where the 
technique gets its name. The so called “phasor” diagram if formed by connecting the individual 
“phasors” head to tail analogous to vector addition.  If the output from a hypothetical array with 
three elements each differed by 120o or 2π/3 radians, the below expressions would represent the 
output from each:   
 

 

( )1 o

2 o

3 o

v V cos t

2v V cos t
3

4v V cos t
3

= ω

π⎛ ⎞= ω +⎜ ⎟
⎝ ⎠

π⎛ ⎞= ω +⎜ ⎟
⎝ ⎠

 

If we added up these three voltages, the phasor diagram would appear as below at the time, t=0 
sec.  If somehow we had an output equal to the sum of these three voltages, the output must be 
zero volts.   

θ

d 

d 

Close in view of 2 
adjacent elements 

∆x 

∆x 

θd



 

 
More often in our EE class, we were interested in the difference between 2 phases of a system.  
We employed phasor subtraction to find the real and reactive parts of this difference.  Hopefully 
it is obvious that the magnitude of the difference between v1 and v2 in our example is Vo. 
 
For our multi-element array, the difference in phase between adjacent elements is δ = k ∆x.    In 
the above diagram, we see that each element of the array sees the same wavefront after it has 
traveled an additional distance ∆x = d sinθ  from the element next to it.  The phase difference 
between elements is then δ = kdsinθ.  The total voltage of beamformer obtained by summing the 
individual elements is therefore: 
 

[ ] [ ] [ ] [ ]{ }
{ }

TOT 0

TOT 0

TOT

v Mp cos(k 0 t) cos(k dsin t) cos(k 2d sin t) ...cos(k (n 1)d sin t)

v v cos( t) cos( t ) cos( t 2 ) ... cos( t (n 1) )
v A cos( t )

= + ω + − θ + ω + − θ + ω + − − θ + ω

= ω + ω − δ + ω − δ + + ω − − δ

= ω + φ
 
Using a phasor representation, we want to find the resulting amplitude of the sum, A, and 
sometimes even the resulting phase angle, φ.  A geometric construction of each of the phasor 
elements in the sum is drawn as in the diagram below.  In this case a 6 element array is shown.   
 

 
 
Segment AG is the resulting amplitude of the sum, A.  We see that the phasors are 
approximating the arc of a circular path of radius, R, such that 

0V / 2sin  where R is distance AP
2 R
δ

≈  

P 

A 

G

M

B a 

δ/2 

δ

nδ/2

nδ 

δ=kdsinθ 

v2

120o

v2

v1
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since  APa is 
2
δ

∠ .  Similarly, since n A APM =  and the midpoint of the chord is =
2 2

V( )
2

δ θ
∠  

n V( ) / 2sin    Where R is distance AP
2 R
δ θ⎛ ⎞ ≈⎜ ⎟

⎝ ⎠
 

Combining these two results and solving for V(θ), 

0

sin n
2V( ) nV

n sin
2

δ⎡ ⎤
⎢ ⎥

θ = ⎢ ⎥δ⎢ ⎥
⎣ ⎦

=A 

It is customary to write nVo in the numerator since this would be the voltage if the wave arrived 
at each element of the array at the same time.  In this case we would call nVo the maximum 
voltage, Vm.  
 
The overall phase of the resulting sum is simply, 

n
2
δ

φ =  

Since δ = kdsinθ = 2πdsinθ/λ, the total voltage can be written as a function of the angle, θ, 

m

n dsinsin
V( ) V

dsinn sin

⎡ π θ⎛ ⎞
⎜ ⎟

⎤
⎢ ⎥λ⎝ ⎠⎢ ⎥θ =

π θ⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥λ⎝ ⎠⎣ ⎦

 

The power seen by the beamformer is then,  
2

2
m

n dsinsin
VP( )

dsinR n sin

⎡ π θ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥λ⎝ ⎠⎢ ⎥θ =

π θ⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥λ⎝ ⎠⎣ ⎦

 

Finally, the beam pattern function is defined, 

( )
( )

2
n dsin sinP

b( )
dP 0 n sin sin

⎡ π ⎤⎛ ⎞θ⎜ ⎟⎢ ⎥θ λ⎝ ⎠⎢ ⎥θ = =
πθ = ⎛ ⎞⎢ ⎥θ⎜ ⎟⎢ ⎥λ⎝ ⎠⎣ ⎦

 

Side lobes and maximums are dependent on the number of elements in the array.  For six 
elements, a null can be created from a hexagon of the 6 representative phasors.  This corresponds 
to a phase angle, δ, of 60 degrees between phasors.  Additional nulls can be found when δ is 120o 
(triangle), 180o, 240o, and 300o.  Below is the beam pattern ( ( )b θ )for a six element array along 

the y-axis with d/λ = 0.5.   
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-0.15
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In general, the greater the greater the number of elements, the more nulls and therefore more side 
lobes are created.  Each lobe is narrower resulting in increased bearing resolution.  Below is the 
beam pattern for an eight element array along the y-axis with d/λ= 0.5.  Can you describe the 
phasor diagram that creates each of the nulls?   
 

-1 -0.5 0.5 1

-0.1

-0.05

0.05

0.1

 
  
    
Directivity Index 
  
Calculating the Directivity index for an n-element array is fairly difficult.  Using the definition of 
Directivity Index,   
 

( )
2

0

1DI 10log

b cos d
π=

θ θ θ∫
 

we state without proof that if the beam pattern function for an n-element array is evaluated, the 
result is: 

( )n 1

1

nDI 10log
2 dn sin

21 2 dn

−

ρ=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥πρ⎛ ⎞− ρ⎢ ⎥⎜ ⎟λ⎝ ⎠⎢ ⎥+

πρ⎢ ⎥
⎢ ⎥λ⎣ ⎦

∑

 

 
Linear Arrays 
 
A linear array is a continuous collection of many very small elements.  The phasor diagram is 
similar to the one above with n a very large number and each individual element having a very 
small length.  Because of this, the same beam pattern function can be used as the n-element array 
with the substitution that array length L = nd.  Additionally, with many small elements, the 
denominator is the sine of a very small angle allowing us to use the small angle approximation, 
sinα = α. 
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2 2 2
n d L Lsin sin sin sin sin sin

b( ) d Ld n sin sinn sin sin

⎡ π ⎤ ⎡ π ⎤ ⎡ π⎛ ⎞ ⎛ ⎞ ⎛ ⎞θ θ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λ λ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ = = =
π ππ⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ θθ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λλ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎤θ
 

 
Below is the beam pattern function for a linear array along the y axis with L/λ = 2. 
 

-1 -0.5 0.5 1
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Nulls and Side Lobes 
 

Nulls occur when Lsinsin 0π θ⎛ ⎞ =⎜ ⎟λ⎝ ⎠
.  The sine function has zeros at integer multiples of 180 

degrees or π radians. 
Lsin n ,   n 1,2,3,...π θ

= π =
λ

 

Between these nulls are secondary maxima or side-lobes that occur when the function 
α

αsin is a 

maxima.  ( =α
λ

θπLsin ).  We can find cases where this occurs with a computer and observe that 

smallest value is πα 43.1= .  For this value, ( ) 04719.0=θb  and ( ) dB 3.13log10 −=θb .  This 
means that the first side lobe next to the main lobe at θ = 0 degrees is reduced in amplitude by 
13.3 dB. 
 
Directivity Index 
 
Again without proof, the directivity index of a linear array reduces to the following simple result 
so long as the array length is much greater than the wavelength. 
  

( )
2

0

1 2DI 10log 10log

b cos d
π

⎛ ⎞= = ⎜ ⎟
L
λ⎝ ⎠

θ θ θ∫
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Piston Arrays 

 
 
A plane piston array as shown above is thought of as composed of a very large number of 
elements arranged in 2 dimensions on it’s surface.  Since there is no fixed phase relationship 
between these elements, phasor addition will not work.  Instead, it is necessary to integrate over 
the elements making up the surface.  Experience has shown this is best done in polar coordinates 
and the results will not be repeated here.  The resulting beam pattern function is  

( )

2

1
Dsin2J

b Dsin

⎡ π θ⎛ ⎞
⎜ ⎟

⎤
⎢ ⎥λ⎝ ⎠⎢ ⎥θ =

π θ⎢ ⎥
⎢ ⎥λ⎣ ⎦

 

where J1 is the Bessel Function of the first order and first kind.  It’s values are well tabulated in 
mathematical handbooks much like the trigonometric functions.  As seen below, maximum 
values and zero crossings for this Bessel function are not as orderly as the trigonometric 
functions.  
 
 

0.4

0.6

J1

J1
 

D 

 

θ 
J1(πDsinθ/λ)
5 10 15 20

-0.2

0.2

 
 

(πDsinθ/λ) has zero crossings (nulls) at πDsinθ/λ = 3.83,
(πDsinθ/λ) has extremes (near the side lobes) at πDsinθ/λ

14-9 
πDsinθ/λ
  

 7.02, 10.17, 13.32, 16.47, ...... 
 = 1.84, 5.33, 8.54, 11.71, 14.86, .... 



From this we see that the first zero crossing corresponding to a null in the beam pattern function 
occurs when  

 

 3.83sin 1.22
D D

λ λ
θ = =

π
 

The first side lobe occurs when 
 

 
1

Dsin2J
maxDsin

π θ⎛ ⎞
⎜ ⎟λ⎝ ⎠ =
π θ

λ

 

The actual value of the maximum corresponding to the first side lobe is found by iterating with a 

computer.  It is near the place where Dsin 5.33π θ
≈

λ
, and the exact value is 1.66sin

D
λ

θ = . 

 
Note that the center beam occurred at θ = 0 where both the numerator and denominator are 
approaching zero. 
 
Below is the beam pattern ( ( )b θ )for a piston array along the y-axis with D/λ = 2.0.   
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A Table showing the piston array results for lobes, nulls, and beam widths as well as those for 
linear and two element arrays appears on the following page.
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 2-element array continuous line array circular piston 

defining 
parameters 

element separation distance 
– d array length – L array diameter - D 

beam pattern 

function 

b(θ) =  

2 dcos sinπ⎛ ⎞θ⎜ ⎟λ⎝ ⎠
 

2
Lsin sin

L sin

⎛ π ⎞⎡ ⎤θ⎜ ⎟⎢ ⎥λ⎣ ⎦⎜ ⎟
π⎜ ⎟θ⎜ ⎟λ⎝ ⎠

 

2

1
D2J sin

D sin

⎡ π⎛ ⎞θ⎜ ⎟⎢ ⎥λ⎝ ⎠⎢ ⎥
π⎢ ⎥θ

⎢ ⎥λ⎣ ⎦

⎤

 

directivity index 
DI 

( )
210log
2 dsin

1 2 d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞π
⎢ ⎥λ⎜ ⎟+⎢ ⎥π⎜ ⎟⎜ ⎟⎢ ⎥λ⎝ ⎠⎣ ⎦

 2L10log    for L >> λ
λ

 
2D10log    for Dπ⎛ ⎞ >> λ⎜ ⎟λ⎝ ⎠

 

null angles 
b(θ) = 0 

θnull  ( )sin m
2d

m  1, 3, 5, ...

λ
θ =

=
 ( )sin m

L
m  1, 2, 3, ...

λ
θ =

=
 

( )

1

sin z
D

z 1.22,  2.23,  3.24, 4.24, .
Droots of J sin 0

λ
θ =

=

π⎛ ⎞θ =⎜ ⎟λ⎝ ⎠
 

side lobes 
b(θ)=1 

θmax  
sin m

d
m 0, 1, 2, 3 ....

λ
θ =

=
 

Lsin Lsintan

sin y
L

where y  1.43, 2.46, 3.47, 4.4

π θ π θ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠
λ⎛ ⎞θ = ⎜ ⎟

⎝ ⎠
=

 

sin w
D

where w  1.64, 2.68, 3.70,

λ
θ =

=
 

half power 
angles 

b(θ)=0.5 
θhp

θBW=2θhp
(only for beam 

about array axis) 
 

hp
nsin
4d

n 1,3,5,7,...

λ
θ =

=
 hpsin 0.442

L
λ

θ =  hpsin 0.51
D
λ

θ =  
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Problems: 

1. Given a 2 element array with a 1.0 m spacing between elements, determine the Directivity 
Index assuming the frequency is 3000 Hz and c = 1500 Hz. 

 
2. Find the directivity Index of a line of 6 elements spaced 10 cm apart when receiving sound of 

wavelength 30 cm. 
 
3. The Directivity Index of a sonar array depends on all of the following except: 

a) the physical dimensions of the array. 
b) the speed of sound in the water. 
c) the layout of the hydrophones in the array. 
d) the efficiency of the array. 

 
4. Determine the null angles from 0 to 90° of a 0.25 m active linear array operating at 25 kHz. 
 
5.   A 200m linear array is used for receiving a 300 Hz signal.  What is the directivity index.  
 
6.  A continuous line array of length 150 cm is receiving sound of 5 kHz.  The sound speed is 
1500 m/s. 

a)  Find the angles at which there is a null in the directivity pattern. 
b) Find the angles to the maximum points of all side lobes.  
c) Calculate the half power beam width. 
d) Calculate b(θ) for θ = 10o, 20o , 30o 

,
  40o

,
  50o

,
  60o

,  70o
,  80o

,
  90o 

e) Calculate the Directivity Index. 
 
7.  Find the directivity index for a linear array of length 125 cm, when operating at 15 kHz in 
water where c = 1500 m/s. 
 
8.  Find the directivity index for a circular piston array of diameter 125 cm, when operating at 15 
kHz in water where c = 1500 m/s. 
 
9.  A plane circular piston array of diameter 100 cm is receiving sound of frequency 7 kHz.  The 
sound speed is 1500 m/s. 

a)  Find the angles at which there are nulls in the directivity pattern 
b)  Find the angles to the maximum points of all side lobes. 
c)  Calculate the half-power beam width.  

 
10.  a)  Design a plane circular array with a half-power beam width of 25o at 15 kHz.  The 
diameter of the array is _________. 
       b).  Design a continuous line array with a half-power beam width of  25o at 15 kHz.  The 
length of the array is _________. 
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11.  What is the spacing, d, required for a 4-element line array (detecting frequencies of 10 kHz 
in water) so that: 

a)  The first null in the beam pattern occurs at 90o. 
b) The second major lobe (of magnitude unity) in the beam pattern occurs at 90o. 
c) Compute DI for a) 
d) Compute DI for b) 
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1

Directivity Index

noise ldirectiona

noise ldirectionaomnilog10
N

N
DI −=

( )i

2

N I b , dA

but dA r cos d d

= θ φ

= θ θ φ
∫∫

φ

dφ

x

y

z

θ

dθ

rdθ

r cos dθ φ

Directional Case

( )

2
ND i

D i

N 4 r I

N I b , dA

= π

= θ φ∫∫

( )

( )

2
D i

2 2
2

D i
0

2

N I b , r cos d d

N I r b , cos d d

π
π

π
−

= θ φ θ θ φ

= θ φ θ θ φ

∫∫

∫ ∫

With Rotational Symmetry

( )

( )

( )∫

∫

∫ ∫

=

=

=

−

−

2

0

2

2

2

2

2

2

2

0

2

cos4

cos2

cos

π

π

π

π

π

π

θθθπ

θθθπ

φθθθ

dbrIN

dbrIN

ddbrIN

iD

iD

iD

DI with Rotational Symmetry

( )

( )∫

∫

=

=

=

2

0

2

0

2

2

cos

1log10

cos4

4
log10

log10

π

π

θθθ

θθθπ

π
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DI

dbrI

Ir
DI

N
N

DI

i

i

D

ND

DI for the Two-element Array

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

=

λ
π

λ
π

d

d
DI

2

2sin
1

2log10
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2

N Element Array 

θ

d

d

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }

1 1 max

2 2 max

3 3 max

4 4 max

N N max

22
1 2 max

v Mp t Mp cos k 0 t

v Mp t Mp cos k x t

v Mp t Mp cos k 2 x t

v Mp t Mp cos k 3 x t

v Mp t Mp cos k (N 1) x t

output v v Mp cos t cos t cos 2 t cos 3 t cos (N 1) t

where

= = +ω

= = −∆ +ω

= = − ∆ +ω

= = − ∆ +ω

= = − − ∆ +ω

∝ + = ω + −δ+ω + − δ +ω + − δ +ω + + − − δ+ω⎡ ⎤⎣ ⎦

M

K

  k x kd sinδ = ∆ = θ

Phasor Addition

A

G

M

B
a

δ/2

δ

nδ/2

nδ

δ=kdsinθ

[ ] [ ]
[ ] [ ]TOT 0

TOT 0

TOT

cos(k 0 t) cos(k d sin t)
v Mp

cos(k 2d sin t) ...cos(k (n 1)d sin t)

cos( t) cos( t ) cos( t 2 ) ...
v v

cos( t (n 1) )
v A cos( t )

⎧ ⎫+ ω + − θ + ω +⎪ ⎪= ⎨ ⎬
− θ + ω + − − θ + ω⎪ ⎪⎩ ⎭

ω + ω − δ + ω − δ +⎧ ⎫
= ⎨ ⎬ω − − δ⎩ ⎭
= ω + φ

0

2

V( ) nR sin    Where R is distance AP
2 2

sin n
2V( ) nV

n sin
2

n dsin sin
b( )

dn sin sin

θ δ⎛ ⎞= ⎜ ⎟
⎝ ⎠

δ⎡ ⎤
⎢ ⎥

⇒ θ = ⎢ ⎥δ⎢ ⎥
⎣ ⎦

⎡ π ⎤⎛ ⎞θ⎜ ⎟⎢ ⎥λ⎝ ⎠⎢ ⎥⇒ θ =
π⎛ ⎞⎢ ⎥θ⎜ ⎟⎢ ⎥λ⎝ ⎠⎣ ⎦

P

Beam Patterns for 6 and 8 Element Arrays 
(λ/d = 0.5)
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6 element array oriented vertically

8 element array oriented vertically

( )b θ

Directivity Index for an 
n-Element Array

( )n 1

1

nDI 10log
2 dn sin

21 2 dn

−

ρ=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥πρ⎛ ⎞−ρ⎢ ⎥⎜ ⎟λ⎝ ⎠⎢ ⎥+

πρ⎢ ⎥
⎢ ⎥λ⎣ ⎦

∑

Linear Array
2 2 2

n d L Lsin sin sin sin sin sin
b( ) d Ld n sin sinn sin sin

⎡ π ⎤ ⎡ π ⎤ ⎡ π ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞θ θ θ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λ λ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ = = =
π ππ⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ θθ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ λλ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Lsin n ,   n 1, 2,3,...π θ
= π =

λ
Nulls:

( )
2

0

1 2LDI 10log 10log

b cos d
π

⎛ ⎞= = ⎜ ⎟λ⎝ ⎠
θ θ θ∫

Beam Pattern for a Vertical Linear Array  
L/λ = 2.0
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3

Piston Array

D
θ

( )

2

1
Dsin2J

b Dsin

⎡ π θ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥λ⎝ ⎠⎢ ⎥θ =
π θ⎢ ⎥

⎢ ⎥λ⎣ ⎦

5 10 15 20

-0.2

0.2

0.4

0.6

J1(πDsinθ/λ)

πDsinθ/λ

J1(πDsinθ/λ) has zero crossings (nulls) at πDsinθ/λ = 3.83, 7.02, 10.17, 13.32, 16.47, ....
J1(πDsinθ/λ) has extremes (side lobes) at πDsinθ/λ = 1.84, 5.33, 8.54, 11.71, 14.86, .... 

Bessel Function

Beam Pattern for a Piston Array
D/λ = 2.0

0.2 0.4 0.6 0.8 1

-0.15

-0.1

-0.05

0.05

0.1

0.15

( )b θ

⎟
⎠
⎞

⎜
⎝
⎛ θ
λ
π sincos 2 d

2

sin

sinsin

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎥⎦
⎤

⎢⎣
⎡

θ
λ
π

θ
λ
π

L

L 2

1

sin

sin2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

θ
λ
π

θ
λ
π

D

DJ

( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

λ
π

λ
π

d

d

2

2sin
1

2log10 λ
λ

>>Lfor    2log10 L λ
λ
π

>>⎟
⎠
⎞

⎜
⎝
⎛ Dfor    log10

2D

( )

... 5, 3, 1,  m
2

sin

=

=
d

m λθ ( )

... 3, 2, 1,  m

sin

=

=
L

m λθ
( )

0sinJ of roots

... 4.24, 3.24,  2.23,  1.22, z

sin

1 =⎟
⎠
⎞

⎜
⎝
⎛

=

=

θ
λ
π

λθ

D

D
z

.... 3 2, 1, ,0

sin

=

=

m
d

m λθ

... 4.48, 3.47, 2.46, 1.43, y where

sin

sinsintan

=

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

L
y

LL

λθ

λ
θπ

λ
θπ

.... 3.70, 2.68, 1.64,   wwhere

sin

=

=
D

w λθ

sin
4

1,3,5,7,...

hp
n
d

n

λθ =

= Lhp
λθ 442.0sin =

Dhp
λθ 51.0sin =

half power angles 
b(θ)=0.5

θhp
θBW=2θhp

(only for beam about array axis)

side lobes
b(θ)=1
θmax

null angles
b(θ) = 0
θnull

directivity index
DI

beam pattern function
b(θ) = 

array diameter - Darray length – Lelement separation distance – ddefining parameters

circular pistoncontinuous line array2-element array

2 4 6 8

0.2

0.4

0.6

0.8

1

Beam width of a piston array

( )

2

1
Dsin2J

b 0.5Dsin

⎡ π θ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥λ⎝ ⎠⎢ ⎥θ = =
π θ⎢ ⎥

⎢ ⎥λ⎣ ⎦

b

Dsinπ θ
λ

Dsin 1.6π θ
=

λ
1.6sin .51

D D
λ λ

θ = =
π

Lesson 14



Detection Theory 

  The criterion for detection requires that the amount of sound energy collected by the 
receiver must exceed a threshold level to register a detection.  The most common way to do this 
is first to express the ratio of signal to noise in decibels where: 

SignalSNR 10log
Noise

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The minimum SNR that is required to determine that there is a signal present in the environment 
a pre-established percentage of the time, is called the detection threshold, DT.  The goal of this 
lesson is to be able to determine by calculation, a DT for our sonar system. It should be apparent 
that detection threshold is a statistical concept since the background noise that masks our signal 
fluctuates in randomly in time.  Because of this, we will have to discuss some statistics ideas 
before we can calculate our Detection Threshold. 
 
Threshold setting  

Let's assume that in our environment there is random noise.  Let us also assume we have 
a sonar system with a hydrophone that converts incident acoustic pressure into a voltage sent to 
the sonar processor.  A plot of the voltage output from a hydrophone in an environment with 
noise might look something like that in figure 1. 

  

Figure 1 -  2 Volt Random Noise
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Now let's assume that there is a signal also present in the same environment as shown in 
figure 2 where the hypothetical signal is plotted without noise.
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Figure 2 -  2 Volt Signal with no Noise
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Figure 3 is a depiction of the sum of the signal plus noise.  The question then becomes, 
what detection threshold should be set in the sonar system so that the signal can be detected 
through the background noise. 
 

Figure 3 - 2 Volt Random Noise with 2 Volt Signal
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V3

V2

V1

Should the threshold voltage be set at voltage V1 where only the signal that is well above 
the noise will cause a detection?  Or should it be V2 where not only will some of the signals be 
detected but also some of the noise will cause a false detection?  Or should it be V3 where a good 
portion of the noise as well as most of the signals cause detections?  What threshold voltage to 
set is a very difficult question to answer.  The more important question though is, what 
percentage of the time can we tolerate a false alarm and tolerate missing a detection.  Both 
circumstances are directly related to one another. 
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Binary Decision Table 

 Though there are only two possible answers at any moment for the conclusion that there 
is a signal present or not, there are two possible outcomes for both answers, the conclusion was 
either correct or incorrect.  This is best summed up by the following two tables: 
 

  Decision/Hypothesis 
  Signal 

present 
Signal 

not present 
Signal present Correct 

detection 
p(D) 

Missed 
detection 

p(miss)=1-p(D) 

Actual input 
 

Signal not 
present 

False 
Alarm 
p(FA) 

Correct 
no detection 

p(null)=1-p(FA) 
 

In this Matrix presentation, statisticians call the “decision” the “hypothesis.”  It should be 
clear that for a given situation, the two hypothesis are mutually exclusive.  If a signal is actually 
present, either hypothesis “signal present” or hypothesis “signal not present” must be selected.  
We are not allowing for an unknown hypothesis.  Because of this, the sum of the probability that 
the “signal is present” and the probability that the “signal is not present” must add up to one.  
 

There are two desired outcomes.  We hope that anytime a signal actually exists, we chose 
the “signal present” hypothesis.  Otherwise we have selected a “false negative” and have missed 
a valid target.  On the other hand, if there is no signal present, we hope to always select the 
“signal not present” hypothesis.  In this case, selecting “signal present” would be a “false 
positive” and would represent a false alarm.  The below chart summarizes this idea.  
 
 When there is  

noise only 
When there is 

 signal and noise 
Decision noise only signal + noise noise only signal + noise 
 correct wrong wrong correct 
 p(null) p(FA) P(miss) p(D) 
comments 

 
you are correct, 
continue 
searching 

wasted torpedoes you missed the 
hostile 

hostile sunk 
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Probability Density Function 

A better representation of the voltage output of a hydrophone to be used in determining 
the threshold setting is to plot the probability density function of the voltage.  The probability 
density function represents the number of times the voltage was at a certain voltage (represented 
on the x-axis) per unit time.  For good empirical reasons, we mathematically model the noise as a  

Figure 4 - Noise Only 

threshold  
voltage, vo

p(FA) 

µN

PDF 

hydrophone voltage 

normal or “Gaussian” distribution of voltages about a mean value, µ.  The mathematical 
description of a Gaussian probability distribution function (PDF) is:  

( )2
2

v
2

2

1p(v) e
2

−µ
−

σ=
πσ

 

This equation tells us the probability of a particular value of voltage occurring in an 
interval of time.  For each distribution we define the variance, σ2.   Variance tells us how much 
the distribution of the voltage “varies” about the mean value.   

( )2

2
v d

dv

−µ
σ = ∫

∫
v

 

Standard deviation, σ, is the square root of the variance.   We say that the probability that 
the voltage will lie within one standard deviation of the mean is about 67%.  More exactly,       

( )2
2

v
210.67 e dv

2

−µ+σ −
σ

−σ

=
σ π ∫  

Figure 4 above represents the probability density function of the receiver voltage for 
gaussian background noise only.  The x-axis represents the voltage output of the hydrophone and 
the y-axis represents the probability that the voltage was at the level on the x-axis.  This is 
roughly the same as the percentage of samples the sonar system will get at a particulate value of 
voltage in a particular time interval.  From the curve, depending on where the threshold level, vo, 

15-4 



is set, the shaded area under the curve and to the right of the threshold represents the probability 
of getting a false alarm.   Since the total area under the curve represents 100% of the time, the 
remaining area represents, p(null), the probability that there is no signal.   

 
For simplicity, we will often shift the distribution of noise such that it has a mean value 

of zero.  With this shift, we could calculate P(FA), 

( )
( )2

2

0

v 0
2

v

1p FA e dv
2

−∞ −
σ=

σ π ∫  

Figure 5  -Signal + Noise  

threshold  
voltage, vo

p(D) 

µS+N

PDF 

hydrophone voltage 

If we look at the probability density function of a signal plus gaussian background noise, 
we get a distribution like Figure 5.  This curve is shifted to the for exactly the same reason that 
the curve in figure 3 is shifted up while the signal is present.  From this curve, the shaded area 
under the curve represents the probability that a detection p(D) will occur.   This probability can 
be calculated as follows: 

( )2S N
2

0

v
2

v

1p(D) e dv
2

+−µ∞ −
σ=

σ π ∫  

The area to the left of the threshold voltage represents the probability of a missed 
detection, p(Miss). 

Detection Index 

 Now to relate the time varying magnitude of the hydrophone voltage due to noise, to the 
time varying magnitude of the signal plus the noise, we define the quantity, d, the detection 
index.  The detection index can be thought of as the "processed signal to noise ratio".  That is the 
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ratio of the signal to the noise after the sound energy has been converted to a voltage level and 
processed electronically.  The formula for the detection index is: 

( )
( )2

n
2

ns

2
nns

2
1

d
σ+σ

µ−µ
=

+

+  

where µ is the mean voltage of the signal plus noise (s+n) or of the noise (n) (denoted by the 
subscript), and σ2 is the variance.  An example of the detection index for two PDF curves is 
shown below. 

hydrophone voltag

noise only 

d = 8.0 

hydrophone voltage 

signal + noise 
noise only 

 

d = 2.0 

PDF 

PDF 

15-6 
Threshold
Voltage 
e 

signal + noise 



 

 Compare the detection indices for the two PDF’s shown above.  Notice that the higher the 
ratio of signal to noise, the higher the detection index or in other words, the more likely a 
detection will occur at a particular threshold.  Since the noise is the same in both cases, the 
probability of false alarm is the same for both detection indices.  But since the d = 8  case is 
shifted to the right, more area is under the signal + noise curve to the right of the threshold.  This 
tells us the probability of detection is greater in this case.  

Receiver Operating Characteristic (ROC) Curves 

To put all the preceding information together we can plot the probability for detection as 
a function of the probability of false alarm for various detection indices.  The ROC curves are a 
set of curves that make our lives simpler by allowing us to be able to determine the probabilities 
for a sonar system for various signal to noise ratios.  An example set of ROC curves for an ideal 
receiver system is shown below. 

 

From Urick, R. J. Principles of Underwater Sound, 3rd ed. McGraw-Hill Book Company. 
1983. p 383 

 

This plot shows that for a given detection index, d,  (which is the "processed signal to 
noise ratio"), that choosing a probability of detection determines the probability of false alarm or 
vice versa.  Understand also that these ROC curves are dependent on the sonar system being 
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analyzed and will look different for a real sonar system compared to the idealized curves shown 
above. 

 
One characteristic common to all ROC curves is the detection index line labeled d = 0, 

called the chance diagonal.  With improved signal to noise ratio, the series of curves moves up 
and to the left of the chance diagonal corresponding to improved probability of detection, p(D), 
and fewer false alarms, p(FA). 

Detection Threshold 

 The ROC curves discussed above are important in that from these curves, we can 
determine a good detection threshold, DT in dB, for our sonar system.  As a first step, you must 
decide (or be provided) the necessary detection probability you desire.  This must be balanced 
with a reasonable probability of false alarms.  It does you no good to insist on perfect probability 
of detection if you sonar system is constantly crying wolf with false alarms.  Often the 
probability of detection specified is as low as 50%.   
 

As an example, consider a required p(D) = 50% and a p(FA) = 0.2%.  The necessary 
detection index is then 9.  Conversely, if the relationship between signal and noise is such that d 
= 4, then a probability of detection of 70% can not be obtained without accepting a value of 10% 
for p(FA).  
    
 Imagine yourself in a noisy stadium at the concert of the year by your favorite artist.  Can 
you hear what your friend is trying to tell you?  Well that depends on many things including how 
loud the concert is as well as how loud your friend is talking.  One other thing that can help you 
though is whether you see their lips moving or not.  If you can "correlate" their lip movement to 
what little that you do hear from them, it is easier to tell what they are saying.  The same holds 
true for sonar systems. 

Active Sonar System or Correlator Detector 

 If we can compare the received signal and noise to a known signal, as in the example 
above, it will be easier to determine if there is an actual signal present or not.   This is exactly 
what an active sonar system does.  The active system sends out a signal with a known frequency, 
and pulse shape, and looks for a return signal with the same frequency and pulse shape through 
the background noise.  Knowing this, we can better relate the detection threshold to the detection 
index.  To find the equation for an ideal correlator detector, we must first review the meaning of 
detection index.   
 

Previously we defined detection index,  
( )
( )

2
s n n

2 2
s n n

d 1
2

+

+

µ −µ
=

σ + σ
 

For the case of correlation, we might expect signal and noise to have the same variance.  
Detection index then is proportional to a ratio whose numerator is related to the average signal 
intensity and whose denominator is related to the average noise intensity.  
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( )2
s n n

2
n

S
d

N
+µ −µ

= ∝
σ

 

 
Further we state without rigorous proof that the constant of proportionality is the number of 
samples, m, obtained by the sonar system in a time period T, called the integration time. 

S
d m

N
=  

A well known sampling theorem by Nyquist states that “the sampling rate must be at 
least twice the bandwidth, ω, of the received power so that no signal information is lost.”  
Nyquist’s theorem requires that the number of samples be at least, m = 2(∆f)T .  The average 
signal to noise ratio is then,  

( )
S d d
N m 2 f T

= =
∆

 

Detection threshold for a correlation detector is then defined the expected way band 
levels in dB are calculated. 

( )
S dDT 10log 10log
N 2

= =
∆f T

 

Passive Sonar System or Energy Detector 

 Imagine yourself at the same concert that we discussed above but now, your friend is 
facing away from you towards the stage.  It would be much harder to determine what they were 
saying or even if they were talking to you, without the visual clue of seeing their lips moving.  
The same holds true for a passive sonar system.  With a passive system, the operator is looking 
for a signal even though he does not know what type or frequency signal or even if there is one 
present.  For this case, the equation for how the detection index relates to the signal and noise is 
different.  For the passive sonar, we can show with some difficulty that d is given by the 
equation: 

( )
2

S
d f T

N
⎛ ⎞

= ∆ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Again solving for the average signal to noise ratio, 

( )

1
2S d

N f T
⎛ ⎞

= ⎜ ⎟⎜ ⎟∆⎝ ⎠
 

Detection threshold for a passive detector is then defined the expected way band levels in dB are 
calculated  

( ) ( )

1
2S d dDT 10log 10log 5log

N f T
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠f T

)

 

** Note that this only holds true for small signal to noise ratios (S/N<<1) and large sample sizes 
( ( T >> 1).  f∆
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The Sonar System Detection Threshold 

Now let's put this together starting with a very basic illustration of the components of a sonar 
system.  This system is composed of an array of hydrophones, a receiver, a display and an 
operator.  Each one of these components including the observer or operator contributes to the 
detection threshold of the system. 

 

From Urick, R. J. Principles of Underwater Sound, 3rd ed. McGraw-Hill Book Company. 1983. p 
378 

 

 We have only discussed an idealized prediction of the detection threshold of the above 
system.  Many other things will reduce the detectability of the system but we can not increase the 
detectability above the idealized case.  Some of the items that can affect the systems detection 
threshold. 

 

 Fluctuating signal from the target will degrade system performance.  P(D) will be a 
function of amplitude density probability of signal.  If signal follows a Rayleigh 
distribution it can be shown that p(D) can be approximated with threshold Y0 and 
detection index d. 

 ( )

2
0Ye

2 d
p D 21

d

⎛ ⎞
− ⎜ ⎟+⎝ ⎠=

+
 

 valid if pd > 0.1 and pfa < 0.01 

 If there are more than one signal present. 
 If there is multipath propagation. 
 If bandwidth- time product (ωT) is not greater than 1. 
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 If post-detector averager or smoothing filter is used to remove noise from processor 
output. 

We will leave the study of these factors to a more in depth study of sonar systems. 
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Problems  

1. The curves below represent the probability density functions for the “voltage” distribution of 
signal plus noise and noise alone.  The detection threshold is set at 60 mV.  If the area under 
the curve shaded ////=0.10 and the area under the curve shaded \\\\=0.30, calculate: 
a) p(D) 
b) p(miss) 
c) p(FA) 
d) p(null) 
e) The detection index 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

σ = 15 σ = 15 

Prob(signal + noise) 
Prob(noise only) 

Threshold 

40 60 80 

PDF 

20 

Processed hydrophone voltage (mV) 

2. A series of 5 processed voltage readings, for the case of noise alone , is tabulated below: 
Trial # Processed “noise” voltage 

1 2 
2 1 
3 3 
4 2 
5 1 

 
A series of processed voltage readings for the case of signal plus noise is tabulated below 
Trial # Processed “noise” voltage 

1 2 
2 3 
3 4 
4 2 
5 3 
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a) Complete the following table and draw the receiver operating curve corresponding to the 
coordinate (p(FA), P(D)). 

 
Threshold 
Voltage 

P(FA) P(D) 

0.5   
1.5 3/5 = 0.6 5/5 = 1.0 
2.5   
3.5   
4.5   

 

ROC curve

0
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p(
D

)

 
 
b) Compute the mean, µs+n and the standard deviation, σs+n for the processed “signal +noise” 

case. 

Note that sample variance is found from 
( )

n
2

i
2 i 1

x

n 1
=

−µ
σ =

−

∑
 

c) Compute the mean, µn and the standard deviation, σn for the processed “noise alone” 
case. 

d) Compute the processed signal to noise ratio parameter, d 
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3. The human ear can be modeled as an energy detector (passive system) of bandwidth 50 Hz 

and integration time of 0.50 seconds.  What will be the detection threshold for the ear given a 
60% probability of detection and a 5% probability of false alarm? 

 
4. A scuba diver must be able to hear a 1000 Hz tone in a backround of ocean noise that is 

isotropic with a constant intensity spectrum level of 80 dB.  If the ear is modeled as an 
energy detector with a 50 Hz bandwidth and an integration time of 0.5 sec, what is the 
minimum rms pressure in µPa necessary for him to hear the tone with a probability of 
detection of 50% and a probability of false alarm of 0.05%?   Transmission loss is neglected 
here.  Let the directivity index equal 3 dB.  

 
5. A cross-correlator receiving (active) system is used to detect a known signal in a background 

of Gaussian noise.  The predetermined criterion for detection is such that p(D) = 50% and 
p(FA) = 0.2%.  Calculate the system’s detection threshold given that the signal duration is 
200 milliseconds.  The bandwidth is 100 Hz. 

 
6. A surface ship is trying to prosecute an enemy submarine. If the surface ships sonar system 

has P(D) = 75% and P(FA) = 0.1%, what is the probability that a torpedo will be wasted on a 
false target? 

 
7. A passive continuous line array sonar 30 m long receives signals in a one half octave 

bandwidth centered on a frequency of 400 Hz.  The sonar’s receiver may be modeled as a 
passive energy detector with an integration time of 2.0 seconds.  The line array is towed in an 
environment where the ambient noise spectrum level due to distant shipping is 51 dB, the 
ambient noise spectrum level due to wind driven waves is 54 dB, the self noise spectrum 
level is 52 dB, and the local sound speed is 1500 m/s.  All spectrum levels are constant in the 
range of the frequencies in the sonar’s receiver bandwidth.  What is the sonar’s figure of 
merit (FOM) against a target radiating white noise (with a spectrum level of 120 dB at the 
sonar’s center frequency) given a requirement for p(D) = 50.0% and  p(FA) = 0.10%.  The 
directivity index is given by DI = 10 log(2L/λ) where L is the array length and λ is the 
wavelength.  Considering only spherical spreading and no attenuation (TL = 20 log r), solve 
for the detection range. 
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1

Signal and Noise
Figure 1 -  2 Volt Random Noise
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Figure 2 -  2 Volt Signal with no Noise
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Figure 3 - 2 Volt Random Noise with 2 Volt Signal

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

Time (s)

Si
gn

al
 (v

)

Combined Signal and Noise

V1

V2

V3

SNR = 1

Binary Decision Table

  Decision/Hypothesis 
 Signal 

present 
Signal 

not present 
Signal 
present 

Correct 
detection 

p(D) 

Missed 
detection 

p(miss)=1-p(D) 
Actual 
input 

Signal not 
present 

False 
Alarm 
p(FA) 

Correct 
no detection 

p(null)=1-p(FA) 
 

Binary Decision Table
When there is 

noise only
When there is

signal and noise

Decision noise only signal + noise noise only signal + noise

correct wrong wrong correct

p(null) p(FA) P(miss) p(D)

comments you are correct, 
continue 
searching

wasted 
torpedoes

you missed the 
hostile

hostile sunk

Probability Density Function - Noise
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p(FA)

PDF

Figure 4 - Noise Only
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2

Detectivity (Detection) Index

hydrophone voltage
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Example ROC Curve
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d
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3.5 0.20 1.00
4.5 0.00 0.80
5.5 0.00 0.20

d = 8

ROC Curves

Chance diagonal

P(D) = 50%
P(FA) = 0.2%
d = ?

Nyquist Theorem

• The sampling rate must be at least 
twice the bandwidth, ∆f, of the 
received power so that no signal 
information is lost.

Correlation Process

Noise or 
signal plus 
noise

i i i

i i

x s n
or
x n

= +

=

is
Replica of signal

Compare Display

Threshold, Vo

m

i i
i 1

2

x s
V(m) ==

σ

∑
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Correlation Detector (active)

( )2
s n n

2
n

S
d

N
+µ −µ

= ∝
σ

S
d m

N
=

( )
S d d
N m 2 f T

= =
∆

( )
S dDT 10log 10log
N 2 f T

= =
∆

Square Law (Energy Detector) Process

Noise or 
signal plus 
noise

i i i

i i

x s n
or
x n

= +

=

Compare Display

Threshold, Vo

m

i i
i 1

x x
V(m)

N
==
∑

Noise or 
signal plus 
noise

Energy Detector (passive)

( )
2

S
d f T

N
⎛ ⎞

= ∆ ⎜ ⎟⎜ ⎟
⎝ ⎠

( )

1
2S d

N f T
⎛ ⎞

= ⎜ ⎟⎜ ⎟∆⎝ ⎠

( ) ( )

1
2S d dDT 10log 10 log 5log

N f T f T
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠
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Passive Sonar Wrap-up Exercise 
 
The two submarines described below are to engage in a sonar detection exercise off the coast of Kauai.  
Use the following data for all questions. 
(Note:  all numbers are made up and do not reflect reality.) 
 
USS Memphis (Target) 
SL of sub 180 dB in band from 100 Hz to 500 Hz 
Main tonal in band = 400 Hz due to sound short of 400 Hz generator 
 
USS Seawolf (Attacker) 
Use hull array consisting of 50 hydrophones in groups of 4 spaced  30 m down the side of the sub 
(consider as continuous line array) 
Bandwidth of sonar suite = 400 Hz from 100 to 500 Hz 
Integration time of sonar suite = 20 ms 
Want P(D) = 90%, P(FA) = 0.2%  assume ideal sonar processor 
NLself = 81 dB in band from 100 Hz to 500 Hz 
 
Environment 
Sea State = 1 
Shipping = light 
transition range = 14 Kyds 
 

1. What is the detection index required for detection of the Memphis by the Seawolf? 

2. What would be the detection threshold for detecting the Memphis using passive sonar? 

3. What are the angles for the nulls of the Seawolf’s 30 m long hull array (only give from 0° to 90°)? 

4. What is the Directivity Index for this 30 m long array at the frequency of the principle tonal? 

 PSWUE-1



5. What is the attenuation coefficient at the frequency of the principle tonal? 

6. What is the Ambient Noise Level (Sea State and Shipping)? 

7. What is the Total Noise Level? 

8. If the Memphis were at 16,000 yds from the Seawolf, what would be the Transmission Loss 
(include attenuation)? 

9. If the Memphis were at 16,000 yds from the Seawolf, what would be the signal-to-noise level?  

10. Is Memphis detectable?  If so, what is the Signal Excess? 

11. What is the max detection range of the Memphis by the Seawolf  (this time you can ignore 
attenuation)? 

 PSWUE-2



Miscellaneous Questions 
12. If P(D) = 75% and P(FA) = 1%, what is the probability that you will miss a detection of an actual 

contact? 

13. Is a passive sonar system a correlator detector or an energy detector? 

 

 PSWUE-3
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Passive Sonar Wrap Up 
Exercise

And Exam Review

Data
• The two submarines described below are to engage in a sonar detection 

exercise off the coast of Kauai.  Use the following data for all questions.
• (Note:  all numbers are made up and do not reflect reality.)
• USS Memphis (Target)

– SL of sub 180 dB in band from 100 Hz to 500 Hz
– Main tonal in band = 400 Hz due to sound short of 400 Hz generator

• USS Seawolf (Attacker)
– Use hull array consisting of 50 hydrophones in groups of 4 spaced  30 m down 

the side of the sub (consider as continuous line array)
– Bandwidth of sonar suite = 400 Hz from 100 to 500 Hz
– Integration time of sonar suite = 20 ms
– Want P(D) = 90%, P(FA) = 0.2%  assume ideal sonar processor
– NLself = 81 dB in band from 100 Hz to 500 Hz

• Environment
– Sea State = 1
– Shipping = light
– transition range = 14 Kyds

Part 1

• What is the 
detection index 
required for 
detection of the 
Memphis by the 
Seawolf?

p(D)=90%
p(FA)=0.2%

d 18≈

Part 2

• What would be the detection threshold for 
detecting the Memphis using passive 
sonar?

–Bandwidth of sonar suite = 400 Hz from 100 to 500 Hz
–Integration time of sonar suite = 20 ms

3

d 18DT 5log 5log 1.8dB
T f 20x10 s 400Hz−

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠

Part 3

• What are the angles for the nulls of the 
Seawolf’s 30 m long hull array (only give 
from 0° to 90°)?

sin m
L
λ

θ =

m1500c s 3.75m
f 400Hz

λ = = =

⎟
⎠
⎞

⎜
⎝
⎛ θ
λ
π sincos 2 d

2
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⎟
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⎜
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⎥
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⎠
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⎥
⎥
⎥
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⎜
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1
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λ
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⎠
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⎜
⎝
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2D
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2

sin

=

=
d

m λθ ( )

... 3, 2, 1,  m

sin

=

=
L

m λθ
( )

0sinJ of roots

... 4.24, 3.24,  2.23,  1.22, z

sin

1 =⎟
⎠
⎞

⎜
⎝
⎛

=

=

θ
λ
π
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D
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=
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sinsintan
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⎠
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⎜
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⎜
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.... 3.70, 2.68, 1.64,   wwhere
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=

=
D

w λθsin
4

1,3,5,7,...

hp
n
d

n

λθ =

= Lhp
λθ 442.0sin =

Dhp
λθ 51.0sin =

half power angles 
b(θ)=0.5

θhp
θBW=2θhp

(only for beam about array axis)

side lobes
b(θ)=1
θmax

null angles
b(θ) = 0
θnull

directivity index
DI

beam pattern function
b(θ) = 

array diameter - Darray length – Lelement separation distance – ddefining parameters

circular pistoncontinuous line array2-element array
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The Angles

( )1 1 13.75msin m sin m sin 0.125m
L 30m

− − −λ⎛ ⎞ ⎛ ⎞θ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( )( )1 o
1 sin 0.125 1 7.2−θ = =

( )( )1 o
2 sin 0.125 2 14.5−θ = =

( )( )1 o
3 sin 0.125 3 22.0−θ = =

( )( )1 o
4 sin 0.125 4 30.0−θ = =

( )( )1 o
5 sin 0.125 5 38.7−θ = =

( )( )1 o
6 sin 0.125 6 48.6−θ = =

( )( )1 o
7 sin 0.125 7 61.0−θ = =

( )( )1 o
8 sin 0.125 8 90.0−θ = =

Part 4

• What is the Directivity Index for this 30 m 
long array at the frequency of the principle 
tonal?

2L 2x30mDI 10log 10log 12dB
3.75m

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟λ⎝ ⎠ ⎝ ⎠

Part 5
• What is the attenuation coefficient at the 

frequency of the principle tonal?
2 2

4 2
2 2

0.1f 40f dB0.003 2.75 10 f   kyd1 f 4100 f
−⎛ ⎞

α = + + + ×⎜ ⎟+ +⎝ ⎠

f in kHz

( )
( )

( )
( )

( )
2 2

24
2 2

0.1 0.4 40 0.4 dB0.003 2.75 10 0.4  =0.0184 kyd1 0.4 4100 0.4
−

⎛ ⎞
α = + + + ×⎜ ⎟

⎜ ⎟+ +⎝ ⎠

Part 6
• What is the Ambient Noise Level (Sea 

State and Shipping)?
( ) ( )c 1 2f f f 100Hz 500Hz 223.6Hz= = =

ssISL 55dB=

shipISL 44dB=

Ambient Noise Band Levels

( ) ( )ss ssNL ISL 10log f 55dB 10log 400Hz 81dB= + ∆ = + =

( ) ( )ship shipNL ISL 10log f 44dB 10log 400Hz 70dB= + ∆ = + =

Amb ss shipNL NL NL 81dB 70dB 81dB= ⊕ = ⊕ =

Part 7

• What is the Total Noise Level?

Amb SelfNL NL NL= ⊕

NL 81db 81dB 84dB= ⊕ =
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Part 8

• If the Memphis were at 16,000 yds from 
the Seawolf, what would be the 
Transmission Loss (include attenuation)?

( )3
0

0

rTL 20log r 10log r 10
r

−= + + α ×

transition range = ro = 14 Kyds

( ) ( )316000TL 20log 14000 10log 16000 10 83.7dB
14000

−= + + α × =

Part 9

• If the Memphis were at 16,000 yds from 
the Seawolf, what would be the signal-to-
noise level? 

( ) ( )S/ NL SL TL NL DI= − − −

( ) ( )S/ NL 180dB 83.7dB 84dB 12dB= − − −

S/ NL 96.3dB 72dB 24.3dB= − =

Part 10

• Is Memphis detectable?  If so, what is the 
Signal Excess?

DT 1.8dB=S/ NL 24.3dB= >

S/ NSE L DT 24.3dB 1.8dB 22.5dB= − = − =

Part 11
• What is the max detection range of the 

Memphis by the Seawolf (this time you 
can ignore attenuation)?

( ) ( )S/ NL DT SL TL NL DI= = − − −

( ) ( ) ( ) ( )TL SL DT NL DI 180dB 1.8dB 72dB 106.2dB= − − − = − − =

0
0

rTL 20log r 10log 106.2dB
r

= + =

rTL 20log14000 10log 106.2dB
14000

= + =

r 2980kyds=
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Passive Sonar Homework 
 
Attacking Platform Data 
A passive continuous line array sonar 40 m long receives signals in a one half octave bandwidth centered 
on a frequency of 400 Hz.   
The Integration time of the sonar suite = 2.0 s.   
Want P(D) = 50%, P(FA) = 0.1%  assume ideal sonar processor 
ISL self noise = 52 dB  
 
Target Data 
ISL target = 120 dB  
 
All spectrum levels are constant in the range of frequencies in the sonar’s receiver bandwidth.  
 
Environment 
Wind Speed = 5 knots 
Shipping = moderate to heavy (split the difference) 
transition range = 5000 yds 
 

1. What are the upper and lower frequencies in the half octave band and what is the band width? 

2. What is the detection index required for detection of the target? 

 

3. What would be the detection threshold for detecting the target using passive sonar? 

4. What are the first three angles for the side lobes of the sonar’s 40 m long linear array (only give 
from 0° to 90°)? 

 PSHW-1



5. What is the Directivity Index for this 40 m long array at the center frequency? 

6. What is the attenuation coefficient at the center frequency? 

7. What is the Ambient Noise Level (Sea State and Shipping) in the half octave band? 

8. What is the Self Noise Level in the half octave band? 

9. What is the Total Noise Level in the half octave band? 

10. What is the Source Level, SL, of the target in the half octave band? 

11. If the target is at 10000 yds, what would be the Transmission Loss (include attenuation)? 

12. If the target is at 10,000 yds, what would be the signal-to-noise level?  

 

 PSHW-2



13. Is the target detectable?  If so, what is the Signal Excess? 

14. What is the Figure of Merit (this time you can ignore attenuation)? 

15. What is the max detection range of the target  (this time you can ignore attenuation)? 

 

 PSHW-3
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Active Sonar Equation and 
Projector Source Level 

 
Active Sonar Equation 
 
 We are now going to shift from the case where a sonar system is designed to detect 
acoustic energy emitted from a target but masked by the background noise of the ocean to the 
case where the acoustic energy originates from our own sonar system, travels to the target and is 
reflected back to our system (or perhaps another system).  Active sonar functions in a manner 
analogous to RADAR.  The sonar system must act as both a transmitter and a receiver.  Recall 
the passive sonar equation, 
 

( )S/ NL SL TL NL DI D= − − − > T  
 

The equation tells us if the signal received at our detector in the bandwidth of our detector 
divided by the noise received at our detector in the same bandwidth it greater than a threshold 
ratio, we should be able to detect the target with some established certainty and some acceptable 
probability of false alarms.  The detection threshold is typically due to energy detection.  

 
For the case of active sonar, there must be a fundamental change to the signal terms.  

Specifically, the source level refers to the source level of our projector.  The transmission loss is 
necessarily twice that of the passive case.  Additionally only some fraction of the energy that 
reaches the target is actually reflected back to our system.  The passive terms SL-TL are replaced 
by the terms SL-2TL+TS, where TS is called “Target Strength” and represents the ability of the 
target to reflect energy.  These terms are collectively referred to as the “echo level,” often 
abbreviated, EL.   With these alterations, the active sonar equation becomes:    
 

( )S/ NL SL 2TL TS NL DI DT= − + − − >  

Here the detection threshold is due to correlation detection. 
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Active sonar is more complicated than the passive case because as an emitter of acoustic 

energy, our system adds to the background noise masking the reflected signal.  This is 
particularly true if there are other non-target items that reflect sound back to our system at about 
the same time as the target reflection is detected.  Possible sources of reflection are the surface 
and bottom, fish, other biologics, air bubbles, and dust or dirt.   
 

S/ NL SL 2TL TS RL DT= − + − >  
 
These reflections are in combination referred to as reverberation.  The term that describes the 
ability of these unwanted reflections to mask the target signal is called “Reverberation Level.” 
 
The first active sonar equation is the case when the received noise level only limits the 
detectability of the return reflection from the target.  The second is used when reverberation of 
the outgoing pulse, limits the detectability of the return reflection.  We will discuss these 
equations further during the next few weeks.  Unfortunately, much like income tax calculations, 
there is often no way to know which method to use until both calculations are done and we see 
which is more limiting. 
  
Projector Source Level 

 Before we delve further into the active sonar equation though, let’s start with a revisit and 
redefinition of the source level term, SL.  In the active sonar equation, the source level is no 
longer the level of the contact or target, but rather the source level of the projector from the 
active sonar system.  This source level is the level (in dB re 1µPa) of the projector, 1 yard from 
the projector.   
 
 To solve for the source level, we can start with the definition of passive source level: 

1yd

ref

I
SL 10log

I
=  

Substituting in the equation for intensity: 

( )

2
rms

1 yd
at 1 yd

2
at 1 yd

p PwrI
c Area

 where Area 4 1 yd

= =
ρ

= π

 

so the SL becomes: 

( )
( )

2

22 2
ref ref

Pwr
4 1 yd Pwr cSL 10log 10log
p 4 1 yd p

c

⎛ ⎞
⎜ ⎟⎜ ⎟π ⋅ρ⎝ ⎠= =

⎛ ⎞ π
⎜ ⎟ρ⎝ ⎠
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We can substitute in the nominal values for the density and speed of sound of seawater 
(ρSW=1000 kg/m3 and cSW=1500 m/s), knowing pref=1µPa and converting yards to meters we get: 

( ) ( )( )

( ) ( ) ( )
( )

3

2 22 6

1000 kg/m 1500 m/s
SL 10log Pwr 10log

0.9144 m4 1 yd 1x10  Pa1 yd
SL 10log Pwr 171.5 dB

−

= +
π

= +

 

Within the sonar system, there is an efficiency at converting the electrical input power to the 
acoustical output power and this can further modify our results where: 

( )

acoustic E

E

E

Pwr P E
where E is the system efficiency thus:
SL 171.5 dB 10log P E
SL 171.5 dB 10log P 10log E

= ⋅

= + ⋅

= + +

 

BUT, this is only for an omni-directional hydrophone.  We must now account for the 
directionality of our transducer. 

Directionality of Transducer 

Our latest result assumes that the active source is omni directional (all power is 
transmitted equally in all directions.)  An omni-directional transducer is nearly impossible to 
build though and may not be the best option.  To account for the directionality of the transducer, 
we must add in a directionality term, DIT, the directivity index for the active transducer.  The 
directivity index is defined as it was for the passive sonar equation, the only difference is that the 
intensities would now be the intensities of the active transmission from the transducer.   

non directional
T

directional

IDI 10log
I

−=  

A well known theorem in acoustics called the Principle of  Reciprocity states as one of its 
conclusions that under certain conditions the beam pattern b(θ,φ) of a receiving array is the same 
as that for a transmitting array.  This means that the receiving directional properties of n-element 
arrays, line arrays, and circular piston arrays will be useful in describing the directional 
properties of transmitting arrays. 

 
We can show that the source level of the sound within the main beams of the transducer 
becomes: 

 
E TSL 171.5 dB 10log P 10 log E DI= + + +  

 
Just as passive directivity index prevented us from listening to noise from unimportant directions 
and effectively reducing the noise, transmitting directivity index prevents us from directing 
sound into unwanted directions, effectively increasing the source level. 
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 Transducer Sensitivity 
 
We next define transducer sensitivity.  This quantifies the quality of the electro-acoustic 
conversion.  It expresses the relation between the input and output values of the transducer 
(acoustic pressure to electric voltage). 

1V 1V

ref ref

I pSV 10log 20log
I p

⎛ ⎞ ⎛
= =⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

 

Where p1v is the acoustic pressure 1 m away from the transducer in a given direction for a 
voltage of 1 V. 

For an input voltage of 1 V, recalling that electric power, 
2

E
VP
R

= , we get: 

PSL SV 171.5 10log R 10log E DI= = − + +  

Where RP is the real part of the input electrical impedance.  Manufacturers typically use SV to 
allow consumers to compare systems with the same 1 V input.  To convert SV to actual SL, 
simply add 20logV. 
 
Acoustic Cavitation 

 The maximum transmission power is limited by two physical constraints: 
 
1.  If too large a voltage is applied to the transducer, it leads to a non-linear response of the 
materials, followed by degradation and failure. 
 
2.  Limits of the propagation medium – cavitation. 

Cavitation occurs when the local low pressure caused by the acoustic pressure wave causes gas 
bubbles to form in front of the transducer, thereby limiting the electro-acoustic efficiency.  The 
bubbles act as little shock absorbers damping effect of the motion of the transducer face on the 
surrounding water.   This effect doesn’t occur when the acoustic pressure on the projector wall is 
greater than or equal to pcav. 

4
cav atmp p 10= + z , where z is depth in meters 

In terms of power that causes cavitation: 

2
cav

cav

p
P S

2 c
=

ρ
, where S is transmitting surface 

Therefore: 

( )cavSL 186 10logS DI 20log 10 z= + + + +  
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Problems 
1. Given the peak electric power of an active sonar system as 850 W, system efficiency as 27%, 

IND = 1, and ID = 18, determine: 
a) The Source Level? 
b) The acoustic power level? 

 
2.  A sound projector is a plane circular piston of diameter 50 cm and operates at a frequency of 

15 kHz with a power output of 2500 W.  The speed of sound is 1500 m/s. 
 a)   What is the source level of the projector on the beam axis 
 b)  What is the plane wave rms acoustic pressure at one yard from the acoustic center (i.e. on 

the beam axis)? 
 
3.  An acoustic homing torpedo transducer is a plane circular array of diameter 25 cm.  It 

operates at 15 kHz in water where c = 1500 m/s.  If the efficiency of converting electrical 
energy into acoustic energy is 60%, and a source level of 220 dB is required, what must be 
the electric power input? 
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Active Sonar Equation Adapting Passive Ideas

( )S/ NL SL TL NL DI DT= − − − >Passive Case:

From our Sonar TL TL ' 2TL+ ≈

Target Strength describes the fraction
of energy reflecting back from the target 

( )S/ NL SL 2TL TS NL DI DT= − + − − >

Reverberation Noise

Reflections from non-target objects
is greater that noise.

Reverberation limited

RL NL DI> −

S/ NL SL 2TL TS RL DT= − + − >

Active Sonar – Materials

• Typical piezoelectric materials
– Quartz
– PZT -Lead zirconate titanate
– Barium Titanate

Piezoelectricity

a a+∆a

Source Level for an Omni-
directional projector

ref

yd

I
I

SL 1log10=

( )

2
rms

1 yd
at 1 yd

2
at 1 yd

p PwrI
c Area

 where Area 4 1 yd

= =
ρ

= π

( )
( )

2

22 2
ref ref

Pwr
4π 1 yd Pwr cSL 10log 10log
p 4 1 yd p

c

⎛ ⎞
⎜ ⎟⎜ ⎟ ⋅ρ⎝ ⎠= =

⎛ ⎞ π
⎜ ⎟ρ⎝ ⎠

( ) ( )( )

( ) ( ) ( )
( )

3

2 22 6

1000 kg/m 1500 m/s
SL 10log Pwr 10log 10log Pwr 171.5 dB

0.9144 m4 1 yd 1x10  Pa1 yd
−

= + = +
π
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Electrical Efficiency

( )

acoustic Electric

E

E

Pwr Pwr E
where E is the system efficiency thus:
SL 171.5 dB 10log P E
SL 171.5 dB 10log P 10log E

= ⋅

= + ⋅

= + +

ElectricPwr

acousticPwr

Efficiency may range from 20% to 70% for most sonar applications

Directional Arrays

E TSL 171.5 dB 10log P 10log E DI= + + +

ldirectiona

ldirectionanon
T I

IDI −= log10

Principle of Reciprocity

( ) ( )receiving Transmitting
b , b ,θ φ = θ φ

Transducer Sensitivity
How many dB for 1 volt input?

1V 1V

ref ref

I pSV 10log 20log
I p

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

( ) PSL @1V SV 171.5 10log R 10log E DI= = − + +

2

E
VP
R

=

Input impedance

Manufacturers typically advertise based on SV.  To find SL, add 20logV.

Example

• Compute the source level for an circular piston 
projector of diameter = 1 meter radiating 10 kW 
acoustic power at a frequency of 15 kHz in water

E TSL 171.5 dB 10log P 10log E DI= + + +

( ) 22

T

1mDDI 10log 10log 29.94dB
.1m
π⎛ ⎞π⎛ ⎞= = =⎜ ⎟⎜ ⎟λ⎝ ⎠ ⎝ ⎠

4SL 171.5 dB 10log10 29.94 dB 241.5 dB= + + =

Piston array:

Cavitation

410cav atmp p z= + (z in meters)

2

2
cav

cav

p
P S

cρ
= S = Tranducer Surface Area

Pressure Threshold

Power Threshold

( )186 10log 20log 10cavSL S DI z= + + + +
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Target Strength 
 
 When an active sonar pulse is transmitted into the water, some of the sound reflects off of 
the target.  The ratio of the intensity of the reflected wave at a distance of 1 yard to the incident 
sound wave (in decibels) is the target strength, TS.   

r

i

r

i

ITS 10log 10log
I 4

I  Intensity reflected from target
I  Intensity incident on target

 Backscattering cross-section

⎛ ⎞ σ⎡ ⎤= =⎜ ⎟ ⎢ ⎥π⎣ ⎦⎝ ⎠
≡
≡

σ ≡

 

Ir depends on the physical characteristics of the target and characteristics of the signal (angle and 
frequency).  The result in the square brackets comes from the fact that if all the energy reflects 
from the target, the Power striking the target and the power leaving the target must be equal. 

2
i rI 4 rσ = π I  

The ratio of reflected to incident intensity is simply 
r

2
i

I
I 4 r

σ
=

π
 

where r is 1 yard.  The backscatter cross section is a number that represents the degree to which 
sound is scattered off a target.  It is related to the size, shape and reflectivity of a target. 
 
 Can the quantity, target strength be solved for analytically?  Yes, but only for simple 
geometric shaped objects.  We will present how this can be done for a convex object and a 
simple sphere.  For more complicated geometric objects, I have included a table from Urick, 
Principles of Underwater Sound, which gives the formula to calculate the target strength for 
many other shaped objects.  For any irregularly shaped object, we may be able to model them as 
a simple geometric object but for a precise value, we would have to use empirical data. 
 For analysis, assume that the incident wave is a plane wave (valid if source far from 
target) and that the scattered wave is spherical originating from the target.  Ir is measured 1 yd 
(or 1 m) from the target. 

Target Strength of an arbitrary convex object 
 

In the diagram below, let the surface area of the arbitrary convex surface be dA=ds1ds2.  
If the sound incident on the surface has an intensity, Ii, then the power striking the surface is  

 
i 1 2 i 1 1 2 2dP I ds ds I R d R d= = θ θ  

 
since ds=Rdθ.  The centers of curvature for the two sides of the surface are not in general the 
same point.  
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1dθ

1ds

2dθ

2ds

R2

R1 

The pivotal question when examining the reflected intensity is what angles dθ1’ and dθ2’ 
does the sound energy bounce of the surface into.  Examination of the ray diagram below shows 
that sound hitting the surface within an angle, θ1, of the equator, bounce of the surface following 
the law of reflection.  As such the ray departs the surface with an angle, 2θ1, twice the incident 
angle.  We notice that the exiting rays appear to emanate from a point half way between the 
center of curvature and the surface.  In General Physics we called this a “focal point” and for a 
spherical mirror we recall that it was located at one half the radius of curvature.  

12θ 1θ

1R

1θ

1θ

r

  
 

With this in mind, we identify the surface the energy leaving the surface must pass 
through is 

2
1 2 1 2 1 2dA ds ds r2d r2d 4r d d′ ′= = θ θ = θ θ  

The reflected intensity is then: 
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i 1 1 2 2 i 1 2
r 2 2

1 2

I R d R d I R RdPI
dA 4r d d 4r

θ θ
= = =

θ θ
 

 
The resulting Target Strength follows from the definition: 
 

i 1 2
2

r 1 2
2

r 1ydi i

I R R
I R R4rTS 10log 10log 10log 10log
I I 4r =

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

1 2R R
4

 

 
As a special case, let us look at a simple rigid sphere.  In this case, R1=R2=a, the radius of the 
sphere. The Target Strength then becomes 
 

2aTS 10log
4

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

Let’s see if this result makes physical sense. 
 

Target Strength of Simple Rigid Sphere 

Case I:  (ka>>1 {or ka > 10} or in other words, when the radius of the sphere is much 
larger than the wavelength of the incident wave.) 
 

 If the rigid sphere is 
large compared with the 
wavelength of the incident 
sound wave and the sphere is 
an isotropic reflector (reflects 
sound equally in all 
directions), we can use the 
diagram at right: 
 
 The power of the 
incident wave that will be 
reflected is that power of the 
wave incident on a cross-

section of the sphere where: 

a 

incident wave 

reflected wave 

2
i i

2

P I a

where a

= π

σ = π
 

Since the power of the incident wave is all reflected back, we find that: 
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r i
2 2

T i
2

T
2

i

power reflected  power incident
P P

I 4 r I a

I a
I 4r

=
=

π = π

=

 

Then using the definition of target strength, we find: 
2

T
2

i r 1yd

2

I aTS 10log 10log
I 4r

aTS 10log
4

=

= =

=

 

This is exactly the same result we obtained above as a special case of an arbitrary convex 
surface.  Note that the above target strength result is independent of frequency (as long as 
ka>10).  Target strength just depends on the radius, a.  For a 1 cm radius rigid sphere, 

.  A 2 m radius sphere however would have a TS= 0 dB.  This 
simple approximation is only meaningful for high frequencies where the wave effects can be 
averaged.  For lower frequencies (longer wavelengths), the wave effects must be taken into 
account. 

5 22.5 10  m  and =-46 dBbs TSσ −= ×

Case II:  (ka<1) 

 When the wavelength of the incident wave is large compared to the size of the sphere, 
some of the wave will appear to continue past the ball as if it did not exist.  There will actually be 
very little backscattering.  This case, Lord Rayleigh showed that: 

22 2
T

4 2
i

I V 3 cos 1
I r 2
where:
V  volume of the sphere

π ⎡ ⎤= θ−⎢ ⎥λ ⎣ ⎦

≡
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a

θ

180o 0o

 

For the target strength, µ=-1 (cos 180° = -1, straight backscatter) and r = 1 yd.  The above then 
becomes: 

( ) [ ]4 2

4 6
bs

25TS 10log ka a
36

254 k a
36

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⇒ σ = π

 

For Case I, one of the major assumptions was that the entire cross-sectional area (σ) contributed 
to the backscattering of the incident sound energy.  For this case, the ratio of the effective 
backscattering cross-section to the geometric cross-section would be: 

( )4bs
2 2.8 ka

a
σ

=
π

 

Notice that σ/πa2 increases very rapidly with frequency ( )4f∝ , therefore target is barely 
detectable when size is much smaller than the wavelength.  As frequency increases there is a 
limit to Rayleigh scattering: 

2 aka 1

Occurs when =2 a

π
= =

λ
λ π

 

Case III:  If 1<ka<10 

 For this exceptional case, we can use the plot given below which was taken from Urick, 
Principles of Underwater Sound, p. 299.  This plot shows the ratio of the backscattering cross-
section to the geometric cross-section as a function of ka, which can be used to calculate a value 
for the target strength.  Target response in this range is dominated by interference between 
reflected wave and “creeping waves” refracted around the surface of the sphere. 
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Fluid Sphere 

 Spherical target is no longer ideally rigid, therefore in the Rayleigh regime: 

1

22
14 6 2 1

bs 2
2 2 2 1

1 1

2 2

c1k a
3 3 c 2

,c  density and sound speed in water
,c density and sound speed in target

⎡ ⎤ρ ρ −ρ
σ = − +⎢ ⎥

ρ ρ +ρ⎢ ⎥⎣ ⎦
ρ ≡
ρ ≡

 

When ρ2>ρ1 and c2>c1, therefore σbs approaches that of ideal rigid sphere.  When ρ2<ρ1 and 
c2<c1, σbs is dominated by the compressibility of the sphere: 

22
4 6 1 1

bs 2
2 2

ck a
3 c
⎡ ⎤ρ

σ = ⎢ ⎥ρ⎣ ⎦
 

σbs is much higher than for a rigid sphere of the identical radius.  For example, the target strength 
of an air bubble is 75 dB higher than the target strength of rigid sphere with same radius. 
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Scattered Gas Bubbles 
 
 Backscatter of gas bubbles in sea water is widely studied because of the important 
acoustic implications.  Air bubble clouds can create undesirable reverberation from the sea 
surface.  Gas bubbles are also present in sediment and are an essential component of seafloor 
backscattering.  Effects of random populations on the acoustic propagation and backscattering 
are difficult to predict accurately other than statistically.  Gas bubble acoustic behavior is 
dominated by resonance.  For frequencies near the resonance frequency (f0 depends on bubble 
size), backscattering and absorption are enhanced; 

3

bs 22
20

0

a

f 1
f

f  resonant frequency
 damping term

σ =
⎛ ⎞⎛ ⎞ − + δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

≡
δ ≡

 

Resonant frequency can be approximated as: 

( )( )

w
0

w

3
w

5
w

3 P1 3.25f 1 0.1z
2 a a

1000 kg/m

P  hydrostatic pressure in Pa 10 1 0.1z

z  depth in meters
 adiabatic constant for air ( 1.4)

γ
= ≈ +

π ρ

ρ =

≡ ≈

≡
γ ≡ ≈

+

<

 

 
Damping effect is due to the combined effects of radiation, shear viscosity and thermal 
conductivity.  A good approximation is , where f0.30.03  for 1 kHz< 100 kHzk kf fδ ≈ k is the 
frequency in kHz. 
 
Fish Target Strength 
 
 Main contribution for fish target strength comes from the swim bladder.  This gas-filled 
bladder shows a very strong impedance contrast with the water and fish tissues.  It behaves either 
as a resonator (frequencies of 500 Hz-2 kHz depending on fish size and depth) or as a geometric 
reflector (> 2 kHz).  This swim bladder behaves very similar to gas bubbles.  The difference in 
target strength between fish with and without swim bladder can be 10-15 dB.   
A semi-empirical model most often used is: 

19.1log 0.9 log 24.9fish kTS L f= + −  
Love (1978) 

 
This formula is valid for dorsal echoes at wavelengths smaller than fish length L. 
A more detailed model is: 
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20logfish specTS L TS= −  
McLennan and Simmonds (1992) 

 
TSspec is given in Table 3.1 of Lurton, p.77.  Note the lowest TSspec is for mackerel which has no 
swim bladder.  As frequencies approach the resonant frequency around 1 kHz, the target strength 
increases and can reach -25 to -20 dB.   
 

For many other geometric shapes: 

 Use the tables given at the end of this lesson.  Below are the equations and definition of 
terms for a cylinder.  

Scattering from Cylinders

L

2a

θ

( )

22 2

2
aL sin cosTS 10log
2 1yd

⎡ ⎤⎛ ⎞ α θ⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟λ α⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2 L sinπ
α = θ

λ

( )

2

2

aL 1TS 10log
2 1yd

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟λ⎢ ⎥⎝ ⎠⎣ ⎦

o0θ =

Dimensions (L,a) large 
compared to wavelength

 

Conclusion 

 One of the main points of this section is that it is extremely difficult to get an accurate 
value for the target strength of a complex target but, if we can approximate the target as a simple 
geometric shape, we can calculate a value that sould be sufficient.   
 

For the wavelengths that we typically use for active sonar systems though, a rough 
approximation that can often be used is that the target strength will be directly related to the 
cross-sectional area of the target. 
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Form t  
TS=10log(t) Symbols Direction of 

incidence Conditions 

Any convex 
surface 

1 2a a
4

 

a1a2 = principal 
radii of 
curvature 
r = range 
k = 
2π/wavelength 

Normal to 
surface 

ka1, ka2 >>1 
r>a 

Large Sphere 
2a

4
 a = radius of 

sphere Any ka>>1 
r>a 

Small Sphere 
2

4

V61.7
λ

 
V = vol. of 
sphere 
λ = wavelength 

Any ka<<1 
kr>>1 

Infinitely long 
thick cylinder 

ar
2

 a = radius of 
cylinder 

Normal to axis 
of cylinder 

ka>>1 
r > a 

Infinitely long 
thin cylinder 

4 4

2

9 a rπ
λ

 a = radius of 
cylinder 

Normal to axis 
of cylinder ka<<1 

2aL
2λ

 

L = length of 
cylinder 
a = radius of 
cylinder 

Normal to axis 
of cylinder 

Finite cylinder 

( )2
2 sinaL cos

2

β 2 θβ
λ

 

a = radius of 
cylinder 
β = kLsinθ 

At angle θ with 
normal 

ka>>1 
r > L2/λ 

Infinite Plane 
surface 

2r
4

  Normal to plane  

Rectangular 
Plate 

22
2ab sin cos⎛ ⎞β⎛ ⎞ θ⎜ ⎟ ⎜ ⎟λ β⎝ ⎠ ⎝ ⎠

 
a,b = sides of 
rectangle 
β = ka sinθ 

At angle θ to 
normal in plane 
containing side 
a 

r > a2/λ 
kb >> 1 
a > b 

Ellipsoid 
2bc

2a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
a, b, c = 
semimajor axis 
of ellipsoid 

parallel to axis 
of a 

ka, kb, kc 
>>1 
r >> a, b, c 

Circular Plate ( ) 22
1 22Ja cos
β⎛ ⎞⎛ ⎞π

θ⎜ ⎟⎜ ⎟λ β⎝ ⎠⎝ ⎠
 

a = radius of 
plate 
β = 2kasinθ 

At angle θ to 
normal 

r > a2/λ 
ka>>1 

Circular Plate 
2

4 64 k a
3

⎛ ⎞
⎜ ⎟π⎝ ⎠

 a = radius 
k = 2π//λ 

Perpendicular 
to plate ka<<1 
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Problems 

1.  Johns Hopkins Applied Physics Lab is researching active, mine mapping sonar.  The sonar 
they are using uses a frequency of 40 kHz.  The mines they are trying to detect are spherical balls 
that are 1.4 m in diameter. 
 
Which of the following is true: 

a) The TS of the mines can be approximated using the large sphere formula 

(
4

log10
2aTS = ) since ka>>1. 

b) the TS of the mines can be approximated using the small sphere formula 

(
2

4

VTS 10log 61.7
⎛ ⎞

= ⎜ λ⎝ ⎠
⎟ ) since ka<<1. 

c) The target strength of the mines does not depend on the frequency of the sonar system. 
d) Lower frequency sonar should be used to get better spatial resolution of the mines. 

2. If the target strength of the mines in problem 1 is found to be –9.1 dB, what would be the 
intensity of a return wave if the incident wave had an intensity of 21 W/m2? 

 
3. What would be the best approximation of the target strength of a submarine that is 300 

meters long, and 30 meters in diameter?  Assume the frequency of the active sonar is 40 kHz. 
 
4. Given a sphere of radius 1.0 m in water (c = 1500 m/s) for what range of frequencies is the 

sphere considered to be 
a) A “large perfectly rigid” sphere (corresponding to specular or geometrical scattering). 
b) A “small fixed rigid” sphere (corresponding to Rayleigh scattering). 

 
5. A modern torpedo is roughly 65 cm in diameter and 6 m long.  An active sonar of frequency 

20 kHz is used to measure the target strength when c = 1500 m/s.  For each case take r = 
1000 m. 
a) Why is range, r, given in this problem? 
b) If from the beam aspect, we consider the torpedo to be a cylinder, what target strength is 

expected. 
c) If from head-on we take the nose to be spherical, what target strength is to be expected? 

 
6. The first teardrop shaped submarine was USS Albacore, shown below at its museum site in 

Portsmouth NH.   
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Image courtesy of the Historic Naval Ships Association 

 
Consider USS Albacore to be an ellipsoid of length 68 m and diameter 9.0 m at the midpoint.  
Calculate the target strength for active sonar at a beam aspect.   
 
7. A sound beam of frequency 15 kHz is being used to search for a thick rectangular flat plate 

with dimensions 5.0 m x 3.0 m dropped from an oil rig at a depth of 100 m.  Calculate the 
target strength of the plate: 
a) At normal incidence, and 
b) At an angle of 30o from the normal in the plane of the longer axis of the plate. 

 
8. Given a sphere of radius 0.20 m in seawater where c = 1500 m/s, use the below figure to 

determine: 
a) The ratio of backscattering to geometric cross section for 10 Hz, 100 Hz, 1000 Hz, 10 kHz. 
b) The target strength for frequencies of 10 Hz, 100 Hz, 1000 Hz, 10 kHz. 
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9. An acoustic pulse has an intensity of 10 W/m2 incident 100 m from the center of an 
underwater target.  The intensity of the 180o reflected pulse has an average intensity of 3.16   
µW/m2

 also measured 100 m from the target center.  If spherical spreading is the only 
transmission loss, find the target strength of the object.  Hint:  EL = SL – 2 TS - +TS 
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1

Target Strength

reflected wave

incident wave

a

2
i rI 4 r Iσ = π

r

i

ITS 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
scattering cross sectionσ =

2TS 10log 10log
4 r 4
σ σ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

At r = 1 yd.

Factors Determining Target Strength

• the shape of the target
• the size of the target
• the construction of the walls of the target
• the wavelength of the incident sound
• the angle of incidence of the sound

Target Strength of a Convex Surface

i 1 2dP I ds ds=

R1

R2

1dθ
1ds

2dθ

2ds

i 1 1 2 2dP I R d R d= θ θ

Incident Power

Large objects compared to the wavelength

Reflected Intensity

12θ 1θ
1R

1θ
1θ

r

1 1ds r2d′ = θ

1 2 1 2dA ds ds r2d r2d′ ′= = θ θ

i 1 1 2 2 i 1 2
r 2

1 2

dP I R d R d I R RI
dA r2d r2d 4r

θ θ
= = =

θ θ

R1

R2

1dθ
1ds

2dθ

2ds
r

i

ITS 10log
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

1 2R RTS 10log
4

⎛ ⎞= ⎜ ⎟
⎝ ⎠

(At r = 1 m)

Special Case – Large Sphere

1 2R R a= =

2a aTS 10log 20log
4 2

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

a

Note: 
2a

4 4
σ

=
π

2aσ = π

Large means 
circumference >> wavelength

ka 1>>

TS positive only if a > 2 yds

Large Spheres (continued)

( )2 2 2 2r
12

i

I 1 a a cot J ka sin
I 4 r 2

⎛ θ ⎞⎛ ⎞= π + π θ⎜ ⎟⎜ ⎟π ⎝ ⎠⎝ ⎠

a

θ

0o180o
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2

Example

• An old Iraqi mine with a radius of 1.5 m is 
floating partially submerged in the Red Sea.  Your 
minehunting sonar is a piston array and has a 
frequency of 15 kHz and a diameter of 5 m.  20 
kW of electrical power are supplied to the 
transducer which has an efficiency of 40%.  If the 
mine is 1000 yds in front of you, what is the signal 
level of the echo.  Assume spherical spreading.   

Scattering from Small Spheres 
(Rayleigh Scattering)

22 2
r

4 2
i

I V 3 cos 1
I r 2

π ⎛ ⎞= θ−⎜ ⎟λ ⎝ ⎠

( )4 225TS 10log ka a
36
⎡ ⎤= ⎢ ⎥⎣ ⎦

ka 1<

Scattering from Cylinders

L

2a

θ

( )

22 2

2

aL sin cosTS 10log
2 1yd

⎡ ⎤⎛ ⎞ α θ⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟λ α⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2 L sinπ
α = θ

λ

( )

2

2
aL 1TS 10log
2 1yd

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟λ⎢ ⎥⎝ ⎠⎣ ⎦

o0θ =

Dimensions (L,a) large 
compared to wavelength

Gas Bubbles

• Damping effect is due to the 
combined effects of radiation, 
shear viscosity and thermal 
conductivity.  A good 
approximation is 

• where fk is the frequency in kHz.

3

22
20

0

1

resonant frequency
 damping term

bs
a

f
f

f

σ

δ

δ

=
⎛ ⎞⎛ ⎞
⎜ ⎟− +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

≡

≡

( )( )

0

3

5

31 3.25 1 0.1
2

1000 kg/m

hydrostatic pressure in Pa 10 1 0.1

 depth in meters
 adiabatic constant for air ( 1.4)

w

w

w

w

Pf z
a a

P z

z

γ
π ρ

ρ

γ

= ≈ +

=

≡ ≈ +

≡
≡ ≈

0.30.03  for 1 kHz< 100 kHzk kf fδ ≈ <

Fish
• Main contribution for fish target strength comes from the swim 

bladder.  
• This gas-filled bladder shows a very strong impedance contrast with 

the water and fish tissues.  It behaves either as a resonator (frequencies 
of 500 Hz-2 kHz depending on fish size and depth) or as a geometric 
reflector (> 2 kHz).  This swim bladder behaves very similar to gas 
bubbles.  The difference in target strength between fish with and 
without swim bladder can be 10-15 dB.  

• A semi-empirical model most often used is:

• Love (1978)
• This formula is valid for dorsal echoes at wavelengths smaller than fish 

length L.

19.1log 0.9 log 24.9fish kTS L f= + −

4
21aa

2r
4

4

2

7.61
λ
V

2
ar

ra
2

449
λ
π

λ2

2aL

( )2
2 2sinaL cos

2

β θβ
λ

2a
4

θ
β
β

λ
2

22

cossin
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ab

2

2
⎟
⎠
⎞

⎜
⎝
⎛

a
bc

( )
θ

β
β

λ
π 2

2

1
2

cos2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ja r > a2/λ
ka>>1At angle θ to normala = radius of plate

β = 2kasinθCircular Plate

ka, kb, kc >>1
r >> a, b, cparallel to axis of aa, b, c = semimajor axis 

of ellipsoidEllipsoid

r > a2/λ
kb >> 1
a > b

At angle θ to normal in 
plane containing side a

a,b = sides of ractangle
β = ka sinθRectangular Plate

Normal to planeInfinite Plane surface

At angle θ with normala = radius of cylinder
β = kLsinθ

ka>>1
r > L2/λ

Normal to axis of 
cylinder

L = length of cylinder
a = radius of cylinder

Finite cylinder

ka<<1Normal to axis of 
cylindera = radius of cylinderInfinitely long thin 

cylinder

ka>>1
r > a

Normal to axis of 
cylindera = radius of cylinderInfinitely long thick 

cylinder

ka<<1
kr>>1AnyV = vol. of sphere

λ = wavelengthSmall Sphere

ka>>1
r>aAnya = radius of sphereLarge Sphere

ka1, ka2 >>1
r>aNormal to surface

a1a2 = principal radii of 
curvature
r = range
k = 2π/wavelength

Any convex surface

ConditionsDirection of incidenceSymbolst 
TS=10log(t)Form
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Example

• What is the target strength of a cylindrical 
submarine 10 m in diameter and 100 m in 
length when pinged on by a 1500 Hz sonar? 

2 4 6 8 10

-40

-20

20

40
TS

θ

10o
5o

Example 

• What is the target strength of a single fish 
1m in length if the fish finder sonar has a 
frequency of 5000 Hz?
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Scattering and 
Reverberation Level 

 
 When an active sonar pulse is transmitted into the water, some of the sound reflects off of 
the target.  Additionally, there are many other sources where the sound energy may reflect off 
back towards own ship.  This scattering is caused by the many sources of inhomogeneities in the 
ocean.  These sources may include fish, other biologics, air bubbles, dust or dirt as well as the 
ocean bottom, and surface. 
   
 There are two types of reverberation.  The first is volume reverberation.  This is caused 
primarily from biologics spread throughout the ocean.  The second, surface reverberation, occurs 
at the two surfaces within the ocean, the surface and the bottom. 
   
 Calculating reverberation is a very difficult process that depends on many assumptions 
and requires that many factors be known.  The reverberation level, RL, is calculated by 
comparing the unwanted reflected intensity to the reference intensity: 
 

reverb

ref

IRL 10log
I

=  

 What we will do is be given an equation for each type of reverberation that satisfies the 
above relationship and use that to calculate the reverberation level. 

Volume Reverberation 

 As stated previously, volume reverberation is the scattering of the active pulse back to 
own ship from biologics spread throughout the ocean volume.  The biologics are not spread 
evenly throughout the ocean depths.  Since the biologics are sensitive to light, the depth that they 
are most prevalent at will vary with the time of day.  Additionally, the amount of scattering that 
occurs due to the biologics will vary with frequency of the active pulse.  Last section we showed 
a model for the target strength of a fish which depends on the frequency. 
   
 To calculate the volume reverberation level, we can use the following equation: 
 

V false  t argets VRL SL 2TL TS SL 40log r S 10log V= − + = − + +  
 

Hopefully this equation reminds you of the equation for the echo level from an actual target 
presented in section 16.  The source level and the two way transmission loss are the same as the 
echo level.  The target strength of the false targets is made up of two terms: 
 

false  t argets VTS S 10log V= +  
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( ) ( )

V V

2

where:
S 10logs Volume Scattering Strength

cV r reverberation volume
2
b , b , d equivalent solid angle of arrays

based on type of arrays
r range to the target in yards
τ pulse length

= ≡
τ

= Ψ ≡

′Ψ = θ φ θ φ Ω ≡

≡
≡

∫  

 Some explanation of the reverberation volume is in order.  Physically, it is the volume of 
water around the actual target that contains false targets like bubbles and fish.  Few active sonars 
transmit continuously, instead transmitting a pulse of known length.  Even an explosive charge is 
of a finite duration.  This pulse expands out from the source in an approximately conically 
shaped beam.  The beam pattern function, b(θ,φ), studied in section 13 gives the exact shape of 
the cone.  Additionally, the sound must travel back to the array and we call the return beam 
pattern, b’(θ,φ).   When the outgoing and incoming beam patterns are integrated over all angles, 
the result is the solid angle, Ψ, of the cone.  The units of solid angle are steradians and 4π 
steradians  correspond to a solid angle covering all directions.  The area intercepted by a solid 
angle is: 
 

2Area r= Ψ  
 
 

 

Ψ 

 
As a check, note that for all directions, the area is 4πr2, the surface area of a sphere.  To get a 
volume of water, multiply this area by the thickness required by the pulse length. 
 

cthickness
2
τ

=
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An interesting artifact regarding volume 

reverberation  results because the range, ctr(t)
2

= .  

Because of this, volume reverberation decreases 

with time proportional to 
0

t20 log
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Most commonly, the volume scattering 
strength, SV, will be determined from a graph 
based on the source depth and the time of day 
(night or day).   An example from Principles of 
Underwater Sound, by Urick, p. 258 is shown at 
right. 
 

We pointed out that reverberation volume 
is related to the volume of ocean that is ensonified 
by the active pulse and is based mostly on the 
beam pattern function of both the receiver and the 
transmitter (b and b′).  The mathematics of 
calculating this solid angle are very challenging.  
As such, the value for the equivalent solid angle, 
Ψ, can be looked up in a table of values based on 
the type and dimensions of the array as well as the 
wavelength of the active pulse.  An example table is given below for several type arrays. 
 
 

ARRAY TYPE Ψ(steradians) Φ(radians) 

Circular Plane of Diameter 

D 

2

60.0 ⎟
⎠
⎞

⎜
⎝
⎛

D
λ  ⎟

⎠
⎞

⎜
⎝
⎛

D
λ56.1  

Horizontal Line of Length 

L 
⎟
⎠
⎞

⎜
⎝
⎛

L
λ32.1  ⎟

⎠
⎞

⎜
⎝
⎛

L
λ32.1  

Non-directional Point Array 4π 2π 

Caution:  Remember to use a wavelength λ and the dimension D or L in the same units! 

Notice also in the equation for the reverberation level that the level depends on the source 
level of the projector.  The more sound energy that is put out in the water, the more sound energy 
will be reflected back to the receiver.  The result is that increasing SL will increase both the echo 
level and the reverberation when reverberation limited.  The transmission loss will be the same 
for both the target and the false, reverberating targets.  When reverberation limited, the active 
sonar equation always results in a comparison between the target strength of the actual target and 
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that of the false targets.  If the difference exceeds the detection threshold, active sonar detection 
is possible. 

 
S/ NL SL 2TL TS RL DT= − + − >  

 
( )S/ N false  t argetsL SL 2TL TS SL 2TL TS DT= − + − − + >  

 
( )VTS S 10log V DT− + >  

Surface Reverberation Level 

 Surface Reverberation is due to sound waves scattering back from the surface of the 
ocean as well as the bottom of the ocean.  We will concentrate on calculating the effect due to 
reverberation from the surface but the student must understand that in very shallow water, severe 
reverberation levels may exist due to the presence of so many surfaces for the sound to reflect 
off.  That is why the effectiveness of active sonar is severely restricted in shallow waters. 
 
 The equation for surface reverberation level is very similar in for to that for volume 
reverberation: 
 

( ) ( )

S s

S S

RL SL 40log r S 10log A
S 10log s Surface Scattering Strength

cA r reverberation area
2
b 0, b 0, d equivalent beamwidth of arrays

based on type of arrays

= − + +

= ≡

τ
= Φ ≡

′Φ = φ φ φ ≡∫

 

The equivalent beamwidth is similar to the equivalent solid angle only the integration is 
only over the horizontal angle, φ.  Instead of performing this integral, the beamwidth can be 
looked up from the table above.  Multiplying the beamwidth by a range to the target gives an 
arclength near the target.  Multipling by the factor cτ/2 gives the appropriate area on the surface 
around the target   
 

The Surface Scattering Strength can be found from a graph such as the one below.  Note 
that grazing angle is used in this chart and that 90o is straight up and results in the highest surface 
scattering strength as expected.  Also note that as the wind increases, the sea surface becomes 
rougher and allows for a more diffuse reflection back to the source and a higher surface 
scattering strength.  A lower wind speed results in a calmer surface and more specular reflection 
away from the source.  In this case the surface scattering strength is relatively low.  
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Principles of Underwater Sound, Third Edition, Urick, 1983, p. 265 

Surface Scattering Strength also depends on frequency, therefore you will have different graphs 
for different frequencies.  
 

We can also have surface reverberation from the ocean floor.  Bottom reverberation is 
very complex due to variations in composition, roughness and grazing angle.  We can 
approximate the reverberation however as: 

 
B B

2
B

RL SL 40log r 10logS(r) BS
Where:

c rS(r)
2 sin

 Bottom Grazing Angle
BS  Backscatter Strength for 1 m  of seafloor

= − + +

τ
= Φ

θ
θ ≡

≡

 

 
Consequences of Reverberation 
 
Reverberation acts like noise, but some differences from ambient noise: 

- For a given transmission, the level of reverberation received decreases with time (although 
more slowly than the target echo). 
- Spectral characteristics of reverberation and signal (target echo) are nearly identical except 
for the Doppler Effect (described in the next section).  If the target is moving at sufficient 
speed the reverberation and the target will reflect different frequencies since bubbles and fish 
are moving at slow speeds. 

Volume Backscattering Strength 

Volume backscatter of a distribution of targets can be analyzed as the incoherent sum of 
contributions from each target in an average m3 of water.  For a given frequency, each 
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contribution will depend on the size and shape of each member (shape is not important if the 
object is smaller than the signal wavelength) and of the composition of the material.  If all 
scatterers are similar, therefore backscatter cross section is expressed for a certain frequency as a 
function of the dimension, a. 

 If we assume all targets are identical, therefore: 

V 1BS TS 10log N= +  

N1 is the average number of targets per m3. 

Fish Schools 

Fish schools are variable in shape and size (usually a couple of meters vertically and tens 
of meters horizontally).  Fish schools are usually of one species, therefore similar size and shape 
(and hence target strength).  If we assume fish density,  

3

3

31m

FISH

SCHOOL FISH 1m
3

SCHOOL

SCHOOL

1N            L is fish length
L

TS 20log L 25
BS TS 10log N

BS 25 20log L 10log L
BS 25 10log L

≈

⇒ ≈ −
⇒ = +

= − + −
= − −

 

As we can see the BS decreases as fish size increases.  These models and assumptions 
with the proportionality of backscatter strength and target strength form the basis of the echo 
integration method to assess fish school population.  The number of fish present in a given area 
is estimated by the total energy backscattered to the source corrected for average target strength. 

Deep Scattering Layer (DSL) 

DSL is a thin layer of ocean (tens to thousands of meters) of ocean populated with 
plankton and other small biologics.  The DSL can be found in all oceans and its depth changes 
with time of day.  In the daytime, the layer stays at 200-600 m and at night this layer migrates to 
approximately 100 m.  The main acoustic effect is caused by resonance of fish swim bladders 
(for frequencies in 1-20 kHz range).  This frequency dependence changes with depth migration 
due to pressure effects.  At higher frequencies, >20 kHz, the dominant acoustic effect comes 
from the scattering of plankton with an average .3BS 70 dB/m≈ −
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Problems 
 
1.  A non-directional transducer has a source level of 200 dB and radiates 10 kHz pulses of 100 
msec duration.  The transducer is operating in a deep scattering layer at a depth of 800 ft at a 
classified location somewhere between Hawaii and California.  See the figure below for the 
volume scattering strength.  If the sound speed is 1528 m/s 

a) Find the volume reverberation level for a target range of 5000 m and a day time 
operation. 

b) Repeat for a night time operation 
 

Volume Scattering Strength 
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2.  A Transducer consisting of a horizontal line array of length 3.0 m radiates 1000 Watts of 
acoustic power in the form of pulses.  The carrier frequency is 50 kHz, the pulse duration is 20 
msec and the sound speed in the ocean is 1528 m/s.  It is known that the wind speed at the 
surface is 8 knots.  The radiated sound beam impinges on the surface with an average grazing 
angle of 10o.   
a)  Use the Figure in your course equation sheet and find the surface scattering strength Ss in dB. 
b)  Calculate the surface reverberation level at a distance of 500 m.  
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3.  Given the following data for an active sonar search under conditions known to be volume 
reverberation limited.  The sonar search is performed at night. 
 
Plane Circular Transducer Array, Diameter = 1.2 m 
Search frequency = 5 kHz  
Pulse duration = 15 ms 
Sound speed = 1528 m/s 
Spherical spreading only, sound absorption can be neglected. 
Target strength = 18 dB 
Target is in a deep scattering layer at a depth of 200 yards  
(use chart for Sv in your course equation sheet) 
Detection Threshold is 5 dB 
 

a) Find the predicted maximum detection range. 
b) Compute the volume reverberation level if the Source Level is 210 dB. 

  
   
4.  The SSN, USS Killerfish is using its active sonar to search for a target aircraft carrier.  The 
following information pertains to the tactical situation: 
 
Wind speed = 10 knots 
Sound speed = 1528 m/s 
Transmission loss is only due to spherical spreading  (TL = 20 log r) 
Sonar pulse length = 20 ms 
Carrier frequency = 60 kHz 
Effective two way beam width is calculated for a circular plane array 
 Diameter = 1.0 m 
 Acoustic Power = Electric power x efficiency = 1.0 kW 
The sonar’s receiver is a cross correlation type 
 p(D) = 50% 
 p(FA) = 0.02% 
Sonar receiver bandwidth = 100 Hz 
Sonar beam grazing angle is 20o with respect to the horizontal 
Aircraft carrier target strength = 15 dB 
 

a) Compute the maximum detection range that the sub can detect the surface ship.  Assume 
the sonar is surface reverberation limited. 

b) Compute the surface reverberation level at the maximum detection range. 
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5.  A mine of average aspect lies on a sand bottom.  It is desired to detect the mine at a slant 
distance of 200 m by means of an active circular array located 100 m from the bottom.  If a pulse 
length of 10 msec is used, 

 
a) What horizontal effective beam width  (φ, given in radians) will be required if the sonar is 

bottom reverberation limited and the detection threshold is +2 dB? 
b) What is the minimum diameter of the circular array needed to detect this mine? 

 
Useful information: 
 
Backscattering strength for 1 m2 of sand bottom 

 
Sound speed = 1528 m/s 
TL = 20 log r 
Sonar frequency = 20 kHz 
The mine is a sphere with a radius = 0.60 m 
Bottom backscattering strength for a sand bottom is given in the below figure. 
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6.  Given the following data: 

Environment 
 c=1500 m/s 
 wind speed = 10 kts 
Sonar 
 Circular plane array D = 1/3 m, f = 10 kHz, τ=5 msec 
 SL = 217.5 dB 
 DT = 5.0 dB 
 Beam Axis is steered to 30° above the horizon 
 Operating in a region where the sonar suite is surface reverberation limited 
Target 
 TS = 15 dB 

Use all data tables and graphs in this handout. 

Compute the maximum range that the submarine could detect a surface ship. 
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1

Adapting Passive Ideas

( )S/ NL SL TL NL DI DT= − − − >Passive Case:

From our Sonar TL TL ' 2TL+ ≈

Target Strength describes the fraction
of energy reflecting back from the target 

( )S/ NL SL 2TL TS NL DI DT= − + − − >

Reverberation Noise

Reflections from non-target objects
is greater that noise.

Reverberation limited

RL NL DI> −

S/ NL SL 2TL TS RL DT= − + − >

Reverberation
Sources of Reverberation Backscatter

• Fish and smaller biological marine organisms
• Entrapped air bubbles
• Microthermal structure
• Velocity microstructure
• Variations in the characteristic impedance of 

the medium (e.g. dust and dirt)
• Surface – air-water interface
• Ocean bottom

Volume 
Reverberation

Surface 
Reverberation

Solid Angle

r

r 1dθ

1ds

2dθ

2ds

1 2 1 2dA ds ds rd rd= = θ θ

ds rd= θSince

2dA r d= ΩSimilarly
dA

Solid Angle

Units are Steradians

There are 4π steradians in all directions

Developing a Volume Reverberation Equation –
Beam forming and Traveling to the Target

( )source sI I b ,= θ φ

( )2 2
source oI r d I r r dΩ = Ω

( ) ( ) 22
s osource o

2 2

I b , rI rI r
r r

θ φ
= =

Spherical Spreading

or 1yd=
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Developing a Volume Reverberation 
Equation – Scattering Strength

( )scattered vI I r s V= ∆

( ) 2
s o

scattered v2

I b , r
I s V

r
θ φ

= ∆

Scattering Strength – fraction of energy backscattered

2V r rd∆ = ∆ Ω

How thick is the Volume?

r∆

c
τ

cr
2
τ

∆ =

2V r r∆ = ∆ ∆Ω

2 cV r
2
τ

∆ = ∆Ω

Developing a Volume Reverberation 
Equation – Scattering Strength

r∆

c
τ

2 cV r
2
τ

∆ = ∆Ω

( ) 2
s o

scattered v2

I b , r
I s V

r
θ φ

= ∆

( ) 2
s o 2

scattered v2

I b , r cI s r
r 2
θ φ τ

= ∆Ω

Developing a Volume Reverberation 
Equation – Traveling Back to Receiver

r∆

c
τ

( ) 2
s o 2

scattered v2

I b , r cI s r
r 2
θ φ τ

= ∆Ω

( )2 2
scatter oI r d I r r dΩ = Ω

( )
2

scatter o
2

I rI r
r

=

( ) ( ) 4
s o 2

v4

I b , r cI r s r
r 2
θ φ τ

= ∆Ω

Developing a Volume Reverberation 
Equation – Receiver Beam Pattern

r∆

c
τ

( ) ( ) 4
s o 2

v4

I b , r cI r s r
r 2
θ φ τ

= ∆Ω

( )Received scatteredI b , I′= θ φ

( ) ( ) 4
s o 2

Received v4

I b , r cI b , s r
r 2
θ φ τ′= θ φ ∆Ω

Reverberation Level - Volume

reverb Tot  received
V

ref ref

I IRL 10log 10log
I I

= =

( ) ( )
4

2Received s o
v4

ref ref Vol

I I r cs r b , b , d
I I r 2

⎡ ⎤τ ′= θ φ θ φ Ω⎢ ⎥
⎣ ⎦

∫∫

( ) ( ) ( )
4

2Received s o
v4

ref ref Vol

I I r c10log 10log 10log 10log s 10log r b , b , d
I I r 2

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ τ ′= + + + θ φ θ φ Ω⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦

∫∫

( ) [ ] ( ) [ ]V v v
1RL SL 40log 10log s 10log V SL 2TL 10log s 10log V
r

⎛ ⎞= + + + = − + +⎜ ⎟
⎝ ⎠
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Take a deep breath

( ) [ ]V vRL SL 2TL 10log s 10log V= − + +

( )v vS 10log s=

( ) ( )2 2

Vol

c cV r b , b , d r
2 2
τ τ′= θ φ θ φ Ω = ψ∫∫

Volume Scattering Strength (dB)

( ) ( )
Vol

b , b , d′ψ = θ φ θ φ Ω∫∫
Equivalent two way beam width –
Equivalent solid angle of the 
sending and receiving array 

Volume Scattering Strength

( )v vS 10log s=

Diurnal Migration

Shrimp-like euphausids, squid and copepods
Fish (gas filled swim bladder) – freq differences

Higher frequencies – zoo plankton, phytoplankton 
fed on by small pelagic fish 
(siphonphones and cephlopods)

Collectively called the DSL
(Deep scattering layer)

Equivalent two way beam width

( ) ( )
Vol

b , b , d′ψ = θ φ θ φ Ω∫∫
 

ARRAY TYPE Ψ(steradians) Φ(radians) 

Circular Plane of Diameter 

D 

2

60.0 ⎟
⎠
⎞

⎜
⎝
⎛

D
λ  ⎟

⎠
⎞

⎜
⎝
⎛

D
λ56.1  

Horizontal Line of Length 

L 
⎟
⎠
⎞

⎜
⎝
⎛

L
λ32.1  ⎟

⎠
⎞

⎜
⎝
⎛

L
λ32.1  

Non-directional Point Array 4π 2π 

Caution:  Remember to use a wavelength λ and the dimension D or L in the same units! 

Reverberation Noise

Reflections from non-target objects
is greater that noise.

Reverberation limited

RL NL DI> −

S/ NL SL 2TL TS RL DT= − + − >

Reverberation Level - Volume

( ) [ ]received
V v

ref

IRL 10 log SL 2TL 10 log s 10 log V
I

= = − + +

( )v vS 10log s=

( ) ( )2 2

Vol

c cV r b , b , d r
2 2
τ τ′= θ φ θ φ Ω = ψ∫∫

Volume Scattering Strength (dB)

( ) ( )
Vol

b , b , d′ψ = θ φ θ φ Ω∫∫
Equivalent two way beam width –
Equivalent solid angle of the 
sending and receiving array 

( ) ( )
4

2Received s o
v4

ref ref Vol

I I r cs r b , b , d
I I r 2

⎡ ⎤τ ′= θ φ θ φ Ω⎢ ⎥
⎣ ⎦

∫∫
Volume Reverberation Case

S/ NL SL 2TL TS RL DT= − + − >

( ) [ ]V vRL SL 2TL 10 log s 10 log V= − + +

( ) [ ]( )S/ N vL SL 2TL TS SL 2TL 10log s 10log V DT= − + − − + + >

( ) [ ]S/ N vL TS 10log s 10 log V DT= − − >

2 cV r
2
τ

= ψGraph
Equation Sheet
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Volume Reverberation Example
• Given the following data for an active sonar search under 

conditions known to be volume limited.  The search is held at 
night.
– Transducer array ifs a circular plane with diameter = 4 feet
– Search Frequency is 5 kHz
– Pulse Duration is 15 ms
– Sound speed is 1670 m/s
– Spherical spreading only
– Target Strength = 18 dB
– Depth = 100 fathoms
– Detection Threshold = 5 dB

• Find the predicted maximum range
• Find the Reverberation Level if the Source Level is 210 dB

Volume Scattering Strength

( )v vS 10log s=

Diurnal Migration

Shrimp-like euphausids, squid and copepods
Fish (gas filled swim bladder) – freq differences

Higher frequencies – zoo plankton, phytoplankton 
fed on by small pelagic fish 
(siphonphones and cephlopods)

Collectively called the DSL
(Deep scattering layer)

Equivalent two way beam width

( ) ( )
Vol

b , b , d′ψ = θ φ θ φ Ω∫∫ 

ARRAY TYPE Ψ(steradians) Φ(radians) 

Circular Plane of Diameter 

D 

2

60.0 ⎟
⎠
⎞

⎜
⎝
⎛

D
λ  ⎟

⎠
⎞

⎜
⎝
⎛

D
λ56.1  

Horizontal Line of Length 

L 
⎟
⎠
⎞

⎜
⎝
⎛

L
λ32.1  ⎟

⎠
⎞

⎜
⎝
⎛

L
λ32.1  

Non-directional Point Array 4π 2π 

Caution:  Remember to use a wavelength λ and the dimension D or L in the same units! 

Reverberation Level - Surface
reverb Tot  received

S
ref ref

I IRL 10log 10log
I I

= =

( ) ( )
4

Received s o
s4

ref ref Area

I I r cs r b , b , d
I I r 2

⎡ ⎤τ ′= θ φ θ φ φ⎢ ⎥
⎣ ⎦

∫

( ) [ ] ( ) [ ]S A s
1RL SL 40log 10log s 10log A SL 2TL 10log s 10log A
r

⎛ ⎞= + + + = − + +⎜ ⎟
⎝ ⎠

Surface

Surface Scattering Strength

Equivalent beam width of the 
sending an receiving array in radians( ) ( )

Area

b , b , d′Φ = θ φ θ φ φ∫

cA r
2
τ

= Φ

Surface Scattering Strength
( )s sS 10 log s=

• Varies With:
– Wind Speed
(surface 

roughness)
– Grazing 

Angle

θ
Specular

Diffuse

Equivalent two way beam width

( ) ( )
Vol

b , b , d′ψ = θ φ θ φ Ω∫∫ 

ARRAY TYPE Ψ(steradians) Φ(radians) 

Circular Plane of Diameter 

D 

2

60.0 ⎟
⎠
⎞

⎜
⎝
⎛

D
λ  ⎟

⎠
⎞

⎜
⎝
⎛

D
λ56.1  

Horizontal Line of Length 

L 
⎟
⎠
⎞

⎜
⎝
⎛

L
λ32.1  ⎟

⎠
⎞

⎜
⎝
⎛

L
λ32.1  

Non-directional Point Array 4π 2π 

Caution:  Remember to use a wavelength λ and the dimension D or L in the same units! 
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Surface Reverberation Case

S/ NL SL 2TL TS RL DT= − + − >

( ) [ ]S SRL SL 2TL 10 log s 10 log A= − + +

( ) [ ]( )S/ N AL SL 2TL TS SL 2TL 10log s 10log A DT= − + − − + + >

( ) [ ]S/ N SL TS 10log s 10log A DT= − − >
cA r
2
τ

= ΦGraph

Equation Sheet

Surface Reverberation Example
• Environment

c=1500 m/s
wind speed = 10 kts

• Sonar
Circular plane array D = 1/3 m, f = 10 kHz, τ=5 msec
SL = 217.5 dB
DT = 5.0 dB
Beam Axis is steered to 30° above the horizon
Operating in a region where the sonar suite is surface 
reverberation limited

• Target
TS = 15 dB

• Use all data tables and graphs in previous slides
• Compute the maximum range that the submarine could detect a surface 

ship.

Misc. active sonar design ideas

dDT 10log
2T f

⎛ ⎞= ⎜ ⎟∆⎝ ⎠
Generally correlation detection

ROC curves

Display – BTI – polar or cartesian

bearing

Rh

NN

τ τ
t

cRh
2
τ

=
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Name:______________________ 
 

Active Sonar Wrap-up Exercise 
(Everyone should attempt to do the following problems and  

we will go over them in class.) 
 
1.  You are on a new Seawolf class submarine with the sonar system and the environment 
described below.  Calculate the max range for detecting another submerged submarine given the 
following for both the noise-limited and reverberation-limited cases: 
  
Environmental Data 

c = 1500 m/s,  
Wind Speed = 6 kts 
Shipping = heavy 
Assume TL is only due to spherical spreading; neglect attenuation losses 
 

Submarine's Sonar Data: 
 Linear Array = 3 m long 

frequency  = 10 kHz 
bandwidth = 5  Hz 
pulse length = 10 ms 
Maximum Input Electrical power to transducer 1200 W 

 Active Sonar system efficiency – 28% 
 DIT = 16 dB 
 DI = 16 dB 

desired p(D) = 90% 
 desired p(FA) = 0.01% 
 assume ideal processor 
 NLself = 45 dB 

 
 
Target Data (adversary): 

TS = 20 dB  
depth = 300 ft @ night 
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2.  Your ship uses active sonar in an attempt to locate a friendly 688-class submarine operating 
near the surface 22,000 yds away.  Given the following: transition range = 12,000 yds, α = 1.08 
dB/kyd, SL = 273 dB, NL = 72 dB, DI = 10 dB, RLA = 63 dB, TS = 14 dB and DT = 16 dB, 
determine the following showing all calculations:   (Note that attenuation is a consideration in 
this problem.) 

a) The strongest type of reverberation would most likely be: 

volume reverberation      /      surface reverberation 

b) One-way total transmission loss (TL)? 

c) Signal-to-noise level (LS/N) received? 

d) Signal excess? 

e) Can your ship successfully detect the 688 sub? 
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Problem #1
• You are on a new Seawolf class submarine with the sonar system and the 

environment described below.  Calculate the max range for detecting another 
submerged submarine given the following for both the noise-limited and 
reverberation-limited cases:

• Environmental Data
– c = 1500 m/s, 
– Wind Speed = 6 kts
– Shipping = heavy
– Assume TL is only due to spherical spreading; neglect attenuation losses

• Submarine's Sonar Data:
– Linear Array = 3 m long
– frequency = 10 kHz
– bandwidth = 5  Hz
– pulse length = 10 ms
– Maximum Input Electrical power to transducer 1200 W
– Active Sonar system efficiency – 28%

DIT = 16 dB
DI = 16 dB

– desired p(D) = 90%
desired p(FA) = 0.01%
assume ideal processor

– NLself = 45 dB

• Target Data (adversary):
– TS = 20 dB 
– depth = 300 ft @ night

Detection Threshold

d 26=

dDT 10log
2T f
⎡ ⎤= ⎢ ⎥∆⎣ ⎦

( )( )
26DT 10log 24.1dB

2 0.010s 5Hz
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

Volume Reverberation Case

S/ NL SL 2TL TS RL DT= − + − >

( ) [ ]V vRL SL 2TL 10log s 10log V= − + +

( ) [ ]( )S/ N vL SL 2TL TS SL 2TL 10log s 10log V DT= − + − − + + >

( ) [ ]S/ N vL TS 10log s 10 log V DT= − − >

2 cV r
2
τ

= ψ

( ) ( )S/ NL 20dB 76dB 10log V 24.1= − − − >

( )10log V 71.9dB=

Volume Reverberation

Reverberation Volume

7.19 2 cV 10 r
2
τ

= = ψ

c 1500m / s 0.15m
f 10000Hz

λ = = = .15m1.32 1.32 0.066
L 3m
λ⎛ ⎞ ⎛ ⎞ψ = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

( )( )7.19 2 1500m / s 0.01s
V 10 0.066r

2
= =

r 5600m=

Noise Limited Case

( )S/ NL SL 2TL TS NL DI DT= − + − − >

E TSL 171.5 dB 10log P 10log E DI= + + +

( ) ( )SL 171.5 dB 10log 1200W 10log .28 16dB 212.8dB= + + + =

self ambNL NL NL= ⊕

( )sea  stateNL 36 10log 5 42dB= + =

( )4.5 4.2NL 45dB 42db 10log 10 10 46.8dB= ⊕ = + =
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Noise Finding the Range

( )S/ NL SL 2TL TS NL DI DT= − + − − >

( )212.8 40log r 20 46.8 16 24.1− + − − =

40log r 177.9=

r 28000m=

Problem #2
• Your ship uses active sonar in an attempt to locate a friendly 688-class 

submarine operating near the surface 22,000 yds away.  
• Given the following: 

– transition range = 12,000 yds, 
– α = 1.08 dB/kyd,
– SL = 273 dB, 
– NL = 72 dB, 
– DI = 10 dB, 
– RLA = 63 dB, 
– TS = 14 dB 
– and DT = 16 dB, 

• determine the following showing all calculations:   (Note that attenuation is a 
consideration in this problem.)

– The strongest type of reverberation would most likely be:
• volume reverberation      /      surface reverberation

– One-way total transmission loss (TL)?
– Signal-to-noise level (LS/N) received?
– Signal excess?
– Can your ship successfully detect the 688 sub?

Transmission Loss

( )3
o

o

rTL 20log r 10log rx10
r

−⎛ ⎞
= + +α⎜ ⎟

⎝ ⎠

( )22000TL 20log12000 10log 1.08db / kyd 22kyd 108dB
12000
⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

Noise/Reverb
NL DI 72dB 10dB 62dB− = − =

sRL 63dB=

Neither is more significant

Noise 62dB 63dB 65.5dB= ⊕ =

Signal Excess

S/ NL SL 2TL TS NOISE DT= − + − >

( )S/ NL 273 2 108 14 65.5 5.5dB 16dB= − + − = >

S/ NSE L DT 5.5dB 16dB 10.5dB= − = − = −

Not dedectable at 22000 yds
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Names:______________________________________________    Section:_______ 
 

Active Sonar Homework 
 

All data given purely for test purposes and do not necessarily reflect reality. 
 

You are on a deep submergence vehicle searching the ocean floor for a Russian torpedo that was 
lost at sea.  You have lost electrical power in your DSV and the Mother Ship is searching for you 
with the active sonar described below to recover you before you run out of oxygen. 
 
Environmental Data:    Active Sonar Data: 
Wind speed = 6 kts     Circular plane/piston array radius=2.4 m 
Shipping  - Heavy     θ = 0.2 radians 
Assume TL is only due to     Operating frequency = 25 kHz 
spherical spreading; neglect    Bandwidth = 5 Hz 
attenuation losses     Pulse length = 6 ms 
During daytime     NLself = 15 dB 
       P(FA) = 1% 
DSV Data:      P(D) = 75% 
TS = + 1.0 dB      (Assume ideal receiver) 
Depth = 1500 feet, 2500 feet above   Efficiency = 90% 
ocean floor      PE = 750 W 

Beam axis can be steered from 30º above to 
60º below the horizontal 

 
 
 
1.  What is the directivity index of the mother ship’s active sonar’s array? 
 
 
 
 
 
 
 
 
2.  What is the Detection Threshold? 
 
 
 
 
 
 
3.  What is the Volume Scattering Strength for this daytime rescue? 
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4.  What is the maximum detection range if the active sonar system is reverberation limited? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.  Find the projector source level of the Mother Ship’s active sonar? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.  What is the reverberation level if the Mother Ship is 8,000 yards from the DSV? 
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7.  What is the total Noise Level due to both ambient and self noise? 
 
 
 
 
 
 
 
 
8.  Is the Mother Ship’s active sonar reverberation or noise limited if range is 8,000 yards? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.  Calculate the surface reverberation level if the Mother Ship transmits such that grazing angle 
with surface is 40º and range is 6,000 yds? 
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Doppler Effect 
 
  The Doppler Effect is the change in the observed frequency of a source due to the 
relative motion between the source and the receiver.  The relative motion that affects the 
observed frequency is only the motion in the Line-Of-Sight (LOS) between the source and the 
receiver.   

Relative motion of the receiver. 

 If a source is stationary, as the one below, it will emit sound waves that propagate out 
from the source as shown below.  
 As the receiver moves 
towards the source, it will detect 
the sound coming from the source 
but each successive sound wave 
will be detected earlier than it 
would have if the receiver were 
stationary, due to the motion of 
the receiver in the LOS.  Thus the 
frequency that each successive 
wave front would be detected 
would be changed by this relative 
motion where: 

wavelength 

relative motion of 
receiver 

LOS 

 

r

0

0

r

vf

 is the original wavelength of the source
∆f  is the change in the observed frequency
v  is the velocity of the reciever in the LOS

∆ =
λ

λ  

Since the original frequency of the source can be expressed in terms of the wavelength where 

0
0

cf = λ , the observed frequency becomes: 

0

r

0 0

r
0

f f f
vcf

c vf f
c

′ = + ∆

′ = +
λ λ

+⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

 

Note that this equation only works if the relative velocity of the receiver, vr is towards the 
source.  If the motion is away from the source, the relative velocity would be in the opposite 
direction and the equation would become: 
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r
0

c vf f
c
−⎛ ⎞′ = ⎜ ⎟

⎝ ⎠
 

The two equations are usually combined and expressed as: 

r
0

c vf f
c
±⎛ ⎞′ = ⎜ ⎟

⎝ ⎠
 

Relative motion of the source 

 If the source is moving towards the receiver, the effect is slightly different.  The spacing 
between the successive wave fronts would be less as seen in the diagram below.  This would be 
expressed as: 

s

0

s

v
f

v  is the relative

∆λ =

( )

motion of 
source 

 velocity of the source
 

To calculate the observed frequency: 

0

0
s

cf

cf f
c v

′ =
λ + ∆λ

⎛ ⎞
′ = ⎜ ⎟−⎝ ⎠

 

Note that this is only when the source is moving towards the 
receiver.  If the source is moving away, the equation would be 
changed to: 

0
s

cf f
c v

⎛ ⎞
′ = ⎜ ⎟+⎝ ⎠

 

When combined with the previous result, the equation would be expressed as: 

0
s

cf f
c v

⎛ ⎞
′ = ⎜ ⎟

⎝ ⎠m
 

Notice that this time, the plus/minus symbol is inverted because the sign on top is to be used for 
relative motion of the source towards the receiver. 
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Doppler Equation 

By combining the previous results, we can derive one equation to use as the Doppler 
Equation.  This is usually expressed as: 

r
0

s

c vf f
c v

⎛ ⎞±′ = ⎜ ⎟
⎝ ⎠m

 

The student must be careful that the quantities for the velocity of the receiver, vr, and the 
velocity of the source, vs, are only the magnitudes of the relative velocities in (or along)  the 
LOS.  In other words, the component of the velocity of the source and the receiver, that are 
perpendicular to the LOS do not change the received frequency.  Secondly, the top sign in the 
numerator and the denominator are the sign convention to be used when the relative velocities 
are towards the other.  If the source were moving towards the receiver, the sign to use in the 
denominator would be the minus sign.  If the source were moving away from the receiver, the 
sign to use would be the plus sign. 

Active Sonar Problem 

 One interesting Doppler problem is the active sonar problem.  In this problem, one must 
define a “source” and “receiver” for both the outgoing active pulse and the returning signal.  
  
 For the outgoing active pulse, the Doppler shifted frequency of the active pulse when it 
hits the target would be: 

r
0

s

c vf f
c v

⎛ ⎞±′ = ⎜ ⎟
⎝ ⎠m

 

For the return pulse, there would be a similar shift but now the “source” would be the target, the 
“receiver” would be the ship sending out the original active pulse and the base frequency, f0 
would be the Doppler shifted frequency from above.  If we redefine the velocity of the target as, 
vt, and the velocity of the source of the active pulseas vs, we get: 
 

s

t

c vf f
c v

⎛ ⎞±′′ ′= ⎜ ⎟
⎝ ⎠m

 

Substituting in the equation from above for f′ and changing the subscripts for the appropriate 
terms: 

t s
0

s t

c v c vf f
c v c v

⎛ ⎞⎛± ±′′ = ⎜ ⎟⎜
⎝ ⎠⎝m m

⎞
⎟
⎠

 

Again, the velocities are only the magnitudes of the velocity in the LOS and one must take care 
to pick the correct sign to use in front of each velocity.  
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Problems: 

1. A surface ship is traveling on a course of 045°T and is conducting an active sonar search.  
The sonar frequency is 4 kHz.  At the same time a submarine is located on a bearing of 
060°T from the surface ship.  The submarine is traveling due north (000°τ at a speed of 10 
kts.  The surface ship is traveling at 15 kts.  (Useful information:  c=2950 kts) 
a) What is the frequency that the submarine receives? 
b) What is the frequency of the active return from the submarine?  
c) If the submarine emits a strong tonal at 415 Hz, what is the frequency received at the 

surface ship? 
d) Assuming that there is a large school of shrimp near the submarine, what is the frequency 

of the active return from the school of shrimp?  (Assume that the shrimp are not moving.) 
 
2. A US submarine is trailing a new Afghani diesel submarine to gain tonal intelligence on the 

Afghani sub.  Both subs were going 5 knots on course north when the Afghani sub turns due 
west.   
a) If the tonal the US sub was originally tracking was 250Hz, what is the received frequency 

after the Afghani sub turns?  
b) If the US sub goes active with a frequency of 18,000 Hz to get an exact range on the 

Afghani sub, what is the frequency of the received return? 
 
3. A sound source emits a sound frequency of 1000 Hz on a day when the speed of sound in air 

is 340 m/s and there is no wind.  What is the frequency you will receive if: 
a) You move toward the source at 34 m/s? 
b) You are stationary and the source moves towards you at 34 m/s? 
c) Repeat part a) with a speed of 68 m/s instead of 34 m/s. 
d) Repeat part b) with a speed of 68 m/s instead of 34 m/s. 

 
4. Two submarines are moving as shown in the figure, where the speeds are in knots.  The 

speed of sound in knots is 2912 kts.  Sub A is pinging on B with an active sonar frequency of 
10 kHz. 

30 kt 10 kt 
 

a) What frequency will Breceive from A’s sonar? 
b) What is the frequency of the echo A receives from B? 

 
5. Ship S is on course 045 T with speed 30 kts.  Target T is on course 330 T with speed 10 kts.  

S uses active sonar to ping on T with frequency 10 kHz.  The speed of sound is 3000 kts.  
When T is due east of S (as shown in the below sketch): 
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a) What frequency will T receive from S? 
b) What will be the echo frequency that S receives back from T? 
c) What is the frequency of the reverberation received by S? 
 

6. A phantom jet flying at an altitude of 5 km is directly behind and closing at a horizontal 
range of 10 km from the carrier.  The jet is tracking the ship with an active radar unit of 
source frequency 400 MHz.  The jet’s speed is 200 m/s parallel to the ground.  The ship 
cruises at 10 m/s.  If the speed of light is 3 x 108 m/s, 

 
       

a) Compute t
b) Compute t
c) Compute t

30 kts 

30o
45o

10 kts
 North 

m
5 k
North
he radar frequency detected
he echo frequency detected
he Doppler shift between th

1

10 km
 
 by the aircraft carrier. 
 by the jet. 
e echo and source frequency. 
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Doppler Effect
Doppler Effect – 4 cases

• Source moving toward receiver
• Source moving away from receiver
• Receiver (observer) moving towards source
• Receiver (observer) moving away from 

source.

Source moving case

sv T′λ = λ −

c
T
λ

= s
s

vv 1
c c
λ ⎛ ⎞′λ = λ − = λ −⎜ ⎟

⎝ ⎠

ss

c c 1f f vv 11
cc

⎛ ⎞
⎜ ⎟

′ = = = ⎜ ⎟′λ ⎛ ⎞ ⎜ ⎟−λ − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Towards:s

1f f v1
v

⎛ ⎞
⎜ ⎟

′ = ⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

Away:

Receiver (observer) moving 
case

r rc v vf f 1
c

+ ⎛ ⎞′ = = +⎜ ⎟λ ⎝ ⎠

Towards:

r rc v vf f 1
c

− ⎛ ⎞′ = = −⎜ ⎟λ ⎝ ⎠

Away:

Source and receiver moving

r

r

s S

v1 c vcf f fv c v1
c

⎛ ⎞±⎜ ⎟ ⎛ ⎞±′ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠
mm

• Numerator – Receiver (observer)
– Toward +
– Away –

• Denominator – Source
– Toward –
– Away + 

Doppler Example

• Intelligence tells you that a particular piece of 
machinery in the engine room of a Soviet Victor III 
submarine emits a frequency of 320 Hz.  Your 
sonar operator hears the machinery but reports 
the frequency is 325 Hz.  Assume you have 
slowed to a negligible speed in order to better 
hear the Russian.
– Is the VIII coming toward you or moving away from 

you?
– Assuming the Victor is either moving directly toward or 

away from you, what is his speed in m/s?
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Line of sight diagrams

o45

N

o30

12 kts

10 kts

r

r

s S

v1 c vcf f fv c v1
c

⎛ ⎞±⎜ ⎟ ⎛ ⎞±′ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠
mm

sv 12ktssin30 6kts= =

rv 10ktssin 45 7.07kts= =

1 knot = 0.5144 m/s

Active Case

s sr

sr
B A B A A A

r s r

v vv1 1 1 vvc c cf f f f 2fv v v c c1 11
c cc

−>

⎛ ⎞ ⎛ ⎞⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎛ ⎞= = = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟− −−⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

A B

r

B A
s

v1
cf f v1
c

⎛ ⎞+⎜ ⎟
= ⎜ ⎟

⎜ ⎟−⎜ ⎟
⎝ ⎠

sr
A

vvf 2f
c c

⎛ ⎞∆ = +⎜ ⎟
⎝ ⎠

A B

Example
• A ship moving north at 20 kts pings on a target (that 

bears 030 and is) moving east at 10 kts.  The source 
frequency is 4000 Hz and the sound speed is 3000 kts.
– What is the frequency received by the target?
– What is the echo frequency received by the ship?
– What is the doppler shift of the echo received by the ship relative 

to the ship’s source?
– What is the frequency heard by reverberation near the target
– What is the echo frequency received by the ship from 

reverberation?
– What is the doppler shift of the echo received by the ship from 

reverberation relative to the ships source?
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