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SP 411 Equations

Section 1
x=Acos(ot+¢);0= LS
m
:d—x;a:d—v;vmax =0A;a,, =0’A
dt dt

E=K+U :%mb,ockv2 +%kx2; E..

t)>z%.:ff(t)dt

x=Ae™ cos(w't+¢)

ok (bT_ b
o0=,—- o=—
2m 2m

“Liar
2

Section 2
s(x,t)=s,sin(kx +wt)
k=ﬁ=9;w=2—n=2nf
A C T
C= E:xf:2
p k
P, =—B§,pa nax = BKS,
oS .
U=— Uy =03,
ot
2
|(X,t) _ pa (X’t)
pC

nominal values: p =1000 kg/m*;c =1500 m/s

|=p U'<|>= <p§> prms _ pamax P, = pmax
a- nC oC 2pC rms \/E

Power:<I>A

Zplane = pC' pa =zu

wave

Section 3
10" =y then log,,(y)=

log(xy) =log(x)+log(y)
og{ % |- og(x)-1og(y)
log(x" ) =nlog(x)

L =10log—— = 20l0g Pms

ref ref

standard value (seawater): p, .

=1pPa
L, L,
L, ®L, :10log(10 o +10 4))

ifL, =L, thenL, ®L,=L,+3dB
ifL,>>L,thenL, ®L, =L,

Section 4
c(T,D,S)=1449.2+4.6T -5.5x10*T*

+2.9x107T° +(1.34-10°T)(S-35)

+1.6x107°D

cosO, coso,

Az =R(cos6, —cos6,)
Ax =-R(sin®,-sin®,)



Section 6

L=1+1,

=TI, 1 =Rl

1=T+R

n= m=P
C, P1

R(ei)_[msine, —,/n? —cos® 6, ]

msin 6, +/n —cos? 6,

R(90°) = m_ng

4fc
0, =cos™ —lJ

0, =cos™

Section 7_
27
0=—
T

;
a, :%ff (t)cos(nwt)dt forn=0,1,2,3,...
0
:

b :éj'f (t)sins(not)dt forn=1,23,...

n
0

f(t)= a—2°+ i[an cos(not)+b, sin(not) |

n=1
Section 8
I(ina 1 Hz band)

| (ina1Hzband)
=ISL,, +10log(Af)

f.

f, =2'f, one-octave band

ISL =10log

f, = 2% f, half-octave band

f, = 2% f, third-octave band
BL = [l:sl_ave +10 |og(Af)]{@SP|_w,s}

Section 10
P=1A

1(1yd)
I(r)

spherical only

TL=10log

TL =20logr

TL=20logr, +10 IogL with cylindrical
r

0

TL =20logr, +10log - +ot(rx10) dB
r0

with attenuation where:

1 0.003+ 0'1f2 + 40f* > | dB
o= 1+f° 4100+f kyd
+2.75x107*f?
fisin kHz
Section 11
NL pient = Ny, © NLgg
Section 12
NLq = NLgg © NL g (ONL g, © NL g3 @)
NL o = NLpiene © NL gy
Section 13
=b(6)=1
enu,, =b(6)=0
0w = b(0)>0.5
Section 15

1=p(D)+p(miss)
1=p(FA)+p(null)
g (=)’

(ot ar)

passive

DT = 5Iog( d j
TAf

active

DT = 10Iog( d J
2TAf



Section 9
Ly =(SL-TL)—(NL-DI)>?DT
N

L =SL-TL
L, =(NL-DI)
SEzLy -DT
FOM=TL,_ (i.e. SE=0so Ly =DT)
N
Section 16
Ly =SL-2TL+TS-(NL-DI)>?DT
N
Ly =SL-2TL+TS—-RL>?DT
N

SL=171.5+10logP. +10log E + DI,

Section 17
RL, =SL-40logr+S,, +10log V

TS—(S, +10logV)>?DT
where:
S, =10logs,, = Volume Scattering Strength

ct i
V= ?‘Pr2 = reverberation volume

¥ =[b(6,)b'(6,¢)d2 = solid angle
based on type of arrays (see chart)

r = range to the target

T = pulse length

RL; =SL—-40logr+S,+10log A
TS—(S,+10logA)>?DT

S, =10logs, = Surface Scattering Strength

CT ]
A= ?cDr = reverberation area

® = [b(0,¢)b'(0,¢)d® = equivalent beamwidth

based on type of arrays (see chart)

Section 20

ctv .
f'=f,| —L | passive
CFV,

ctv, |[ctv .
fr=f,| —L || ——=| active
cFv, ) CFv,




2-element array

continuous line array

circular piston

p:re;mlertlgrs element separation distance — d array length — L array diameter - D
beam pattern . ? D . ?
function (. sm{lsm 0} 2J1(/15|n 0)
b(6) = e AL o
7sin 0 7sin 0
directivity index i |
DI
2
10log : 2 10 Iog& forL>> 1 10 Iogiﬂj forD>> 1
{sm(zm%)} A J1
1+ LY
27zd/
L A /]
null angles sing :(Z)i
b(0)=0 P 1 D
O smH:(m)E sin@:(m)E 2=1.22, 2.23, 3.24,4.24, ..
m=1,3,5,.. m=1,2,3,... roots of J{%sin@jzo
side lobes tan[ ZESINO ) _(ALsing
b(0)=1 P A A Sing = w A
Omax Sin9=ma sin g = [ij D
TN T where w =1.64, 2.68,3.70,..
wherey =1.43,2.46, 3.47, 4.48,
half power
angles
0(6)=0.5 sing,, =% _ A . A
Onp 4d sing,, = 0'442I sing,, = 0.51B
Oszzehp n=1357,..

(only for beam about
array axis)
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From Urick, R. J. Principles of Underwater Sound, 3 ed. McGraw-Hill Book Company. 1983. p 383
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ARRAY TYPE
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t

Form Symbols Direction of incidence Conditions
TS=10log(t)
a;a, = principal radii of
aa curvature kaz, ka, >>1
Any convex surface 2 Normal to surface
4 r = range r>a
k = 2n/wavelength
a2 ka>>1
Large Sphere — a = radius of sphere Any
4 r>a
V2 V = vol. of sphere ka<<1
Small Sphere 61.7 — Any
A = wavelength kr>>1
Infinitely long thick ar ka>>1
— a = radius of cylinder Normal to axis of cylinder
cylinder 2 r>a
- o 9r‘a’ . . . )
Infinitely long thin cylinder pe a = radius of cylinder Normal to axis of cylinder ka<<1
al? L = length of cylinder
S Normal to axis of cylinder
24 a = radius of cylinder ka>>1
Finite cylinder 5
2(sinp 2 a = radius of cylinder r> L%
al ( 4) cos” 0 At angle 6 with normal
2;\{ ﬁ = KkLsin®




Infinite Plane surface

Normal to plane

4
r> a4/
ab\’('sin B 2 a,b = sides of rectangle Atangle 0 to normal in plane
Rectangular Plate (—j = cos’@0 kb >>1
A p B = kasin® containing side a
a>b
be 2 a, b, ¢ = semi-major axis of ka, kb, kc >>1
Ellipsoid —j parallel to axis of a
2a ellipsoid r>>a b, c
2 2 a = radius of plate r>a’/i
m |\ 2J
Circular Plate —_— ( 1(ﬂ)] cos’ @ At angle 6 to normal
A B = 2kasin® ka>>1
4 2 a = radius
Circular Plate —j k*a® Perpendicular to plate ka<<1l
3z k =2n//\

Love’s model for TS of single fish - T

Sesy =19.1log L +0.91og f, —24.9

f, — frequency in kHz




Oscillatory Motion

Our goal this semester is to understand how sound waves travel through the water so that
we may exploit them to prosecute a target. We will start with simple models and increase
complexity as we go. This course is meant to be directly applicable for the war-fighter.

To begin with lets go back to our childhood days looking out over the calm waters of the
nearby pond. When you throw a rock in the water, you create a wave on the surface. If you
closely watch a leaf on the surface, you will see it go up and down as the wave passes by, yet the
leaf returns to its original position after the wave passes. This is a simple yet extremely
important point regarding wave motion. The medium carrying the wave does not move with the
wave, generally returning to its original position after the wave has gone past. The medium
carrying the wave simply oscillates around an equilibrium position. To begin our study of
underwater sound, we will look at the periodic nature of this motion. It is the basis of all
mechanical wave motion.

Mass-Spring System
Hooke's Law and the Simple Harmonic Oscillator

An illustrative model to begin understanding acoustics is the problem of a simple mass-
spring oscillating system. Begin with a mass attached to a perfect massless spring. The spring is
attached to a firm wall and the mass sits on a frictionless surface. If the spring is displaced from
the rest position of the system where x=0, the mass will move back and forth with a periodic
motion centered about the x=0 position. This periodic motion can be described by a simple time
varying equation, which should give us insight in to periodic wave motion.

R T, S )
=5mv +2kx

m Frictionless

_/Surface
xZ‘—A x‘zo xiA

X
From Hooke's Law, the restoring force of the spring is equal to:

—kx

There is a minus sign in front of the spring constant because the force of the spring is in the
opposite direction of the displacement of the mass. The displacement, X, is the distance the
spring is stretched or compressed (and is equal to the displacement of the mass) from the x=0 or
rest position of the spring.

F

spring =

1-1



We can now write an equation to relate the forces on the mass in the x-direction to the
acceleration of the mass in the x-direction: (Or in other words apply Newton's second law for
the motion only in the x-dimension.)

z Fblock = mblocké:

Since the only force on the block is due to the spring and all motion is along the x-axis, we can
write the scalar equation,

I:spring = mblockax
d®x
—kx = Myiock dtz
d’x kK
—7t =0
dt mblock

This is a simple, second order differential equation that describes the motion of the mass.
One solution for the position of the mass, X, as a function of time that satisfies the differential
equation is:

x(t)=Acos(wt+¢)

where the angular frequency squared, o’ = and A and ¢, are unknown constants.

block
Appendix A checks this solution and verifies the value of the angular frequency. We refer to
quantity, ot+ ¢, as the “phase” of the block’s motion. The phase is generally expressed in

radians and the motion repeats once the phase has changed by 2x. The amplitude of the

oscillation, A and the initial phase of the oscillations ¢, can only be solved for by knowing two
initial conditions of the system.

Another solution to the second order differential equation is x(t)= Asin(wt+¢). Another

uses complex exponentials, x(t) = Ae'“** and is shorthand to signify only the real part of this

expression is the solution to the second order differential equation. It is a worthwhile exercise
for the student to show that both these solutions also satisfy the second order differential
equation.

We must be able to find the velocity and acceleration of the mass as a function of time to
use the initial conditions of the system. To calculate these quantities, we must just take the
derivative as shown below.



v, (t)= d);it) =A d[cos(do;t+¢)] =—wAsin(ot+¢)

2
a,(t)= d%gt) =—w’Acos(ot+¢)=-0"X

Looking at the above equations , we can obtain the maximum values of the velocity and
acceleration. These maximum values are:

An important characteristic of the system is the angular frequency. Using the above
equations, and knowing a couple of the parameters of the system as a function of time, we can
solve for the more easily understandable quantities, the frequency and period of the system.
These can be calculated from the following equations:

f=2
2n

r.1_2n
f o

Example Problem

Let's look at an example: A mass of 200 grams is connected to a light spring that has a
spring constant (k) of 5.0 N/m and is free to oscillate on a horizontal, frictionless surface. If the
mass is displaced 5.0 cm from the rest position and released from rest find: a) the period of its
motion, b) the maximum speed and c) the maximum acceleration of the mass.

Using the relationships given above, the following can be calculated:

5.0 N/m
a) o=.k/m= |—————— =5.0rad/sec
) o=yk/ 200x10° kg
T :Zl:1.26 seconds
()]

b) Using the initial conditions that the mass was displaced 5.0 cm and
let go from rest at t = 0 seconds

x(0sec)=5.0 cm = Acos([(5.0 rad/s)(0 seconds) ]+ ¢)

and v(0sec) =0 cm/s =—(5.0 rad/s)Asin([(5.0 rad/s)(0 sec) | + ¢)
therefore soving for Aand ¢: A=5.0cmand ¢ =0.0rad

Vyee = 0A = (5.0 rad/s)(5.0x10 m)=0.25 m/s

C) @, = 0°A=1.25m/s’

1-3



Energy in the Mass Spring System

The energy of the mass spring system can be found at any time by summing the Kinetic
energy of the mass with the potential energy of the spring.

E=K+U :imblockv2 L
2 2

When the displacement of the mass from the equilibrium position is at the maximum
displacement, x=A, the velocity of the spring is instantaneously zero. As there are no non-
conservative forces such as friction, energy is conserved and the total energy at any time is
simply

E_ =LAl
2

This is very powerful because it allows us to calculate the total energy of an oscillating mass
very simply and then calculate the velocity when the position is known or vice versa.
Conceptually, we view the continuous motion of a mass spring oscillator as the perpetual transfer
of energy back and forth between kinetic and potential forms. Without any energy loss (due, for
example, to friction) this transfer will continue indefinitely.

The average energy in a simple harmonic oscillator is calculated using the following
definition for the average of a periodic function:

(f(1)) E%Ef (t)dt

For kinetic and potential energy we find that since the time average of the square of the sine and
cosine is one half, i.e. /gin2 — {cos? _1 then
<5|n 9(t)> <cos 9(t)> 5

< mblock <V2> % blockmzAz <Sin2 ((Dt +(|))> :%mblockmzAz — % kA2
(U)=ZK(x") =2 kA? cos? (ot + 4)) = kA

This shows that on average, the kinetic energy of a simple harmonic oscillator and the potential
energy of a simple harmonic oscillator are the same, each being exactly one half the total energy
of the harmonic oscillator.



Damped Mass-Spring System

Hooke's Law Revisited

The approach used above for the simple harmonic oscillator will work for a damped
oscillator with a small modification. Some device such as a “dashpot” provides a mechanism by
which energy is removed from the system. A dashpot is like a shock absorber with a piston
moving through a viscous fluid. We model the dashpot such that it provides a resistive force to
the system that is proportional to the speed of the mass.

—bv

damping =
The constant of proportionality, b, depends on such factors as fluid viscosity, size, shape and
roughness of the piston, and the space between the piston and the fluid chamber walls. Because
of this new force, our x component equation from Newton’s second law gains an additional term.

—kx - be = Myjoe@y

The new equation of motion then becomes:

A solution to the equation of motion is:
x=Ae™ cos(w't+¢)

Again the initial amplitude of oscillation, A, and the initial phase, ¢, are arbitrary constants of the
second order differential equation. The angular frequency is slightly different from the
undamped case:

1-5



~\nlam)
0w=,—|—
m 2m

The amplitude decays exponentially with time with a decay constant, o:

Appendix B shows that our solution satisfies the equation of motion and that the angular
frequency and damping constants are correct. When plotted for typical values of k, m, and b, the
motion of the mass looks like the graph below. As the amplitude decreases we can see that
energy is leaving the system, mostly as heat generated from friction as the piston moves through
the viscous fluid in the dashpot. Later in the course we will discuss losses of energy due to
various mechanisms in the ocean draining energy from an acoustic wave. Although greatly
simplified, the damped oscillator provides a satisfactory model of what the medium must be
experiencing as the wave passes.
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Overdamped and critically damped motion

One interesting result of the expression for the angular frequency is that if the damping
constant is large enough, » can become zero or even an imaginary number. This occurs
whenever the damping constant is sufficiently large compared to the mass and the spring
constant.

b? > 4mk

When this happens we say that the system is “over damped” and the motion resembles that of
curve C below. Note that it can take significant time for the mass to relax to its equilibrium
position in this case. When the angular frequency is exactly zero, the system is said to be
“critically damped” as shown by curve B. In this case, the mass returns to the equilibrium

position faster and without overshoot.
X

1-6



Appendix A - Checking the solution for simple harmonic motion

x(t)=Acos(ot+¢)

Vv :(;—X: —Aosin(ot+¢)

a=—>=—Ao’cos(ot+9)
Substituting into the equation of motion:

2
X k
d . X =—Aw’ cos(ot+¢)+
dt I’nblock Ifnblock

Acos(ot+¢)=0

—o’ cos(ot+¢)+ cos(mt+¢):(—w2+ ]COS(O)'[—HI)):O

block block

So this solution works so long as ®* =
rnblock

You should be able to repeat this process for other solutions.

1-7



Appendix B - Checking the solution for damped harmonic motion

X =Ae " cos(w't+¢)

d?x

a= e —AeX'w? cos(w't+¢)+Ace 'sin(w't+¢)+Ace 'sin(w't+¢)+Aa’e ™ cos('t +¢)
ao'sin (@'t +¢) +[ a® — o |cos ('t +¢)|
d°x bdx k

P {20fsin( t-+4)+] o~ oos( et ) —%Ae*" [@'sin(omq))+aoos(cdt+¢)]+%/w oos(cSt +) =0

b

Ae 2m' {[Zam' —%m'}sin (o't+¢)+ {az —o'” —Roc +£} cos('t+ d))} =0

m m
b 2
a:— h_(ij — ’220
2m m (2m
~\a )
o= |——| —
m 2m

1-8



Problems

1.

A particle oscillates with simple harmonic motion so that its displacement varies
according to the expression x=(5.0 cm)cos(2t+r/6), where X is in centimeters and t is in
seconds. At t=0, find

a) the displacement of the particle,

b) its velocity, and

c) its acceleration.

d) Find the period and amplitude of the motion.

A piston in an automobile engine is in simple harmonic motion. If its amplitude of
oscillation from the centerline is £5.0 cm and its mass is 2.0 kg, find the maximum
velocity and acceleration of the piston when the auto engine is running at the rate of 3600
rev/min.

A 20.0 g particle moves in simple harmonic motion with a frequency of 3.0
oscillations/sec and amplitude of 5.0 cm.
a) Through what total distance does the particle move during one cycle of its
motion?
b) What is its maximum speed? Where does this occur?
¢) Find the maximum acceleration of the particle. Where in the motion does the
maximum acceleration occur?

A 1.0 kg mass attached to a spring of force constant 25.0 N/m oscillates on a horizontal,
frictionless track. At t=0, the mass is released from rest at x =-3.0 cm. (That is, the
spring is compressed by 3.0 cm) Find

a) the period of its motion,

b) the maximum values of its speed and acceleration, and

c) the displacement, velocity, and acceleration as functions of time.

A 5.0 kg mass attached to a spring of force constant 8.0 N/m vibrates in simple harmonic
motion with amplitude of 10.0 cm. Calculate

a) the maximum value of its speed and acceleration,

b) the speed and acceleration when the mass is 6.0 cm from the equilibrium position,

and

c) the time it takes the mass to move from x =0 to x = 8.0 cm.

d) the total energy of the system

e) the speed of the 5.0 kg mass when x =5.0 cm

A block of unknown mass is attached to a spring of force constant 6.5 N/m and
undergoes simple harmonic motion with an amplitude of 10.0 cm. When the mass is
halfway between its equilibrium position and endpoint, its speed is measured to be +30
cm/s. Calculate

a) the mass of the block,

b) the period of the motion, and

¢) the maximum acceleration of the block.



Lesson 1

Lesson 1 - Oscillations

» Harmonic Motion
Circular Motion

 Simple Harmonic

Oscillators
— Linear -

Horizontal/Vertical "
Mass-Spring Systems fTL_
 Energy of Simple
Harmonic Motion

Identities
sin@-+cos’0 =1
cos(0+¢)=cosOcosFsinBsing

C0SO+cosd = 2cos¥sin9;2¢

cos’0 :%+%c0529

e =cosO+isin®

Math Preregs

isin9= cos0
do
icose= —-sin0
do
2n 2n
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Lesson 1

Horizontal mass-spring
> F=ma
Hooke's Law:  F, = —kx E A _
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Solutions to differential equations

» Guess a solution

* Plug the guess into the differential equation
— You will have to take a derivative or two

 Check to see if your solution works.

 Determine if there are any restrictions (required
conditions).

« If the guess works, your guess is a solution, but it
might not be the only one.

+ Look at your constants and evaluate them using
initial conditions or boundary conditions.

Our guess

x = Acos(ot+¢)

Definitions
x = Acos(ot+¢)

» Amplitude - (A) Maximum value of the displacement (radius of
circular motion). Determined by initial displacement and velocity.

 Angular Frequency (Velocity) - () Time rate of change
of the phase.

* Period - (T) Time for a particle/system to complete one cycle.

* Frequency - (f) The number of cycles or oscillations completed in
a period of time

* Phase - (@t + ¢) Time varying argument of the trigonometric
function.

* Phase Constant - (¢) Initial value of the phase. Determined by
initial displacement and velocity.

The restriction on the solution
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Lesson 1

Energy in the SHO

Average Energy in the SHO

x=Acos(ot+d)

(U) =%k<x2>=%kA2<COSZ((»t+¢)>=%kA2

Vzccjj—)t( =—Aosin(ot+9¢)

(K) :7m<v2> =%mm2A2 <sin2(wt+¢)> :%mmzA2 =%kA2

Example

« A mass of 200 grams is connected to a light spring that has
a spring constant (k) of 5.0 N/m and is free to oscillate on a
horizontal, frictionless surface. If the mass is displaced 5.0
cm from the rest position and released from rest find:

« a) the period of its motion,

¢ b) the maximum speed and

 ¢) the maximum acceleration of the mass.
« d) the total energy

« e) the average kinetic energy

« f) the average potential energy

Damped Oscillations

1 “Dashpot”
s h el
| Fdamping =-bv
—kx-b ax =ma
dt
d’x | dx
Equation of Motion m—-+b—+kx=0
a dt® = dt

Solution x = Ae cos ((n’t + ¢)
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Lesson 1

Giancoli 14-55

¢ A 750 g block oscillates on the end of a spring
whose force constant is k = 56.0 N/m. The mass
moves in a fluid which offers a resistive force F =
-bv where b =0.162 N-s/m.

— What is the period of the motion? What if there had
been no damping?

— What is the fractional decrease in amplitude per cycle?

— Write the displacement as a function of time ifatt = 0,
x=0;andatt=1.00s,x=0.120 m.

Forced vibrations

ot = F CosSwt —kx—bd—x+F0 coswt =ma
dt

2
md—)2(+ bd—x+kx: F, cos ot
dt dt

X =Agsin(ot+¢,)

Resonance
X =A,sin(ot+¢,)

k
Natural frequency — ®, =, |—

m

Quality (Q) value

Q describes the sharpness of Q=—2=2
the resonance peak

Low damping give a large Q Ao 1
High damping gives a small Q 0, Q
Q is inversely related to the
fraction width of the resonance
peak at the half max amplitude
point.

Amplitude of
oscillating systeen
> >
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Waves and the One-Dimensional Wave Equation

Earlier we talked about the waves on a pond. Before we start looking specifically at
sound waves, let’s review some general information about waves.

Types

There are two general classifications of waves, longitudinal and transverse:

Transverse Wave — A traveling wave in which the particles of the disturbed medium move
perpendicularly to the wave velocity. An example is the wave pulse on a stretched rope that
occurs when the rope is moved quickly up and down.

Longitudinal Wave — A traveling wave in which the particles of the medium undergo
displacement parallel to the direction of the wave motion. Sound waves are longitudinal waves.

One thing to note is that some waves exhibit characteristics of both types of waves. The
waves on our pond are a combination of both types.

Transverse:
\\l-_&} +— Wavelength —+
(a)
Compression  Expansion
Longitudinal: 7Z
— Wavelength—

> (b)
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Characteristics

Just like the periodic motion of the simple harmonic oscillator, waves have certain
characteristics. The ones we will concentrate on are the frequency, period, wave speed and the
wavelength. Recall from SP211, a picture of a transverse wave in a medium at some time,
maybe t=0 sec.

Traveling Wave at t=0

We wrote an equation to describe this picture:

s(x) =5, sin(%xj

where:

s = particle displacement — Distance that the fluid particle is moved from its
equilibrium position at any time, t.

So = maximum particle displacement or amplitude

A distance over which the wave begins to repeat

k = 2—; = a conversion factor that relates the change in phase (angle) to a spatial

displacement. We call k the wavenumber.

When we let this wave begin to move to the right with a speed, c, the position is shifted
in the governing equation from x to x-ct.

s(x,t)=s, sin[%(x—ct)}



Below is a picture of the same traveling wave shown at some later time, t.

Traveling Wave at Some Later Time, t
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Now, if instead of taking a snap shot of the wave in the medium at two different times,
what if we had set a sensor somewhere in space — maybe at x = 0 m, and recorded the wave’s
displacement over time. The equation governing the wave would become:

s(0,t)=s, sin [%(O—M)} =—s_sin [%t} =—s_sin [ijt} =—s, sin[wt]

where
T = period — Time to complete one cycle.
A . . .
c = ? = wave velocity — Distance that wave energy travels per unit time.
2n . .
o = T = a conversion factor that relates the change in phase (angle) to a temporal

displacement. We call o the angular frequency.
1 . . . . o
f = ¥= frequency, is the inverse of the period. It is the number of cycles per unit time

that pass the origin.

Note that we have employed a similar strategy regarding the group of constants in front
of the time variable that we used when discussing the wavenumber, k. Since the wave repeats
every 2n change in phase and that corresponds to a time period, T, angular frequency, o=2mn /T,
is nothing more than a conversion factor from time to phase angle. The symmetry with
wavenumber is striking causing many people to identify the wave number as the “special
frequency” and to specifically refer to angular frequency, o, as the “temporal frequency”



To be clear, the speed of the wave c, is not the speed of the medium. It is the speed of the
wave disturbance envelope and is often called the “phase speed.” It is the speed you would need
to run next to the medium in order to stay in phase with a point on the disturbance.

The speed of the medium is also called the particle speed and is found by taking the
derivative of the displacement with respect to time.

0os . . . o
u= 5 = particle speed — Distance that the medium travels per unit time.

Note that the average value of the particle velocity over any cycle is zero.

Traveling wave atx =0

t (sec)

Putting these three pictures together, we have an expression for a traveling wave in a medium

. |2 2m
s(x,t)=s, sm[—x——t}
A T

or more compactly,

s(x,t)=s, sin[kx — ot]

We also have a new way of defining the speed of the wave. It makes good sense that the wave
speed is the distance the wave travels in one cycle (the wavelength) divided by the time it takes
the wave to complete one cycle. It is a simple matter to substitute the frequency, f, for the
period:



The wave speed can also be calculated from the angular frequency and the wavenumber:

coMf2n)_o
T\ 2n k

We call waves modeled using this result “plane waves” because in three dimensions the
locus of points all having the same phase are planes. We call these planes “wavefronts” and
often draw them as lines on a page separated by one wavelength. In fact, the wavefronts are
actually parallel planes. We also find it convenient to show the direction the wave is traveling
using a “ray” which is constructed perpendicular to the wavefronts.

Ray
e g
> Ray >
g g
-
=) o
=S =
~ —
@ w
Ray
Spherical Wave Plane Wave

Sound Waves

When sound travels in a fluid, i.e a gas or a liquid, the displacement must be in the
longitudinal direction because fluids are poor at transmitting the shear forces necessary to sustain
a transverse wave. Below is a cartoon of the longitudinal displacement of a sound wave.

We call the locations where the fluid is displaced into clumps of closely spaced
molecules condensations (high density) and the locations where the fluid molecules are sparsely
spaced, rarefactions (low density).

The intermolecular forces tend to push out on each other at the condensations just as a
compressed spring pushes back on a mass. The gas laws suggest the high density regions of a
gaseous fluid are at a higher pressure (force per unit area) and the low density regions are at a
lower pressure. The same is true for liquid fluids.
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In addition to describing sound waves in fluids by the displacement of the molecules, we
can also describe the wave by the velocity of the molecules or the variations in density and
pressure.

. High+

=

S

> Normal X
- Low -

(b)

Acoustic Presssure

In the case of pressure, static pressure from the height of the column of fluid above the
wave are always present. This force is constant with time. In SP211 we learned how to calculate
this pressure, p, using the following equation:

p=p, +pgh
where p is the density of the fluid and h is the height of the fluid column.

The acoustic pressure due to the condensations and rarefactions sits on this static pressure and
oscillates around it due to the presence of the acoustic wave motion. While we could consider
the entire pressure variation in describing an acoustic wave, we will, by convention, instead
consider only the pressure variation from the static pressure.
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static Pressure in a Fluid

pressure | ~_ i

pressure

. acoustic
pressure

time

We saw that simple harmonic motion has a governing differential equation called the “equation
of motion” whose solution gives the position of a mass as a function of time. In the case of a
traveling wave, there is an analogous equation whose solution describes the medium’s particle
displacement as a function of position and time. This partial differential equation is known as
“the wave equation.” In the next section we will show how the wave equation follows directly
from some fundamental Physics principles.
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Sound Waves in a medium —the wave equation

Initial Position -V,

A
p (Xl) Vl p(XZ)
I [
X1 X2
Later Position — Vg
A P(kx2) A
p (Xl) Vl VF
S2
| |
-—>|
S1
X1 X2

To derive the one-dimensional wave equation, let's look at the motion of a small volume
of fluid. We can relate its motion to the spring-mass system from the previous section. If we
apply a pressure gradient to the fluid volume, Vi, (such as an acoustic pressure from an acoustic
wave) it will move and compress the volume of fluid. The pressure on the left face of the fluid
block is pi(X;), while that exerted on the right face is p2(X;). If there is a differential pressure, Ap,
then the fluid block might move to the right, and, as the block accelerates, it will change to
volume, Vr. We will make some assumptions regarding the movement of the block:

1. The process is adiabatic — no heat is lost or gained by the presence of the acoustic
wave. This is a reasonable assumption because for acoustic wave frequencies in the ocean, the
wavelength is too long and thermal conductivity of seawater too small for significant heat flow
to take place.

2. Changes in particle displacement of the fluid from equilibrium are small.

3. The fluid column is not deformed (shear deformation) by differential pressure.
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To fully describe the motion of sound in the fluid from first principles, we will examine
three well known Physics laws — Newton’s Second Law, an equation of state, and conservation
of mass. These laws, coupled with the assumptions above provide a robust and powerful model
for underwater sound.

Newton's Second Law

Newton's Second Law is customarily used by examining the forces in a particular
direction and then summing them as vectors. In the case of our fluid volume, Vi, the forces in
the x direction are:

ZFX =p(x,)A—-p(x,)A=—ApA

This net force across the volume is equal to the mass times the acceleration of the volume. The
mass is found by multiplying the initial density by the initial volume (Ax = X,-X;)

m = p,AAX
The acceleration in the x direction is the second time derivative of average displacement

G
and
s, +5,
2

S =
Substituting into Newton’s Second Law,

z F =ma_ becomes
2 —

—ApA =p,AAx (6_5

e j and rearranging gives

Ap 0’s )
——=p Yo or more appropriately

o, __[O°s
ox  "loe

In the final result, acoustic pressure was used since the derivative of the static pressure is zero.
Additionally, the instantaneous density and displacement for an infinitesimally small volume are
substituted.
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Equation of State and Conservation of Mass

Even though we think of liquids mostly as incompressible fluids, in reality, they are not.
The Bulk Modulus of Elasticity describes how much the volume of the liquid changes for a given
change in pressure. In equation form this is:

__p(x)-p(x) ~._Pa
(Ve =V))/V, AV/V,

The significance of the negative sign in above equation is that when p, is positive, then Vy<Vj
and AV is negative.

Using solid geometry we can develop an expression to relate the acoustic pressure to the
displacement of the small volume in the above figure. Implied in this argument is the law of
conservation of mass. We are not allowing any of the medium to escape the volume, nor are we
allowing any additional mass to seep in.

V, = AAx

V; = A(Ax + As)

(Note: As=s,- s, is a negative number)

(Vi=V,) AV (A(Ax+As)-AAx) A
V; V; AAX Ax

Thus substituting in the last two equations and rearranging the definition of the Bulk
Modulus of Elasticity:

p. = B
Vl
p, = —Bﬁ or more correctly
AX
0s
- _BZ
P, ox

Substituting this last result into our previous relationship between pressure and
displacement:

Ox

2 2
op, 0’s 8(B8sj gJs

B ox’



The One Dimensional Wave Equation

Substituting the conclusion from conservation of mass and equation of state into
Newton’’s Second Law results in the one-dimensional wave equation that we can use to describe
the displacement, s, from their rest position of particles in a medium, with respect to time and
position. This equation is a partial differential equation with a solution that varies with time and

position. As with the mass-spring system equations, if we can find an equation that satisfies this
second order differential equation, the equation could be used to describe the motion of the

particles in the medium.
s _ (Bja_zs
ox’ \B)ot’

One solution that we will use was described above as a plane wave and has the form:
s(x,t) =s, sin(kx + ot)
Recall that:

so = amplitude of the oscillation or maximum displacement

k =2n/A is the wave number

o =2nf=2n1/T is the angular frequency

* determines the direction that the wave travels

(+ is for a wave traveling to the left, - is for a wave traveling to the right)

To check the validity of this solution we must take the appropriate second derivatives:

2

%[so sin (kx —ot) | = —s k* sin (kx — o)
X

82

ﬁ[% sin (kx — wt)] =—s,” sin (kx —ot)

Substitution into the wave equation

—s k* sin(kx — ot ) = —(%jsomz sin (kx — ot)

or

Rearranging and recalling that the speed of the wave, ¢ = w/k,
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This is a fairly profound result. It tells us that the plane wave solution for particle
displacement is a “good” solution provided the speed of the wave is not arbitrary, but exactly
equal to the square root of the bulk modulus divided by the density. When the bulk modulus and
density of water are used, a nominal value for the speed of sound in water is 1500 m/s. This
agrees with measured results.

Had we used an equation of state for a gas instead of a liquid, we would have arrived at a
similar result following a similar procedure. The plane wave solution would still solve the wave
equation, but the wave speed would become:

= ynRT
m

When typical room temperature numbers are used, this results in a nominal speed of sound in air
of 340 m/s.

The rules of differential equations make no statement about the uniqueness of a solution
to the wave equation. Many other solutions exist as well. Had the solution been expressed as a
cosine vice a sine, the wave equation would still have been satisfied. Additionally, complex
exponentials could have been used as a solution due to Euler’s identity.

S(X, t) _ Soei(kx—mt)

This expression is really shorthand for the real (or imaginary) part of the complex exponential.
A Gaussian pulse of the following form also satisfies the wave equation.

_( kx—mtj2
T

s(x,t) =s,e

Additionally, if a certain frequency wave satisfies the differential equation, all multiples or
harmonics of that frequency must also work.

s(x,t) =s, sin(nkx £ not)

Rules for differential equations also specify that linear combinations of solutions are also
solutions. This is called the principle of superposition. A method using the theory developed by
a French mathematician named Fourier will allow disturbances of almost any shape to be
constructed using series of harmonic plane waves. These disturbances will still themselves be
solutions to the wave equation.
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Alternate Views for Describing an Acoustic Wave — The Pressure Field

So far, we have viewed sound moving in a fluid as a harmonic traveling wave,
considering only particle displacements. This is not a unique view. Just as an electromagnetic
wave can be seen as an oscillating electric field or and oscillating magnetic field, so too can a
sound wave be seen as an oscillating pressure field, an oscillating velocity field or an oscillating
density field. Of course, the fundamental difference remains that the electromagnetic wave is
always a vector field, while the sound wave in a fluid is generally a scalar field.

Using the solution for the wave equation,s(x,t)=s, sin(kx —wt), we can find the

equations for two of these fields. First the we will find the acoustic pressure. Previously we
found the relationship of the acoustic pressure p,, and the displacement of the small volume from
the equation of state. Using this we get:

0s
t :_B_
p. (1) 0x
0| s,sin (kx- wt
p, (x,t)=-B [sosm( o )] = -Bs kcos (kx- wt)

0x

The first important observation about the pressure field relative to the displacement field is that
they are 90 degrees out of phase with each other. This means that when the particle
displacement of the medium is at a maximum, the acoustic pressure is at a minimum.
Additionally, when the displacement is zero, the maximum acoustic pressure is:

P = Bk =pc’s k
By convention, acousticians prefer not to use an engineering modulus, B, instead substituting
szcz.

Alternate Views — The Velocity Field and Specific Acoustic Impedance

The particle velocity is not the wave velocity. The speed that the wave travels is a
function of the medium and is a constant. The speed of sound, c, is given by the equations:

p T k

The particle velocity of the medium, on the other hand tells us how fast the molecules in
the fluid are moving. It is found by simply taking the time derivative of the equation describing
the position of the medium, the plane wave solution.

u(x,t)zé

o[ s, sin(kx—at) |
ot

u(x,t)= =—s,0c0s (kx — ot)

where

u_ =s,0=s,ck

m
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It is noteworthy that for a plane wave, the particle velocity and the particle displacement
are 90 degrees out of phase, but that the velocity and acoustic pressure are in phase. We can also
find the maximum particle velocity from the characteristics of the wave.

In your electrical engineering classes, you were introduced to a quantity called
“impedance.” It was the ratio of the driving “force” in a circuit, the voltage, to the rate at which
charge passes by a point in the circuit, the current.

>—<1| <

electric

By analogy, the driving force in an acoustic wave is the pressure and the rate at which
particles in the medium pass a particular point is the velocity. It is no accident that we define the
specific acoustic impedance as the ratio of the pressure to the particle velocity.

X,t
, = P&
u(x,1)

For the case of a plane wave we have found expressions for both the pressure and
velocity fields.

—pc’s k cos (kx —ot)
—s,ck cos (kx — wt)
The specific acoustic impedance relates the characteristics of a sound wave to the

properties of the medium in which it is propagating. Nominal values for the density, p, and the
wave speed, ¢, for water are p = 1000 kg/m’ and ¢ = 1500 m/s. Do not be confused into thinking
that specific acoustic impedance is always the product of density and the speed of sound. This is

only true for a plane wave. For other geometries, for instance a spherically spreading wave, the
specific acoustic impedance is a different expression — even in the same fluid.

ZEE: =pcC
u

More on Continuity of Mass — The Density Field

When motivating the wave equation, it was mentioned that the mass in our test fluid
volume was not changing. Specifically, the initial mass in position I is the same as that in
position F.

P Vi =Pr Vi

Recalling our expression for the equation of state and substituting,

&Vl _Vl

o oYV _gh =_B[&_IJZ_B[Q—pF]zB[pp—plj
' \/ \ Py Pr Py

Py
This fractional change in density is called a condensation variable. It is often written,

p(L)—po T sokcos(kx —o)t)
Po B

We find that the fractional change in density, [pF —P J is directly proportional to the pressure.
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We have developed four different descriptions for a traveling acoustic plane wave;
particle displacement, particle velocity, acoustic pressure and fractional change in density.
Particle displacement is 90 degrees out of phase with the other three, but all four discriptions
travel with the same wave speed and have the same period and wavelength. All four can be used
to properly model acoustic effects.

Energy in a Sound Wave

Missing in the discussion of wave equations and their solution is any mention of energy.
We started the semester with a review of simple harmonic (sinusoidal) motion. The reason we
did this should be apparent to you by now. As a plane wave traverses any medium, all specific
particle locations undergo simple harmonic motion as the wave passes by. Because of this, we
can use the basic SP211 equations for kinetic and potential energy of the medium. The only
modification is to replace mass with density so as to calculate energy density or energy per unit
volume. This is a logical modification since the medium carrying the wave is continuous. It
would make no sense to identify a particular piece of mass, nor the total mass. The equations for
kinetic and potential energy density in a simple harmonic oscillator are respectively as follows

2 1 2.2
—KiooreS Emw S

- = =—pw’s’
? \% \% 2P

Since we have equations for particle displacement and particle velocity, we can simply substitute
these into the above.

& = PU =%p|:somcos(kx—cot)]2 =%pa)2s§ cos’ (kx —wt)

€p = %pmzs2 = %pof I:s0 sin (kx — oat)]2 = %pmzsﬁ sin” (kx — ot)
It should be clear that the total energy is the sum of the potential and kinetic energy and that
when the kinetic energy is maximum the potential energy is zero and vice versa. The question of
how the energy is partitioned depends on when you ask the question.

The average energy in a simple harmonic oscillator is calculated using the following
definition for a periodic function:

1 T
f(t))=—|f(t)dt
(1(0)=1 (0
For kinetic and potential energy we find that since the time average of <sin2 o( t)> = <0052 6(t)> = % ,
1 1
(g )= Epmzsi <cos2 (kx — mt)> = mezsﬁ =—pu

(&)

2

S —

1 . 1
Epofsi <s1n2 (kx - (Dt)> = Zp(ozsi =—pu
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This shows that on average, the kinetic energy of a plane wave and the potential energy of a
plane wave are the same, each being exactly one half the total energy of the harmonic oscillator.
The total average energy density of the wave is then,

1
(6)=(ox)+ (o) = Sou
Using the acoustic impedance, u = P_ P allows us to write the total energy in terms of
zZ pc

maximum pressure.

1 Pl
<8> - 2 pc2

Acoustic Intensity

Acoustic intensity, I, is defined as the amount of energy passing through a unit area per
unit time as the wave propagates through the medium. As we described in SP211, energy moved
per unit time is power which has units of Watts. Intensity then must have units of Watts/m®.

< { Power} B [Work L] } B { Force x displacement}

Area time Area Areaxtime

| =[Pressurexvelocity]

This unit analysis suggests acoustic intensity can be calculated from the product of acoustic
pressure and particle velocity.
I=p,u where

P, = PamaSin (kx-ot)andu=u_, sin(kx-ot)

but u=--
pc
2
1(x,0) =P (s)
pc

One important thing to note is that since the acoustic pressure is a time-varying quantity, so is the
intensity.

We will use a more meaningful quantity, the time average acoustic intensity. The
average intensity of an acoustic wave is the time average of the pressure over a single period of
the wave and is given by the equation:

=42

pc
Since the time averaged acoustic pressure is <p§> = Epjmx , the average acoustic intensity can be

written:

1 Pl
D=2
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This result looks remarkably similar to the average energy density of a traveling plane
wave. In fact this is not accidental. If you consider a plane wave as a cylinder of length cdt and
cross section A, the total energy in this cylinder, dE, would be the product of the energy density
and the volume.

<dE> = <s> Acdt

<+«— cdt —»

Rearranging we see an alternative expression for average acoustic intensity,

)=(35)= (o)

2 2
Since <8> = —p*‘L‘Z"‘ , the average acoustic intensity is again<I> — —Paman
2 pc 2 pc

This result is pleasing in that it agrees with an analogy suggested earlier between voltage
and pressure. In your electrical engineering class, you learned that electric power was voltage
squared divided by impedance. Average power was found using

1V,
<P> — — _'max
2 Z
Now we have found that average acoustic power per unit area is simply acoustic pressure
squared divided by specific acoustic impedance.

(P) _1p;
<I> —\ /_ ~ Pamax
A 2 z
This sheds light on why the modifier “specific” precedes acoustic impedance. By analogy,
specific acoustic impedance, z, must be acoustic impedance Z, divided by area.

To further make use of electrical engineering backround, time averaged pressure may also be
determined by:
(p2) =Pl

pmax
<P§> = Prms Zf
therefore:
_ Do _ Do
<I> N 2pc - pc

Lastly, from this point further, unless otherwise noted, when we refer to the intensity of the
wave, we actually mean the time-averaged intensity.



N —

11.
12.
13.
14.

15.

16.
17.
18.

19.

Review and definition:

displacement (s) = distance fluid particle moves from equilibrium (meters)

. period (T) = time required to complete one complete oscillation (seconds)

particle velocity (u) = displacement/time (meters/second) = o

wave speed (¢) = speed the wave front is moving (meters/second) where C = \/z = % = Af
P

frequency (f) = 1/T (Hz or 1/second)

angular frequency (®) = 2nf (radians/second)

wave lengths (1) = distance between same amplitude points of two successive wave fronts

(meters)

wave number (k) = 2n/A (1/m)

wave fronts = surface over which all particles vibrate in phase

. acoustic ray = a vector perpendicular to the wave front pointing in the direction of

propagation at one specific

static pressure (ps) = pressure of environment minus any changes due to sound wave (Pa or
N/m?)

acoustic pressure (p,) = pressure fluctuations due to presence of wave motion of particle
displacement (Pa)

instantaneous pressure (piot) = static plus acoustic pressure at any one instant

plane waves = small segment of a spherical wavefront at a long distance from the source

rms pressure (Prms) = l< p §> = root mean square value of the acoustic pressure (Pa)

Intensity (I) = pze1 max/2PC = pzmls/ pc
acoustic impedance (z) = p/u =pc = pw/k
Bulk Modulus of Elasticity (B) = provides relationship between change in pressure to change
in volume of unit of fluid

density (p) = mass contained in a unit volume of fluid (kg/m3)



Problems

1.

A sound wave propagates a point about 50 meters below the surface of a calm sea. The

instantaneous pressure at the point is given by: p =6x10’ +1000 sin(4007zt), where t is in

seconds and p in Pascals.

a) What is the value of static pressure at the point?

b) What is the value of maximum (or peak) acoustic pressure at the point?

c) What is the root-mean-square acoustic pressure?

d) What is the acoustic pressure when t=0, 1.25, 2.5, 3.75, 5.00 milliseconds?

e) What is the average acoustic intensity of the sound wave? (The density of the water is
1000 kg/m’ and the sound speed is 1500 m/sec.)

f) What is the intensity level, L, in dB re 1 pPa?

A plane acoustic wave is propagating in a medium of density p=1000 kg/m’. The equation
for a particle displacement in the medium due to the wave is given by:

S= (1X10’6 )cos(87zx —120007t), where distances are in meters and time is in seconds.
a) What is the rms particle displacement?

b) What is the wavelength of the sound wave?

c) What is the frequency?

d) What is the speed of sound in the medium?

e) What is the value of maximum (or peak) particle velocity?

f) What is the value of maximum acoustic pressure?

g) What is the specific acoustic impedance of the medium?

h) What is the bulk modulus of the medium?

1) What is the acoustic intensity of the sound wave?

j) What is the acoustic power radiated over a 3 m” area?

A plane acoustic wave is propagating in a medium of density p and sound speed c. The
equation for pressure amplitude in the medium due to the wave is given by:
p=p, cos(kx - a)t), where py is the maximum pressure amplitude of the sound.

a) Show that the equation above can be written in the form, p = p, cos%[(x - Ct).

b) Show that maximum pressure amplitudes (compressions) can be found at the following
locations in space: x=nA+ct wheren=0, 1,2, 3, ...

c) Show that maximum pressure amplitudes (rarefactions) can be found at the following
location in space: x=(n+1/2)A+ct, wheren=20, 1, 2, 3, ...

A plane acoustic wave travels to the left with amplitude 100 Pa, wavelength 1.0 m and

frequency 1500 Hz; p, =100Pa cos(z—ﬂx+ 30007
m

tj , while another plane wave travels to

sec
the right with amplitude 200 Pa, wavelength 2 m and frequency 750 Hz:
p, = 200Pacos(ﬁ + 15007 tJ .
m sec



a) Find the rms average total pressure. Your answer will not depend on distance x. (Hint:

wtal> , where the <> symbol denotes a time average.

rms average pressure = <P2

b) If p, = p,cos(kx—at)and p, = p, cos(kx—wt + @), find the rms average total pressure.

5. Given the following equation for an acoustic wave, originating from a source in the ocean

p(x,t) =8x10° Pa sin( 27 X— 27[D60]t}

I13m sec
Determine the following:
a) The wavelength
b) The rms pressure of the wave
c) What is the frequency of the wave?
d) The time averaged intensity of the acoustic wave

6. If the particle displacement can be found to be:
s(x,t)=6x10"° m cos(

3m sec

a) What is the value of the peak particle velocity?

b) What would be the maximum acoustic pressure if the Bulk Modulus of Elasticity of the
medium were 2.0x10° N/m*?

27 27(160] t)

7. If a pressure pulse from a small explosion in water is known to be equal to
t

p= (IOOOPa)e[O‘IS“j atx =0

a) Construct a solution to the wave equation for the pulse propagating to the right. This
expression must be in the form of a function of x and t.
b) Sketch p(x,t) from part a) for timet=0,t=0.1s,andt=0.2 s.

8. If an acoustic pressure pulse in water at x = 0 is known to be

p(t) =P Wheret=1 millesec, p, = 1 Pa

2

I+ —
T

a) Find a wave expression for the pressure pulse traveling in the x-direction to the left.
b) Find an expression for the intensity of the waveform found in part a).

9. What is the speed of sound in yards per second in:

a) air?
b) water?

2-20



Lesson 2

Waves

* Traveling Waves I

ey il e puarticle

I N
- Types fz\u” VAV

N7
S

- Classification

— Harmonic Waves
— Definitions

— Direction of Travel

« Speed of Waves
 Energy of a Wave N

Types of Waves

» Mechanical Waves - Those waves resulting from
the physical displacement of part of the medium from
equilibrium.

Electromagnetic Waves - Those wave resulting

from the exchange of energy between an electric and
magnetic field.

Matter Waves - Those associated with the wave-like
properties of elementary particles.

Requirements for Mechanical Waves

» Some sort of disturbance
* A medium that can be disturbed

» Physical connection or mechanism through
which adjacent portions of the medium can
influence each other.

Classification of Waves

Transverse Waves - The
particles of the medium
undergo displacements in a

direction perpendicular to the iy S#“
wave velocity m
— Polarization - The orientation { y W

of the displacement of a - Wavclengih =
transverse wave. (a)
Longitudinal Chopmi "
(Compression) Waves -
The particles of the medium )
undergo displacements in a
direction parallel to the
direction of wave motion.
— Condensation/Rarefraction

AAGAAN A
LU

= Wavelength—=

Waves on the surface of a liquid

3D Waves
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Sound Waves

High

il

Density of air

s,
S AL VIR

(b)

Harmonic Waves

 Transverse displacement looks like:

15
1] Att=0
= /%'r\\” ‘ —
? .05 4 2 \_/
A+ - N
-15
x (m)

Let the wave move

Traveling Wave

15 =fctF=
NN
E o // AN
ST
-15

X (m)

s(x,t):sosin[%(x—ct)}

Standing at the origin

« Transverse displacement looks like:

1.5
1 4
0.5 A
0 ‘ : ‘
05030 --%2 S~ e 6---
Al e -
-1.5

s (m)

t (sec)

s(0,t)=s,sin [Z—E(O—Ct)} =s,sin [—@t} =-s,sin (Z—Ht]
A A T

Phase Velocity

oo distance moved in one cycle _ A _f
time required foronecycle T

« Wave velocity is a function of the properties
of the medium transporting the wave

D

= Ct=
So s .
\ " Fd 5\ . ~
x
%1 ~i
- ¥ 4

That negative sign

* V_Vave moving s(x,t)=s, sin[z—nx—ﬁt}
right AT

* Wave moving s(x,t):snsin[ﬁwr@t}
left oo T

D

- Ct=
So s .
\ " Fd 5\ . ~
x
%1 ~i
- ¥ 4
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Alternate notation

.2 2¢m
)= Zx-Lot
s(x,t) 505'”{}LX T }

s(x,t)=s,sin[kx —ot]

27
Wave number kK ==

A
C=—=
T

Angular frequency ©® = T

Definitions

Amplitude - (SO) Maximum value of the displacement of a particle in a
medium (radius of circular motion).

Wavelength - (1) The spatial distance between any two points that behave
identically, i.e. have the same amplitude, move in the same direction (spatial period)

Wave Number - (k) Amount the phase changes per unit length of wave
travel. (spatial frequency, angular wavenumber)
Period - (T) Time for a particle/system to complete one cycle.

Frequency - (f) The number of cycles or oscillations completed in a period of
time

Angular Frequency - (m) Time rate of change of the phase.
Phase - (kx - ot) Time varying argument of the trigonometric function.

Phase Velocity - (V) The velocity at which the disturbance is moving
through the medium

Two dimensional wave motion

Spherical Wave  Plane Wave

Incident Reflecind

Ray

M.,

¥

z
i
g

(a) (b

Acoustic Variables
s(x,t)=s,sin[kx—ot]

ol Fressure in s Fidd

ssure

—_—
1 T\ i
i scousich

1 pressurel

= . Dru
pt.ctal pstatlc + pa Mn"‘;‘mm Compression  Expansion

il [ia R

« Displacement S
ParticleVelocity U=—
* Pressure
¢ Density

Condensation = Compression

P(X,t)*Po Rarefaction = Expansion

Po

A microscopic picture of a fluid

o [ A o . Assumpt!ons:
' — Adiabatic
T T — Small displacements

o R — No shear deformation
¢ Physics Laws:
A P0D) A — Newton’s Second Law
e Vi — Equation of State
‘ T : — Conservation of mass
—_—

The Wave Equation

2
Newton’s Second Law/ % =—p E
Conservation of Mass ox ot?
Equation of State/ p,=-B @
Conservation of Mass a OX

PDE - Wave Equati s _(p)2s
— Wave Equation ol Bl




Lesson 2

Solutions to differential equations

¢ Guess a solution

 Plug the guess into the differential equation
— You will have to take a derivative or two

¢ Check to see if your solution works.

« Determine if there are any restrictions (required
conditions).

« If the guess works, your guess is a solution, but it
might not be the only one.

« Look at your constants and evaluate them using
initial conditions or boundary conditions.

The Plane Wave Solution

s(x,t)=s,sin(kx F ot) P %ii:(%jz%f

—s,k?sin(kx —ot) = —(%)sowz sin(kx —ot)

General rule for wave speeds
¢ [Elastic Property
~\ Inertial Property
Longitudinal wave o= Young's modulus _ Y
in a long bar density o
Longitudinal wave ce Bulk modulus _ |B
in a fluid - density - o

Sound Speed - [Bulkmodulus _ B
- density  \p

Air Sea Water
Bulk Modulus |1.4(1.01x 10 Pa | 2.28 x 10° Pa
Density 1.21 kg/m? 1026 kg/m?
Speed 343 m/s 1500 m/s

Variation with Temperature:

Air v~(331+0.60T) 2
S

Seawater v ~(1449.05+4.57T -.0521T° + .00023T3)E
S

Example

e Aplane acoustic wave is propagating in a
medium of density p=1000 kg/m3. The equation
for a particle displacement in the medium due to
the wave is given by:

s = (1x10* Jcos(82x ~120007t)

where distances are in meters and time is in
seconds.

What is the rms particle displacement?
What is the wavelength of the sound wave?
What is the frequency?

What is the speed of sound in the medium?

Alternate Solutions

s(x,t)=s, cos(kx  wt)

S(X, t) — Soei(kx—(ut)
{kx—u)t]z
s(x,t)=se*

s(x,t)=s,sin(nkx £ mwt)




Lesson 2

Superposition

) yix. 1y
« Waves in the same

medium will add
displacement when at the

same position in the }43“3"“ s .
medium at the same time.

« Overlapping waves do not L s
in any way alter the travel
of each other (only the D, 0y=Dyix, 1)+ Dalx, 1) + Dalx, 1)
medium is effected)

Sum of all three

Superposition
Dim) D{m)
1.0 1.0

0.5 - pat 1 1 0.5

0.0

=0.5

1.0 Lem) -0 L L LV ym)
04 02 00 02 04 204 —02 00 02 04

(a) (b)

« Fourier’s Theorem — any complex wave can be
constructed from a sum of pure sinusoidal
waves of different amplitudes and frequencies

Alternate Views

Particle Displacement s(x,t)=s,sin(kx tot)
Particle Velocity u= @ ——s wcos(kx _ mt)
a
0s )
Pressure P, (% t)= -Ba=-pc s kcos (kx-wt)
Density m=p—§=—sokcos(kx—mt)

Po

Pitch is frequency

Audible 20 Hz - 20000 Hz
Infrasonic <20 Hz
Ultrasonic >20000 Hz

Middle C on the piano has a frequency of 262 Hz.
What is the wavelength (in air)?

1.3m

Specific Acoustic Impedance

* Like electrical impedance z
« Acoustic analogy

— Pressure is like voltage @
— Particle velocity is like
current
« Specific acoustic 7= P
Impedance: u(x,1)

— <

electric

—pcisokcos(kx—awt)

« For aplane wave: z=P-
u  —s,ckcos(kx—ot)

,pC

Energy Density in a Plane Wave

£ :%qu :%p[snmcos(kx—mt)]2 :%meSi cos? (kx —ot)

& :%meSz :%pmz [S sin(kx—mt):'2 :%pmzsi sin® (kx — ot)
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Average Energy Density

1 1
(e¢) = Epo)zsg <COS2 (kx— (ot)> = mezsg = ZpuzmaX

1 . 1 1
(g)= Epmzss <sm2 (kx 7cot)> = mezsﬁ = Zpufnax

Average Power and Intensity

S (dE)=(e)Acdt

\Ed[ dE
.~ () :<_dt >= (c) Ac
_ﬂ_ 1 2 _E@ E
<I>_ A _<8>C 2pC max_2 c 2pamaxumax

Instantaneous Intensity

(o000 T

1(x,t)=p, (x,t)u(x,t)=

|- Power | [Work 1 |_| Forcexdisplacement
Area time  Area Areaxtime

I =[Pressure x velocity |

Root Mean Square (rms) Quantities

_ Prax

<p§> =Pims = \/E

therefore:

2 2
“>:B@L:Emi

2pCc  pcC




Logarithms and Levels

Logarithms are used to compare two quantities to one another quickly with an easy frame
of reference. It is particularly useful if there is a large difference in orders of magnitude between
guantities as in acoustic pressure or acoustic energy calculations. We will see how useful
logarithms can be in our next lesson. For now, let's concentrate on review of some of the basic
principles leading up to our use of logarithms.

Unless otherwise stated, we will be working solely with logarithms that are in base 10
(Briggsian) . Some useful relationships to remember when working with logarithms are:

1. y=10" then log,(y)=x

2. log(xy)=log(x)+log(y)
3. Iog[%) =log(x)—log(y)
4. 10Iog(x“): n10log(x)

Intensity Level

In the last lesson, we defined the time average intensity in relation to the time average or
rms pressure as well as the maximum acoustic pressure.

=170 e

pc  2pcC

The intensity is a useful quantity because it quantifies the power in an acoustic wave, but
because of the large variation in magnitudes of Intensity, it is more useful to use logarithms to
compare intensities. The below table demonstrates the wide variation in Intensity for typical
sounds in air.

We will start by defining a new quantity, L, the intensity level, which has units of dB.
I
L=10log <—>
I0
where:

<I> is the time average intensity of the sound wave.
lo is the reference level used for comparison purposes.



Source Intensity (W/m2) Intensity Level (dB)
Jet Plane 100 140

Pain Threshold |1 120

Siren 1x10'2 100

Busy Traffic 1x107° 70

Conversation 3x10'6 65

\Whisper 1x10-10 20

Rustle of leaves 1x10'11 10

Hearing Threshold); , 1-12 1

The reference intensity in air is typically 1 x 10 W/m?. Using this simple definition you see
that intensities spanning 14 orders of magnitude become intensity levels between 1 and 140.
This is an appealing scale because our ears seem to judge loudness on a logarithmic vice linear
scale. Additionally, if you tried to graph various intensities, say as a function of frequency, your
scale would likely only display the loudest noise with all others jammed along the abscissa.
When intensity levels are plotted, the graph becomes much more useful.

Threslllold of pain 120
120 1
_ 100 |
. 100 74 / 10
2 \\\\; 60 clifs ©
2 AN \ \ / 10 &
=) =
2 40 \)f@\\"* 2 YaLe g
7 I3}
2] ) =
20 qupé 20 / / 10-10 &
e‘g 5
0 \E{-H-g 0 A —110-12
Lol NIRRT Ll
20 50 100 500 1000 5000 10,000

Frequency (Hz)

The units of decibels were constructed for intensity level definition. A “bel” was named
after Alexander Graham Bell and defined:

"bel" = Iogll
0
A “decibel” adopts the standard metric prefix and is 1/10™ of a bel.
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Reference Intensity

We have already noted above that the reference intensity when calculating intensity level
for sounds in air is conventionally 1 x 102 W/m?, the hearing threshold. This is not always the
case. In fact for water, it is conventional to use a standard reference pressure, po. The most
common reference pressure for water is 1uPa. This should not alarm you since the two can be
converted using the specific acoustic impedance and assuming a plane wave.

_Po
pcC

Thus for water with a nominal density, p=1000 kg/m* and the nominal speed of sound, ¢ = 1500
m/s, the reference intensity would be:

(LuPa)? 10 W
|, = = 6.67x10
° (1000 kg/m?® 1500 m/s) § A‘F

ly

Similarly, one can work backwards from the reference intensity in air and determine that
the reference pressure is about 20 uPa (p = 1.21 kg/m®, ¢ = 343 m/s).

Unfortunately, you must be very observant when using decibels to understand the
reference level used in the calculation of an intensity level. While the numbers stated here for
water and air are the most common today, up until the early 1970’s, the standard reference
pressure level for sound in water was the microbar (ubar). To remove any ambiguity, intensity
levels are generally stated with the reference included as follows:

L=40 dBreluPa
Of course, this puts additional burden on you when submitting answers on homework, tests and
quizzes.

Sound Pressure Level (SPL)

If the reference is provided as a pressure, and we know the about the pressure of the
sound wave, we do not actually need to convert both to intensities because we can relate the
pressure of a sound wave directly to the reference pressure using our basic rules for logarithms.

()

2 2
L:10Iogm:10Iogp—g:10Iog<p—2>:10Iog ﬂ
Iy Po 0 Po

pC

A better equation for the intensity level is then:

2
L~ 20106 WL | s0t0gPe  where, = 5] = P
Po P, 2



In this form, the intensity level is often called the “sound pressure level.” The sound pressure

2
level and the intensity level must be equal provided the reference values correspond (1, = &).
pcC

Note that the form 10Iog(£] is used for energy quantities (power, intensity). These are

2

X

sometimes called “mean squared” quantities. The form 20Iog£ j is used for acoustic pressure

X2
and other “root mean squared” quantities such as voltage.

As a quick example, a sound wave in water with an rms pressure of 100 puPa would have
an intensity level or sound pressure level (in dB):

L = 20l0g 100 wPa

14Pa

L=40dB

reluPa

As stated above, the reference pressure is given in this answer so that we know the
intensity level is a comparison of the intensity to the reference pressure. In the future, all
intensity levels for sound in water can be assumed to be referenced to 1 puPa unless otherwise
stated. For sound in air, the standard reference pressure is 20 pPa.

About the Decibel (dB)

A couple of things to note about this new unit, dB:

1) Remember that decibels are often used to deal with values that differ over many orders of
magnitude thus allowing for much smaller differences in dB. For instance, a hydrophone
with a source level of 120 dB emits a sound wave with a rms pressure of 1,000,000 Pa. A
hydrophone with a source level of 100 dB emits a sound wave with an rms pressure of
100,000 Pa. Thus in this instance, a difference of 20 dB equals a difference of 900,000
Pa.

2) Every time you see the units of dB, you should think of a ratio. By definition, a level in
dB is related to the ratio of rms pressure to a reference pressure (in water prs = 1uPa).
When expressing a sound pressure level referenced to 1 pPa, the units are noted as dB/1
pPa or dB re 1 pPa. Sound levels in air use 20 pPa as the reference level, the average
human hearing threshold at for a 1 kHz signal. Acoustic signals in water were originally
referenced to 1 pbar. You can show that sound levels referenced to the new 1 pPa
reference level are therefore 100 dB higher than those referenced to 1 pbar.

5
20Iog[1o ”Paj ~100 dB
1 uPa

Later we will see how a difference of levels of two sources, in dB, is related to the ratio
of the pressure (or intensity) of the two sources.
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I
3) Since L :lOIog<I—> ,a10 dB intensity level means that (1) is 10 times greater than lo
0
and a 3 dB intensity level increase corresponds to a doubling of the energy level.

4) Intensity levels and sound pressure levels both use the symbol, L. As we move through
the course, we will discuss source levels, noise levels, and reverberation levels. A
common procedure in the Navy is to assign a subscript such as Ls for a source level.
Several standard textbook have adopted the convention of putting the subscript before the
“L.” In this case, SL would mean source level.

Working with intensity levels

For this course, we will need to work with intensity levels in many ways. Some
examples of using intensity levels are given below:

Subtracting Intensity Levels

Finding the difference between two intensity levels is a little bit different. The difference in the
two intensity levels represents the ratio of the intensities or pressure:

L,-L, =10Iog@—10|og<:—1>

0 0

L, -L, =10log(l,)~10log I, —[10log(I,)~10log I, |
L, —L, =10log(l,)—10log(l,)

|
L,-L, =10IogQ

(1)

or substituting in the definition for the intensity:

(P2)

L, - L, =10log PS¢

(Pi)

pC
p2
L, L110Iog%
L, L1=20IogM
(P
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So if a noisy sub was emitting a source level of 140 dB and a quiet sub was emitting a
source level of 80 dB, the difference between the two intensity levels would be:

L,-L,=140dB-80dB=60dB
For perspective, this represents a ratio of the intensity of both submarines To find the
actual ratio (not in dB):

L,-L, :1OIogM or

(1)
Ua) _107%0" or
(I,
!

,=10° %1,

~—

Or ratio of the acoustic pressures emitted:

L,-L, :20Iog<lo—2> or

(p.)

P, =10°* P,

In other words, the acoustic pressure of the sound wave from the louder sub is 3 orders of
magnitude or a thousand times greater than that of the quiet sub.

This example illustrates why it is so much more efficient to reference all intensities or
pressures to intensity levels to provide an easier comparison between numbers that can be so
many orders of magnitude different.

Adding Incoherent Intensity Levels

Noise in the ocean is the combination of noise from many different sources. How can we
add two intensity levels together? We want to add two intensity levels, L; and L,, where:

L1:10|og<:—l> and L2:10|og<:_2>

0 0

"Ll+|_2":10|og'|t—°t

0

but I, =(1,)+(1,)
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. i . |
First, let's rewrite equation, L, =10 Iog<|—1> to solve for (1)
0

L gt
0% I
10 = 1)

0

Lo (]
similarly, 10 :<|—2>
0
LZ

Ly Ly
therefore(l,) = 1,10 and (1,)= 1,10

L L
SO |y = |0(1010 +1010J

L.=L ®L,=10log (II‘—"‘}

0

L, L,
L., =10log (1010 +1010J

We used the notation with a circle around the plus sign to represent the power sum of two
decibel quantities.

L,=L L,

tot

To add intensity levels, there are two shortcuts that can be used for some problems to

make it easier than using the above equation:
L, Ly

1. ifL, =L, then L, =10log (1010 +10% J =L, +3dB this is because:

LooL L L
L, =10log (1010 +10% ] =10Iog{2(101° ﬂ =10log {101"}+1OI09 [2]=L,+3dB

The rules of logarithms, specifically the second rule above, tells us the only time it is appropriate
to actually add dB would be when intensity was multiplied by some quantity as in the case of the
gain provided by an amplifier. In this example, if an amplifier had doubled the intensity as if
there were two source intensities, we say the amplifier provided a 3 dB increase and we simply
add the 3 dB to the initial intensity level.

2. if L;>>L; (or vice versa), then Li=L; (or vice versa). Here, “much more than” is defined as
10 dB or 1;>10%1,,
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Problems

1.
a)

Using the rules for logs:

Simplify the following relationship for this empirical sound level of a signal in water
a,,b

X
(dBre ]_uPa): L == 20|Oglo(z—zl] dBrelyPa .

b)
2.

a)

If x=5, y=8, z=10, a=10, b=5, and c=11, what is the resulting level (in dBe 1,,pa).

Cavitation may take place at the face of a sonar transducer when the sound peak pressure
amplitude being produced exceeds the hydrostatic pressure in water.
For a hydrostatic pressure of 600,000 Pa, what is the highest intensity that may be

radiated without producing cavitation?

b)
c)

3.
a)
b)

a)
b)

c)
e)

10.

What is the intensity level in dB re 1 uPa?
How much acoustic power is radiated if the transducer face has an area of 1/3 m??

If P2 ms = 100 pPa and Py s = 25 pPa, what is:

(o) _,

Lz— L1 =?

If L;=L,=60 dBrel pPa Ly =57 dBrel uPas L, =50 dBrel uPa and Ls = 65 dBre 1 pPas what
is Lo, the some of all the levels.

What is the intensity of a 0 dBe 1 ura) acoustic wave in water?
If Ly = Ly, then prove that Ly, = L1+3 dB (the 3 dB rule).

If P1ms = 200 pPa and P2 ms = 10uPa, determine (assume Py = 1uPa):
Ls,

Lo,

L:®L,,

Li-Lo,

What does the previous result tell us?

If L;=30 dB re 1uPa and L,=65 dB re 1uPa, what is P,/P;?

Show that a plane wave having an effective acoustic pressure of 1 ubar in air has an
intensity level of 74 dB re 0.0002 pbar.

Find the intensity (W/m?) produced by an acoustic plane wave in water of 120 dB sound
pressure level relative to 1 pbar.

3-8



11. What is the ratio of the sound pressure in water for a plane wave to that of a similar wave
in air30f equal intensity? Cair = 343 m/s, pair = 1.21 kg/m®, Cuater = 1500 M/S, pwaer = 1000
kg/m?.

12. If the intensity level in seawater is 160 dB re 1 pPa, what is the rms acoustic pressure in
uPa?

a) What is the rms acoustic pressure in pPa if the intensity level is 160 dB re 1 ubar?

b) What is the rms acoustic pressure in pPa if the intensity level is 160 dB re 0.0002 pbar?

13. Over a certain band of frequencies in the deep ocean basis, the noise level due to surface
water turbulence (due to wind) is 62 dB and the noise level due to distant shipping is 65
dB. What is the total noise level?

14. The rms pressure from a low frequency sound source is 200 pPa. What is the combined
rms pressure for both sources? What is the combined source level in dB re 1 uPa?
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INTRODUCTION

A few years ago, there was considerable controversy over the
effects of a proposed global acoustic experiment designed to
measure the temperature of the world's oceans'. The focus of
concern was the possible effect of the acoustic signals on
whales and other marine life. There is continued interest in
the effects of underwater sound on marine animals, according
to arecent news item in The Economist’ based on related
scientific correspondence in Nature®. The thesis is that loud
signals from experimental sonars harm marine mammals, or
at least harass them enough to unacceptably alter their
behaviour patterns. In the various discussions of this
important issue that can be found in the press and on the
internet, one often sees questionable comparisons being
made, such as the acoustic output of a naval sonar being
compared with the noise from a jet arcraft. Some
misunderstandings between professionas in different fields
can be traced to the multiple uses of the term "decibel".
Acoustical terms can be confusing, even for experts. It is
not at all surprising that well-intentioned articles sometimes
fail to present situations clearly. By definition, the decibel is
a relative unit, not an absolute unit with a physical
dimension; unless the standard of comparison is cited, the
term "decibel” is to all intents and purposes useless. The
confusion is not helped by the use of the decibel to specify
distinctly different physical quantities, or the same physical
guantity with different reference levels. Some reporters—and
even some scientists—are getting their "apple’ decibds
mixed up with their "orange" decibels, asit were.

The decibel (abbreviated dB) is ssimply a numerical scale used
to compare the values of like quantities, usually power or
intensity. Acousticians introduced the decibel to devise a
compressed scale to represent the large dynamic range of
sounds experienced by people from day to day, and also to
acknowledge that humans—and presumably  other
animals—perceive loudness increases in a logarithmic, not
linear, fashion. An intensity ratio of 10 trandates into a
level difference of 10 decibels®; a ratio of 100 translates into
aleve difference of 20 dB; 1000 into 30 dB; and so on. (The
term "level" usually implies a decibel scale.) In a uniform
acoustic medium, the magnitude of the acoustic intensity is
proportional to the sguare of the pressure for a fredy-
propagating sound wave. Accordingly, the level difference in

100 dB(A)

umop gpg 2

decibels associated with two sound pressure values (measured
in the same medium) is determined by calculating the ratio
of the pressures, squaring this number, taking the logarithm
(base 10), and multiplying by 10.% If one chooses a sandard
reference pressure value, then sound pressure levels can be
specified in decibels relative to that reference, but this should
be stated aong with the number, for clarity®.

Thefollowing is a typical erroneous statement found in the
press, on radio, on television, and on internet discussion
groups. Referring to an experimental sonar source that
produces very loud low-frequency sound, The Economist
wrote: "It has a maximum output of 230 decibels, compared
with 100 decibels for a jumbo jet." Regardless of the
author’s intention, the implication is that a whae would
experience an auditory effect from the sonar that would be
substantially greater than that of a person exposed to the jet
aircraft. However, thistype of comparison is misleading for
at least three reasons: (1) the reference sound pressures used
in underwater acoustics and in-air acoustics are not the same;
(2) it compares a source level with a received level; and (3)
there is no obvious connection between an annoying or
harmful sound level for a human in air and an annoying or
harmful sound level for a marine animal in water. In the
remainder of this note, we will expand on these topics
somewhat, attempt to correct the mistaken impression, and
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try to direct attention to the real issue at the heart of the
controversy.

1. STANDARD REFERENCE SOUND
PRESSURES IN AIR AND IN WATER

The standard reference pressures used in underwater acoustics
and in-air acoustics are not the same. In water, acousticians
use astandard reference sound pressure of 1 micropascal (i.e.
106 newtons per square metre), abbreviated pPa. In air,
acousticians use a higher standard reference sound pressure of
20 pPa. Thein-air standard was chosen so that the threshold
of hearing for a person with normal hearing would
correspond to O dB at a frequency of 1000 Hz. Adopting
different standards for air and water inevitably leads to a
confusing consequence: the same sound pressure that
acousticians label 0 decibels in air would be labelled 26
decibelsin water. Presumably, both factions of acousticians
had equally good reasons for proposing their respective
standards, and this dichotomy is now entrenched in an ANSI
standard®, which is unlikely to change. Accordingly, the
following dictum should always be observed, especidly
when dealing with cross-disciplinary issues: It is essential
that sound levels stated in decibels include the reference
pressure.

2. SOURCE LEVEL AND RECEIVED
LEVEL

The erroneous statement compares a source level with a
received level. In underwater acoustics, a source level usualy
represents the sound level at a distance of one metre from the
source, while a recdved level is the sound level at the
listener's actual position, which could be considerably more
distant with a correspondingly reduced sound level. In an
unbounded uniform medium, loudness decreases rapidly with
increasing source-receiver distance, 6 dB less per doubling of
distance. For example, The Economist (and even Nature), in
referring to the 230 dB sonar source level, neglected to
mention the reference distance of 1 metre. In contrast, the
100 dB number that The Economist associated with a jumbo
jet is not a source level at al, but is typical of a receved
noise level measured during jet airplane take-off, averaged
over several microphones situated several hundred to some
thousands of metres from the runway’. It is incorrect to
compare a source level at 1 metre with a received noise level
at an unspecified (and probably much larger) distance.

Combining these two remarks, the output of the sonar
source should have been written as230dB re 1 pPa at 1 m,
while the jumbo jet noise level should have been written as
100 dB re 20 pPa. The inclusion of the reference values
shows that these are not like quantities, and that the
numbers are not directly comparable. The Encyclopedia of

Acoustics’ offers 120 dB re 20 pPa as a typical noise level
associated with jet arcraft take-off measured at 500 m
distance (although there is sure to be a wide variation about
this number, depending on the type of aircraft, etc.). With
the assumption of spherical spreading, referencing this level
back to 1 metre distance adds 54 dB. Switching to the 1 puPa
sandard reference adds another 26 dB. Accordingly, the
source level of alarge jet looks more like 120 + 54 + 26 =
200 dB re 1 pPaat 1 m, compared with 230 dB re 1 pPa at
1 m for the sonar. Both of these are loud sources, but now
a least the comparison is sensible. The ratio of sound
pressuresis around 32, rather than over 3 million, as some
commenters would have you believe!

There are other minor issues that could be discussed. The
signal from the sonar source is narrowband, and the
concentration of all the signal at one frequency may be
particularly troublesome for an animal who has a cavity that
resonates at that frequency. On the other hand, the jet noise
is broadband, and the acoustic signal was probably passed
through a filter that approximately matches the sensitivity
of the human ear before the measurement was made, so this
measurement would be meaningless for an animal with a
different hearing sensitivity curve. Much more could be sad
about these issues, but the principal reason for raising them
is to underscore the message that the sonar / jet plane
comparison has little validity.

3. WHAT HURTS?

Thereis no clear connection between a harmful sound level
for a human in air and that for an animal in water. All
cregtures have evolved and adapted to their respective
environments and there is no reason why human hearing
characteristics should apply to any other animal, including
whales. If agiven sound pressure hurts a human, would the
same sound pressure level in water hurt awhale (or afish, or
a shrimp)? Is the threshold of pain higher? Is it lower?
Particularly when comparing acoustic effects in media of
widely different impedance, is acoustic pressure the relevant
acoustic quantity, or isit acoustic intensity? In the end, it
is the answers to these and rdated questions that redly
matter, not juggling decibels. To properly answer these
questions and to determine the “community” noise sandards
for marine animals, scientific research is necessary—just as
it was for humans. Some of this work has aready been
done, and an excellent review™ of the state of knowledge up
to 1995 is a good starting point for acousticians and
biologists interested in deepening their understanding. A
single example cannot represent the whole range of species
under consideration, but is typical: The response threshold
(determined through behavioural studies) of aBeluga at 1000
Hz is just over 100 dB re 1 pPa. Of course, this says
nothing about the Beluga's threshold of pain, and says
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nothing about what sound level would unacceptably alter its
behaviour. It is unwise to assume that the auditory
experience of any animal would be the same as that of a
human exposed to the same sound level.

CONCLUSION

As sonar engineers, marine biologists, and environmentally
conscious citizens continue to discuss these important
issues, we should at least agree to use the same acoustical
units to convey our points of view, to avoid confusion ad
misrepresentation. Some sensible  acousticians  have
advocated abandoning the use of the decibel—which is partly
to blame for our woes—in favour of good old Sl (i.e,
metric) units for sound pressure, acoustic intensity, power,
etc. Until that happy day dawns, let us include reference
values with our decibels, so we don't end up with fruit sdad
dBs. Ultimately, what is important is to determine what
underwater sound levels are harmful to marine life. We must
develop mitigation measures to alow underwater acoustic
systems to be operated while ensuring the protection of the
marine environment with due diligence.
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Lesson 3

Lesson 3 - Logs and Levels

Math Preregs

y=10* then log,,(y)=x
log(xy) = log(x)+log(y)

log G] =log(x)~log(y)

10log(x" )= n101og(x)

Examples

» Without using your calculator, find the following:
(logy4(2) = 0.30)

* log,(107) =

* log,o(1 x 101?) =

* log,p(2 x 1012) =

* 10gy(200) =

* 10g,5(200) - 10g35(10) =

¢ logy,(219) =

-3,12,12.3,23,1.3,3

Pitch is frequency

Audible 20 Hz - 20000 Hz
Infrasonic <20 Hz
Ultrasonic >20000 Hz

Middle C on the piano has a frequency of 262 Hz.

What is the wavelength (in air)?

1.3m

Intensity of sound -2

e 2pe
* Loudness — intensity of the wave. Energy
transported by a wave per unit time across a unit
area perpendicular to the energy flow.

Source Intensity (W/m2) Sound Level
e Jet Plane 100 140
AD e Pain Threshold 1 120
| \ Siren 1x102 100
A E Busy Traffic 1x10% 70
! } Conversation 3x10 65
! J Whisper 1x1010 20
Rustle of leaves 1x101% 10
Hearing Threshold | 1x102 1

Sound Level - Decibel

L =10log [ﬁﬁ]

0

Threshold of pain 120
120 1 g i

100
_ 100 g 10-2
-]

8
= ] 2 i alln
g 60
2 60 i 106
2
5 w0 10-%
w

20 10-10

1]

20 50 100 SO0 1000 SO00 10,000
Frequency (Hz)

B W
I, =1x10 HF

Intensity (W/m?)

s>§> )))) Why the decibel?

Ears judge loudness on a logarithmic vice
linear scale

» Alexander Graham Bell "bel"= Iogl
docie L lo
* deci= o

1 bel = 10 decibel

L(in dB)=10log [ﬂlj

0




Lesson 3

Reference Level Conventions

2
|0 = &
pcC
. Reference Reference
Location .
Intensity Pressure
Air 1x1012W/m2 |20 pPa
Water 6.67 x 10 W/m2 |1 uPa

Historical Reference

1 microbar
1bar=1x10%Pa
1 pbar = 1 x 10° pPa

10° uPa
1 uPa

So to convert from intensity levels referenced to
1 pbar to intensity levels referenced to 1 pPa,
simply add 100 dB

20Iog[ J=100 dB

Sound Pressure Level

Mean Squared Quantities: _ <|>
Power, Energy, Intensity L =10log (_
0

“Intensity Level”

Subtracting Intensity Levels

L,-L, :10Iog<:—2>—1OIog<:—1>

0 0

L,-L, =10Iog<|—2>

(1)
)

L,-L,=20log <p2

p)

—

Two Submarines

« If anoisy sub was
emitting a source level of
140 dB and a quiet sub
was emitting a source
level of 80 dB,

« What is the difference in
noise levels?

« what does this mean in
terms of relative intensity
and acoustic pressure?

Adding Levels

L1=10I09<:—1> and L2=10I09<:—2>

0 0
n " Itot
L, +L, :1olog|—

0

but 1., = (1,)+(1,)

Ly Ly
Ltot = Ll ® I—z :10|Og [1010 +1010 J




Lesson 3

Total Noise

* On a particular day,
noise from shipping is
53 dB and noise from
rain and biologics is
50 dB. What is the
total noise level from
the two sources?

Adding Equal Noise Levels

» Two transducers are both transmitting a
source intensity level of 90 dB. What is the
total source intensity level?

If L,=L, thenL,, =L, ®L,=L,+3dB

Two Submarines

* If anoisy sub was
emitting a source level
of 140 dB and a quiet
sub was emitting a
source level of 80 dB,
what is the total noise
from the two
submarines?

Adding Decibels

—

10

Nomagram for Adding Decibels

,{II!III

=

[£l " (dBI =dB2)
Y
—TT:EJ?3+ <

0 2 4 6 8 10 12 14 16 18 20
dB81 - dBz2

il

Add to dB71

0.1 =

l
|
|
|

Backups

Reference Values

"o
S

IO

e
(e}

(20 uPa)’

Air- I = =110 W
i ° (12 kg/m*)(343 m/s) X sz

(1 HPa)Z 19 W
Water: Iy= =6.67x10
ater ®" {1000 kg/m?)1500 m/s) X 412




Lesson 3

Sound Pressure Level

2

L:10|Og<||>:10|0gp<2:=10|og<p2>:10|0g[ <p >]

0 0 0

pc

2
L=20log [%J = 20Iogh

0 0

Subtracting Intensity Levels

L,-L, 10Iog<:> 1OIog< >

L,

0 0

- L, =10log(1,)-10log I, ~[10log(l,)~10log , |
L, -L, =10log(l,)-10log(l,)
-L, 10Iog@ @
(1) L,-L,=10log S
(3]
pc
L,-L, 10I0gp>
{p)
L,-L,= 20Iog®

(»,

Addition

"L1+L2":1O|ogll‘—“‘

0

but 1, =(1,)+(1,)

L Lo
S0 I, =1 (1010 +101°]
|
ool
L 0 La=L®L, 710|Og(|‘°‘]
10% - <I1> 0

LoL

Ly =10l0g [1010 +101°J
s (1)

similarly, 10%° :I—

0

L L
therefore(1,) = 1,10 and {1,) = 1,10




Speed of Sound in the Sea

The speed of a wave propagating through a medium is not a constant. This is especially
true for the non-homogeneous medium, the ocean. The speed of sound through water has been
found to be mainly a function of three factors. They are temperature, pressure or depth and
salinity. Because the speed is not constant, sound does not travel along straight paths.

Temperature

In general, for most areas of the ocean, the water temperature decreases from the surface
to the bottom, but there are many local variations. Shallow layers see the most variation with
time and depth (ie. Surface mixing, solar heating, currents, seasonal variations, etc). In vary
deep water, the temperature eventual becomes constant with depth at about 4 C.

Depth

Hydrostatic pressure makes sound velocity increase with depth because of variations in
the bulk modulus, B. This effect is linear in the first approximation with an increase of 0.017
m/s per meter increase in depth.

Recall in Physics I we showed that pressure varies with depth according to the simple
formula,
P=P +pgh

Leroy formula (1968) gives a precise hydrostatic pressure:

P= [1.0052405(1+5.28><10‘3 sin ¢)z+ 2.36x107°7 +10.196]><104 Pa

¢ - latitude in degrees

z - depth in meters

(From: Lurton, X. An Introduction to Underwater Acoustics, 1* ed. London, Praxis Publishing
LTD, 2002, p37)

Salinity

The change in the mix of pure water and dissolved salts effects sound velocity. Salinity
is expressed in practical salinity units (p.s.u.). These unit have the same magnitude as the
traditional parts per thousand (%o). Most oceans have a salinity of 35 p.s.u., although salinity can
vary locally based on hydrological conditions. Closed seas have a greater difference in their
salinity (38 p.s.u. for Mediterranean Sea due to evaporation, 14 p.s.u. for Baltic Sea due to large
freshwater input). Salinity varies very little with depth, but there can be stronger variations near
river estruaries, melting ice, etc.



Velocity Models

In the 1940’s, sound velocity variations and their affect on acoustic propagation were first
noticed and studied. It is very difficult to locally measure sound velocity, but easy to measure
the parameters that affect it (temperature, salinity, and depth). Several models have been created
to predict sound velocity. A good first approximation is that developed by Medwin (1975). Itis
simple but limited to 1000 meters in depth:

o(t,2,8) =1449.2+4.6t—5.5x107* +2.9x107t’ +(1.34-107t)(S-35)+1.6x10"z
with the following limits:

0<t<35°C

0<S<45p.s.u.

0 <z <1000 meters

Where c is the speed of sound as a function of temperature, t, depth, z, and salinity, S.

Sound Speed Variations with Temperature and Salinity
(z=0m)

1580
1560
1540 - ppt salinity

1520 - )
1500 | .30
1480 | .35
1460 | / . 40
1440

1420
1400

1380 T T T T T T T
0 5 10 15 20 25 30 35 40

Temperature (C)

Sound Speed (m/s)

(From: Lurton, X. An Introduction to Underwater Acoustics, 1* ed. London, Praxis Publishing LTD, 2002, p37)

More recent and accurate models have been developed and include Chen and Millero (1977).
Their model is endorsed by UNESCO and used as the standardized reference model:



3
¢ =c¢,+c,P+c,P?+c,P’+ AS+BS2+CS?

P = Pressure from Leroy Formula

c, =1402.388+5.03711t—5.80852x107>t* +3.3420x107*t* —1.478x10°°t* +3.1464x107°’
¢, =0.153563+6.8982x10*t —8.1788x10°t* +1.3621x107"t* —6.1185+1.3621x107* t*

c, =3.126x107° —1.7107x10"°t +2.5974x10°t* —2.5335x107'"t* +1.0405x10 " t*

¢, =—9.7729x107° +3.8504x10"°t —2.3643x10"*t’

A=A +AP+AP +AP

A, =9.4742x107° —1.258x107°t - 6.4885x107*t* +1.0507x10t* —2.0122x107"°t*

A, =-3.9064x107 +9.1041x10°t —1.6002x107"°t* + 7.988x10 "’

A, =1.1x10"" +6.649x107*t —3.389x107"*t’

B =-1.922x107-4.42x10°t+(7.3637x10~° +1.7945x10 "t ) P

C =-7.9836x10°P+1.727x10"°

Where,

t - temperature (° C)
z - depth (m)
S - salinity (p.s.u.)
As you can see, the speed of propagation has a very complicated dependence on these

three factors. Some thumbrules that you can use to relate the dependence of the speed of sound
in seawater to each of the factors are:

1° Cincrease in temperature = 3 m/s increase in speed
100 meters of depth = 1.7 m/s increase in speed

1 ppt increase in salinity = 1.3 m/s increase in speed

(From: Principles of Naval Weapons Systems, Edited by Joseph B. Hall, CDR, USN, Dubuque, IA: Kendall/Hunt
Publishing Co, 2000, p.179)

Seawater contains many inhomogenieties, including bubble layers close to the surface,
mineral particles in suspension, and living organisms. These are all potential scatterers of
acoustic waves, especially at higher frequencies.

Measuring the Speed of Sound in the Ocean

To predict the direction of propagation of a sound wave in the ocean, we must know the
speed of sound as a function of position (or depth) in the ocean water. To measure the speed of
sound in water, the Navy has developed several tools to measure the temperature of the seawater
as a function of depth or the velocity of sound directly.



The most widely used tool is an Expendable BathyThermograph or XBT (picture
compliments of ES419). XBTs are launched from submarines, surface ships and even aircraft.
These measure the temperature of the water as the device sinks at a known rate and transmits this
back to the launching platform. This provides a detailed plot of temperature as a function of
depth. Neglecting salinity, the Sound Velocity Profile or SVP can be calculated as a function of
depth and temperature (since these cause the greatest variation in the speed of sound in
seawater.)

Many modern submarines are often equipped with velocimeters that calculate the speed
of sound in situ. Other submarines have systems that calculate and record sound speed using
temperature and depth measurements from onboard ships instruments.

Expendable Bathythermographs produce graphs of water temperature and sound speed as
a function of water depth as seen below. In the next lesson we will examine typical plots in more
detail for tactical significance. For now you should familiarize yourself with the basic shape of
these typical plots.

VELOCITY

NFPTH

Channel Axis




Using a Sound Velocity Profile and Snell's Law

We will now shift from thinking of sound as a wave and using the wave equations to
sound as a ray and using Snell’s Law. We can look at either the grazing angles, referenced to the
horizontal and used when looking at refraction, or incidence angles, referenced to the vertical
and used for refraction and backscattering.

In the below sketch, a plane wave is moving towards a boundary beyond which the speed
of sound is much slower. As the wavefronts hit the boundary they slow down and bend more
normal to the boundary. Specific examination of the wave after the right edge hits the boundary
at point A shows that the left side of the wavefront must travel a distance from B to D expressed
as the product of the sound speed c; and some time interval At. In that same time interval the
right edge of the wave front moves from A to E expressed as the product of sound speed ¢, and

Refraction
BD cAt
005(91) = E = E
AE At
cos(@z) = D = C,;D

cos(6,) _ cos(6y) 1

CAt C,At AD

cos(6,) cos(6,)
Cl - Cz

some time interval At. Using trigonometry we see that the ratio of the cosine of the grazing
angle to the speed of sound remains constant across the boundary. This observation is called
Snell’s Law.

Snell's law and ray theory are well suited for each other. Imagine that a sound ray is
transmitted through a series of mediums label 1 through 4 with sequentially increasing sound
speed. In each medium, the angle the ray makes with the horizontal, 6, will depend on the angle
it has in the previous medium and the speed of sound for each medium. The figure below
depicts the relation.



AW o=
&

where ¢; < ¢y <c3<cy and 0; > 0, > 05 > 0,4
According to Snell's Law

cos(6,) _cos(6,) _cos(6,) _cos(6,)
C, C, c, ) C

= constant

n

Notice that when a ray is in a layer and horizontal, 8 = 0° and the cos(0) = 1. We call the speed
of sound when the ray is horizontal, c,.

Sound Rays Travel in Arcs

Using Snell's Law from above, we can approximate the behavior of a sound ray as it travels
through a medium where the speed of sound is changing at a constant rate. Let's take the
example where the speed of sound increases as a function of depth as shown.

If the speed of sound increased in each layer as shown, a sound ray would travel in a path
the same as the one already shown.

Cq Cy C3 Cq
d | |
e |2 |
p 3 |
t |4 |
h
1 N\
2 N\
3 \
4 T~

(Notice that the sound ray is bending back towards the layers where the sound
speed is lower. This can be used later to qualitatively determine the ray path for
sound in water.)

More realistically though, the speed of sound changes as a continuous function. If we use a
continuous function instead of the step function for the speed of sound vs. depth, the speed of



sound as a function of depth can be described by a simple linear equation. This result can be
used to find functions for the radius of the path of the sound ray as well as other quantities.

speed of sound

=aaise BN RN =N
AW (N =

(Korman, M.S. Principles of Underwater Sound and Sonar, the preliminary edition. Dubuque, IA: Kendall/Hunt
Publishing Company, 1995, pgs 145-147)

The speed of sound, shown as the dotted line, can be expressed as (c; is the surface temperature):

c=c, +gz
where g is the gradient, g = & From Snell's Law and inserting our relation ship for ¢, yields:
Az
cosO, cosO
C, c
cosO, cos0,
c, c,+gz
z=R(cosB—cos,)
where R is defined as: R =—31 5 Soon we will show R is the radius of curvature of the
gcos6,

sound ray. 0 is always measured clockwise from the horizontal axis.

Ray Theory Geometry

A J

0,

Cy

Positive gradient, g
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In polar coordinates we know that the slope of a line is
dz

— =tan0
dx
From above we see that dz=—-Rsin08d0. To find how the ray angle varies with distance x,
dx =R 49 - _R cosode
tan©

Integrating both sides gives the result that:
x—x, =—R[sinB-sin6, |
Integrating both sides of dz gives:
z—z, =R[cosO—cos6,]
Rearranging these two equations:
x—X,—Rsin0, =-Rsin 0
z—2z,+Rcos0, =R cosO
Or
X=X, =—Rsin6
z-z, =RcosH
With
X, =X, —Rsin®,
z,=7,+RcosH,
Squaring the top two equations and adding the results gives the equation of a circle,
(x—xp)2 —i—(z—zp)2 =R’

!
gcosb,

Specificically, the circle has radius, R = , and is centered at the point (xp,zp). Thus we

have shown that a sound ray in a layer of constant sound speed will travel along the arc of a
circle.



To sum up the results then:

R—_ G Radius of arc of the circle
gcos0,
_Ac Gradient
8 Az
(How fast the speed of
sound changes per meter
change in depth.)
Snell's Law
~—— = constant
cos0_

Az=1z, -z, =R(cos0, —cosH,) Vertical Displacement

Ax =x, —x, =—R(sin@, —sin®,)| Horizontal Displacement

Time to travel in layer n
tan(”j
t =—In 7
9 tan(”l)
2
s C, ©-0) Curvilinear Path Length
gcosé, |

These equations will only work for one specific sound ray emanating from a source in an
environment with a constant gradient. The last two equations in the table are presented without
proof, but are useful results from many standard sources.

Example 1

Let’s look at the following example.
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Csurface™ 1500 m/s

C100 m:1510 m/s

Sound leaves the ship at two different angles, 0, and 0,. Note the path travelled by each
ray is different and if we calculate the parameters R, Ax and Az, each of these will be different
for each ray.

For both rays, the gradient, g, is a constant. This is calculated as such:
_Ac_ (1500-1510)m/s

Az (0-100)m
g=0.1sec”

We must now calculate the radius of curvature, R of each ray separately:
R c 1500 m/s

T gcosd, B (0.1 sec” Xcos 20°)
R, =16,000 meters

and

__c 1500 m/s
gcos 0, (0.1 sec'l)(cos30°)

R, =17,300 meters

RII

The skip distance, X, is the distance between successive places where the sound ray
stikes the surface. The easiest way to calculate this is to calculate the displacement, Ax, from
where the sound strikes the surface first to where the sound has leveled off or gone horizontal (0,
=0°). Thus:

X =2Ax =-2R(sin0° —sin @)

X =2Rsiné@

where 0 is the angle of reflection from the surface. So for each ray:
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X, =2(16,000 m)sin 20°
X, =11,000 m

and
X, =2(17,300 m)sin 30°
X, =17,300m

The results of the calculations for each ray are significantly different from each other and
show how the ray paths depend on the initial angle of the ray.
We can do the same for the depth the rays to. The maximum depth excursion of the ray
below its starting depth occurs when the ray goes horizontal again (0, = 0°) or:
Az =R(cos0°—cos@)

max

Az, =R(1-cos@)

so for each ray:
AZ, .., =965m (3170 feet)

Az = 2320 m (7600 feet)

max, |

Example 2

Also try the following example problem.’

Use the figure above and the following information to answer the questions.

a. If 6, =30°, ¢, =1299 m/s, ¢; = 964 m/s, what is 0,7
Using Snell's Law we have:
cosf,  cosb,

C C,

cos@
cosd, =c, -

2

0, =cos™ 964
1299

cos 300} =50°

! From: Korman, M. S. Principles of Underwater Sound and Sonar, the preliminary edition, p. 144.

4-11



b. Determine c.
Again using Snell's law and the 6, = 0°

C2
= CO
cosd,
c = 1299 m/s
cos30°

=1500m/s

c. What is the gradient if Az = 3000 m between points "1" and "0"?
_Ac _c,—¢ _1500m/s—-964m/s

AT Az 3000m
=.18s"

d. What is the radius of the sound ray path?
__ G
~ gcos 6,
964 m/s
(0.18 5" [cos(50°))
R =8330 meters

R =
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Problems

1.

A submerged submarine is at 10 meters.

a)
b)

Use Medwin’s Equation to determine the speed of sound in the water if the salinity is
35.0 ppt and the seawater injection temperature is 20.0°C.

If the submarine in the problem above submerges to 200. meters and the seawater
injection temperature goes down to 5.00°C, what is the new sound speed?

Determine the average gradient between the two depths in the problems above.

Is this a positive or negative sound gradient?

Sketch the SVP and sketch the approximate of several sound rays emanating from the sub
when it is at a depth of 10.0 meters.

If sound radiates from the sub at a depth of 10.0 m at an initial angle of 15° with respect
to the horizontal, determine the angle of depression of the sound when it has reached a
depth of 500. meters (assume the gradient is constant.)

Determine the Radius of Curvature of the sound ray.

Determine the horizontal displacement of the sound ray as it goes from 10.0 meters to
500. meters.

1498.1 1500.2 ¢ (m/s)
|

Use the following SVP to surface ' |

complete the next problems:

a)
b)

d)

Calculate the gradient of

the SVP.

If a sound ray exits

horizontally from a sub

that is at 50.0 m, what depth (m)
will be its grazing angle

when it hits the surface 0 T
of the ocean?

If a ray reflects off the
surface of the ocean at an
angle of 2.15° (assume
the surface is perfectly
flat), what will be the
skip distance of the
sound ray?

This is an example of:

1) apositive gradient

1) a negative gradient
If a sub is at 50.0 m, what is the largest angle below the horizontal where the ray will not
reach 100. m?

What is the skip distance of the limiting ray?

100 —+




Use the following SVP for the remaining problems:

Sound velocity profile in the deep sound channel
sound velocity (m/s)
1490 1500 1510 1520 1530 1540 1550 1560
O o
€1
500 -
c;=1517.9 m/s (surface)
1000
c,=1493.5 m/s (1200m)
C
1500 - c3=1556.0 m/s (4800 m)
2000
E
< 2500
o
[<b]
[a)
3000
3500
4000
4500 -
Ca »
5000 Bottom

3. Compute the sound speed gradients for 0 <z < 1200 m and 1200 < z < 4800.

4. A ray starts at 1525 m with a grazing angle if 15 degrees (recall a positive grazing angle is
pointed below the horizontal).
a) What are the sound speeds at depths of 1525 m and 2440 m?
b) Does the ray curve upward or downward?
c) What is the grazing angle at 2440 m?
d) At what sound speed will the ray become horizontal (a horizontal ray has a grazing angle
of 0 degrees)?



5. A sound source is at a depth of 1200 m.

a)

b)

©)
d)

e)
f)

2
h)

i)

At what angle with respect to the horizontal does the ray have to make at 1200 m so that
that when it reaches the surface the grazing angle is 0 degrees? This is called the surface
limiting ray.

What angle with respect to the horizontal does a ray have to make at 1200 m so that when
it reaches the bottom at 4900 m, the angle is 0 degrees? This is called the bottom limiting
ray.

At what depth below 1200 m is the sound speed equal to that at the surface?

At what angle with respect to the horizontal does a ray have to make at 1200 m so that
when it reaches the the depth found in c), the grazing angle is 0 degrees? This is called
the lower limiting ray

Compute the radius of the surface limiting ray.

Compute the radius of the bottom limiting ray.

Compute the radius of the lower limiting ray.

Compute the horizontal distance that the bottom limiting ray travels from the source until
it grazes the bottom.

Compute the horizontal distance that the surface limiting ray travels from the source until
it just grazes the surface.

6. A ray leaving a sound source at 1200 m points downward with an angle of 30 degrees with
respect to the surface.

a)
b)

How far will it travel horizontally until its angle with the horizontal is 25 degrees?
At what depth does the ray in a) make an angle of 25 degrees with respect to the
horizontal.



Lesson 4

Speed of Sound in Water

Medium Effects: =lasticity and Density

Variable Effects of:
Salinity Pressure Temperature
Salinity ——> Pressure —> Temperature —>

5
I

Speed of Sound Factors

» Temperature
* Pressure or Depth
« Salinity

1° Cincrease in temperature = 3 m/s increase in speed
100 meters of depth = 1.7 m/sincrease in speed
1pptincreasein salinity = 1.3 m/s increase in speed

Temperature, Pressure, and Salinity

¢(t,2,5) =1449.2 + 4.6t—5.5x107t* + 2.9x10™ t* + (1.34-10°°t) (S—35) +1.6x107z
with the following limits:

0<t<35°C
0<S<45ps.u. Sound Speed Varlal\on?z\lflg ;)emperaiure and Salinity
0<2z<1000 meters
1580
1560
@ 1540 ppt salinity
£ 1520 T 0
3 1500 / /
8
2 1480 //
@
2 160 /
< 1440 ’//
& 1420
1400
1380
o 5 10 15 20 2 30 35 40
Temperature (C)

Class Sound Speed Data

More Curve Fitting

€=Cy+C,P+C,PP+C PP+ ASH BS%+ cs? Chen and Millero
P = Pressure from Leroy Formula

¢, =1402.388 +5.03711t - 5.80852x10 2t* + 3.3420x10 *t* ~1.478x10°°t* + 3.1464x10 °t°
¢, =0.153563+6.8982x10*t —8.1788x10°t* +1.3621x10 * ~ 6.1185 +1.3621x10°t*
¢, =3.126x10°° ~1.7107x10°t + 2.5974x10°t* - 2.5335x10 " t* +1.0405x10 **t*

¢, =-9.7729x10™° +3.8504x10°t - 2.3643x10*t*

A=A, +AP+AP +AP

A, =9.4742x10"° ~1.258x10°t — 6.4885x10 °t* +1.0507x10 °t* - 2.0122x10 °t*

A, =-3.9064x10" +9.1041x10°t —1.6002x10°t* + 7.988x10* t*

A, =1.1x10 +6.649x10 *t - 3.389x10 *t*

B =-1.922x10°-4.42x10"°t+(7.3637x10°° +1.7945x10""t) P

C = -7.9836x10 °P+1.727x10~

P —[1.0052405(1+ 5.28 107" sin ¢)2-+ 2:36 x10°°z" +10.196 | x10" Pa Leroy

¢ - latitude in degrees
Z - depth in meters

Class Sound Speed in Water Data
y = 0.0004x - 0.0807x” + 6.2061x + 1393.4
1520
.
1500
o
g e
-
% 160 * Seriesl
& Poly. (Series1)
°
S 1440
3
@
1420
1400
0 5 10 15 20 25
Temp (C)
Canister Loading Breech
Launcher Recorder
Cable (4-wire
shielded)

Optional
Equipment \‘ |/'

RECORDER

PROBE (XBT)




Lesson 4

Typical Deep Ocean
Sound Velocity Profile (SVP)

VELOCITY

A

Sonic Layer

Depth (LD)

DFPTH
DEFTTL

Channel Axis

AXIS

Refraction

cos(6,) cos(6,)
G C,

Multiple Boundary Layers

G G G &
1

-

TN I — A —

where ¢, <c,<c;<c, and6,>6,>6,>6,

Simple Ray Theory

; AC c-cC v c —
gradient=g=—-= 1 VELOGITY
Az z-17,
c=c,+0z
Snell’s Law
£

£0s6, _ cos@ :

C c z
cosh, _ coso !

C, c,+0z

Cl

z=R(cos0-cos6,) R=gcocn

cos(0,) = cos(0,) = cos(o) = ,.;M = constant
[ c, Cy c,
Ray Theory Geometry
Xy Xy
c R
Zy 1
0
z, C, 1
2

Positive gradient, g

The z (Depth) and x (Range) Directions

Cyrpace=1500 m/s

) 0=20°

G

! -t
7 gcos6,

— X—

z=R(cos6—cos6,) dz =-Rsin0do

z 0 .
dz =—Rje sin0do

z-2,=R(cos6-cos6,)




Lesson 4

The z (Depth) and x (Range) Directions

Coprtace=1500 M/s

C
) 0=20° ; L
'

— X—

z=R(cos6—cos6,) dz =—Rsin 6d6

tan6 = E
dx

X1 ntand

IX d dz —RL: sitr;:ge = —Rj: cos6do

X—X, =—R(sin6-sin®,)

- gcoso,

Why is R = Radius?

X=X, =-R(sin0-sin0,)

X%
_ z-z,=R(cos6-cos,)
Rsini6,
(XV‘ZP)
o7 /R x—X, =-Rsin®
TN z-z,=Rcos6
Z c,
0, )
X, =%, +Rsin6;
Positive gradient, g z,=2,—Rcos0,

(x—xp)Z +(z—zp)2 =(-R)’sin?0+R>?cos? 0

(x—xp)z+(z—zp)2 =R?

Summary

cos6, cosO
c, c

X=X, =-R(sin6-sin0,)
R )

z-2z,=R(cos6-cos,)

X 1%

2y € O
Z €, o, _ C,
gcoso,
Positive gradient, g _Ac _c-g
Az z-1z,

Negative Gradient

X% c0s0, _cosO
c c

x—x, =-R(sin@-sing,)

2 9,

Example 1

» Given: ¢, =964 m/s, ¢, = 1299 m/s, 6, = 30°
Az(between 1 and 0) = 3000m

e Find: 0, c,, g (between pt 1 and 0), R

D) R z-z, =R(cos0-cos6,)
— Cl
gcoso,
) ] Ac _c-c,
Negative gradient, g g= A 72
1
Example 2
‘ % Cortace=1500 m/s
J o -
Cy00,=1510 m/s

 Find gradient, g
 Find Radius of Curvature, R, for each ray.

Skip distance — i.e. the distance until the ray hits
the surface again

» Max depth reached by each ray
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Backups cos6, cos6
o, ¢
cosf,  cosO
IR

C,€0s6, +gzcos6, =c, coso

- (cosB-cos,)
gcos6,

— Cl
gcos o,

z=R(cos0—cos6,)

Slope = tan®
X1 X2
z o
z, <
tanezﬂ:g:di
X, =X, AX dx




Regions of the Sound Velocity Profile

When we plot the speed of sound as a function of depth in the ocean, it is called the
sound velocity profile or SVP. An SVP is a very useful tool for being able to predict the path of
propagation of sound in the ocean. A nominal SVP is shown in the following figure.

This example shows that the oceans waters are divided into three main layers. First, the
surface or seasonal layer has varying depth and profiles depending on many conditions such as

Speed of Sound

4850ft/s 4900 ft/s 4950 ft/s
I |
200 ’ ol
600
Main
Thermocline
3000
Depth
(" Deep
6000 Isothermal
Layer

9000
AN

season, time of day, currents, latitude, etc. It is the most variable layer. The second layer, the
Main Thermocline connects the seasonal layer to the deep isothermal layer. The deep isothermal
layer, below about 500 to 1000 meters, is at a temperature of about 34°F and the speed of sound
only increases due to the increase in pressure.

The layer of most interest is the surface layer because it is the one that varies most.
During the warm summer months, the water near the oceans surface is warmer than the water
below and there is a sharp negative gradient in the speed of sound. In the winter, the water is not
heated as much because the air is cooler and the warmer water from below tends to rise and
create more mixing in the upper layer. Additionally, there is more mixing of the surface layer
due to effects of strong winter storms and larger waves.

Ray Tracing

Now that we know how the speed of sound varies as a function of depth, we can begin to
predict the path of sound propagating through the ocean. As we said before, sound rays tend to
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bend toward layers of water that are cooler (where speed of sound in the water is lower.) Let's
develop some thumbrules for picturing the path of the sound rays. Knowing the gradient gives
us insight into the direction the sound ray will refract or bend.

Constant Velocity Profile,g=0

Acoustic rays are rectilinear, meaning rays travel z
in straight paths. This is not an isothermal layer.
An isothermal layer would have a slight positive |

gradient due to the effect of the increase in
pressure with increasing depth on the speed of
sound. C —

z
g - ll+ll

\2
Typical for the deep isothermal layer or surface

layer in the winter. Temperature is constant or

increasing. For isothermal case, ¢ increases due .
to pressure with g = 0.017 s*. Most often the
water is isothermal because of the mixing effect z

of wind near the surface. Because of this

isothermal layers are called “mixed layers.” +g 4
causes acoustic rays to be refracted upward and

can result in a Surface Channel.

g:

This is a typical SVP for the surface layer during the summer months. Results from temperature
decreasing faster than pressure effect increases. A negative gradient produces shadow zones.

Note that when sound is generated by a source in the ocean, the sound is radiated in all
directions spherically around the source. Thus sound may travel several different paths away
from the source and may travel into other layers. Some common propagation modes of sound
are shown below:

Surface Duct

If the surface layer has a positive gradient and that layer is deep enough, the sound may
be bent back towards the surface then reflected back into the layer. After it is reflected back
downward, it is bent back towards the surface again only to be reflected at the surface again.
This effectively traps the sound in the surface layer.



SVP

e

Figure 15-11. Surface duct.

If, on the other hand, a negative SVP exists near the surface, surface shadow zones are created
that provide safe havens for submerged platforms.

SVP

Range r

X IXIA TR
% o
LAty

HADOW
R4 ONE

Depth z

concave downward

Originally referred to as the afternoon effect, the below sketch shows how a submarine cannot be
detected by either a passive or an active sonobuoy.

Convergence Zone

The phenomenon of sound bending back towards the surface in a surface duct should not

be confused with sound that is bent back towards the surface due to the positive sound speed
gradient in the deep isothermal layer. If the ocean depth is great enough, sound rays that travel
into the deep isothermal layer will also get bent back towards the surface. These rays travel great
distances though before being bent back up to the surface.

The main difference between a surface duct and a convergence zone (CZ) is that in the

latter case, all sound rays return to the surface in a small concentrated area called a convergence
zone. These zones can be at distances of up to 60 km or more from the source (typically 40 km
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in Mediterranean Sea and 60 km in Atlantic Ocean). In other words, the rays all follow more or
less the same path and undergo very small geometric spreading, therefore a contact may only be
detected when it is within the annulus of the convergence zone. Additionally, after the sound
reflects from the surface at the first convergence zones, additional CZs may also occur at integer
multiples of the first convergence zone distance with a widening of the beam causing a blurring
of the CZ.

Speed of Bound |

Upper
limiting ray

u g
v, S S —

Lower
limiting ray

Ras g

Figure 15-14. Convergence zone

In the above figure, notice that there is a ray leaving the surface nearly horizontal that
must be horizontal again when the sound speed is the same as that on the surface. This ray is
termed the “upper limiting ray.” Additionally, there is another ray leaving the surface at a
downward angle that just barely grazes the bottom before being bent back to the surface. This
ray is termed the “lower limiting ray. All sound energy leaving the source between these too
limiting rays must return to the surface in the annulus of the convergence zone.

This lower limiting ray becomes horizontal at a higher sound speed than at the surface or
horizontal depth of the upper limiting ray. Since it is the increasing pressure with depth that
causes this higher sound speed to bring the lower limiting ray horizontal, there must be an
adequate “depth excess” in order for the two limiting rays to bracket most of the energy leaving
the source. As a practical rule of thumb, depth excess is generally considered adequate when it
is greater than 300 fathoms. This will provide adequate velocity excess for the lower limiting
ray to bracket most of the energy leaving the source. Seasonal decreases in the surface sound
speed may cause adequate depth excess to exist in the winter in locations that do not support
convergence zones in the summer when the surface sound speed is higher.

The significance of convergence zones is that they affect the transmission loss
experienced by sound leaving a source. During our discussion of the passive sonar equation we
pointed out that transmission loss is due principally to geometric spreading (we will soon
develop equations to quantify this loss due to spreading). The dashed line in the below figure
represents a nominal transmission loss as a function of distance from a source. Convergence
zones modify this spreading effect by significantly reducing transmission loss in the areas where
the sound is all focused back to the surface. This is termed “transmission gain” and is shown in
the below diagram as solid spikes at multiples of the distance to the first convergence zone.
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Deep Shadow Zone

Note that where the positive gradient changes to a negative gradient can create a sonic
layer. Some of the rays from the surface or near the surface will travel into the negative gradient
region but get bent downward more sharply. This will create a shadow zone where a receiver
may not be able to detect a submerged source. Submariners have always sought to hide in these

shadow zones.
Speed of Sound _A. e e s o " e e o P s

yidag
A

\\\\ Shadow Zone

Hange

Figure 15-12. Sonic layer.
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A thumbrule to select a best keel depth (BD) which keeps the entire submarine safely
below the layer depth is called Amos’ Rule:

BD =17(LD)?*  if LD < 60m.
BD=LD +60m if LD > 60m.

Deep Sound Channel

Where the negative gradient of the main thermocline meets the positive gradient of the
deep isothermal layer, a sound channel called the “deep sound channel” is created. Deep Sound
Channels occur in most deep ocean basins. In the deep sound channel, sound traveling near the
deep sound channel axis is continually bent back towards the axis and can travel down the axis
for many miles. Above the depth of the axis of the deep sound channel, the temperature of the
water has the most significant affect on sound velocity. As the water gets deeper, it reaches a
steady temperature of 2-4° C at deep depths. Since the temperature is not changing, below the
sound channel axis, pressure has the dominant affect on sound velocity. Thus as you go further
down in depth, pressure increases and so does sound velocity. Hence the positive gradient of the
sound velocity below the deep sound channel axis.

If the sound source is close to the channel axis (minimum c), acoustic rays are
successively refracted by the two gradients without interacting with the interfaces. This type of
propagation is called SOFAR (Sound Fixing And Ranging). It allows for very large transmission
ranges because of the absence of energy loss by reflection at the interfaces and concentration of a
large number of multiple paths, thereby minimizing geometric spreading. We can achieve
ranges of several thousands of kilometers by using low frequencies.

Sound
speed

Range

SOUND
CHANNEL

Depth

29

Downed pilots used this phenomenon during WW I1. They carried small explosive
charges that they would release if they were forced down into the water. These charges then
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sank down and exploded. The sound from these explosions would then travel many miles across
the oceans in the deep sound channel and would be picked up by several receivers to give an
approximate location of the downed pilots.

An Example in the Surface Mixed Layer

Wind driven surface waves mix the water near the surface and can produce an isothermal
layer of water. The depth of this layer can vary from zero to more than 100 m. As we pointed
out earlier, the increase in pressure with depth causes a positive gradient of 0.017 s™*. A mixed
layer is capable of producing a surface duct discussed earlier. In this example we will describe
the limiting rays of the trapped sound in the duct.

In the below figure, two sound rays from a source, S, at a depth, D, are is a mixed layer
of depth, L. The two rays shown are the limiting rays in that any ray leaving S at an angle
greater than 65 will pass out the bottom of the mixed layer, creating the deep shadow zone
discussed previously. These rays designated 1 and 2, leave at equal angles above and below the
surface and can be seen in the following way. The angle 6; at which ray 1 strikes the surface is
related to 6s by Snell’s law. The angle of reflection from the surface is also 6, since the angle of
reflection is equal to the angle of incidence. The angle of reflection, 6 is also related by Snell’s
Law to the angle at which ray 1 crosses the depth of S, so this angle is also 6s. Since both rays
become horizontal at the bottom of the layer, again, by Snell’s Law, they must have the same
angle at the depth of the source. Thus we have shown that the two limiting rays just remaining in

the surface duct start at S with angles of 0, .

[é X ' ""l Surface
]

Bottom of the Mixed Layer

In this example, start with 3 items that are normally known:

Source depth=D =40 m
Layer depth =L =100 m
Sound speed at the surface = ¢; = 1500 m/s



a. First find the speed of sound at the source (denoted by c;) and at the bottom of the mixed layer
(denoted by c,).
Since the gradient is a constant, g = 0.017 s,

¢, = ¢, +0.017D =1500" + 0.017s“x40m =1500.68 "
S S

and

¢, =c,+0.017L =1500™ +0.017sx100m =1501.7
S S

b. Find the angle of the rays at the source. This can be done using Snell’s Law, applied between
S and the bottom of the layer.

COs 0, 1

1500.68r: 1501.7?

0, =2.11°

c. Find the angle of the rays at the surface. This can be done by applying Snell’s Law between
the surface and the layer bottom.
cos0, 1

1500 1501.7™
S S

0,=2.73°
d. Find the Radius of curvature of the ray.
. 150177
R=-2=———3 =88335.3m
g 0.017s

e. Find the skip distance, X. this is the distance between two successive reflections off the
surface.

X =x—-x, =R(sin0—sin 6, ) =88335.3m| sin(2.73) —sin (-2.73) | = 8404m
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Definitions:

Surface Layer: Heated daily by the sun and mixed by the wind. Usually isothermal. Depth
proportional to the winds. Daytime heating effects. Also known as the Mixed Layer.

Seasonal Thermocline: Temperature decreases with depth. During the winter, it may not exist
due to deep mixing of the surface layer.

Main (Permanent) Thermocline: Start of the layering not affected by mixing. Characterized
by decreasing temperature and sound speed. Minimum temperature is 4°C (39°F). Associated
with the minimum sound speed. (At higher latitudes the depth of the minimum, sound speed is
much shallower.

Deep Isothermal Layer: Deep ocean. Constant water temperature: 4°C (39°F). Sound speed
increases as depth increases due to increase in pressure.

Thermocline: A constant temperature variation with depth, most often a negative change
(temperature decreasing with depth). Can be seasonal or permanent.

Surface Limited Ray: A ray that has a zero angle at the surface (Osurface = 0°) Where the ray is
refracted and not reflected at the surface. Any ray with an initial angle greater than that of the
Surface Limited Ray will reflect off the surface and will not be refracted. Any ray with an initial
angle less than the Surface Limited Ray will not reflect off the surface.

Bottom Limited Ray: A ray that will refract back upwards just as it reaches the bottom (Opottom

=0°). Any ray with an initial angle greater than the Bottom Limited Ray will reflect off the
bottom, not refract.

Surface Channel: Corresponds to a layer with sound velocity increasing from the surface
down. Caused by a shallow isothermal layer appearing during winter, can also be caused by very
cold water at the surface (melting ice or river influx)

Deep Sound Channel Axis: The depth where the speed of sound is a minimum. This depth
marks the end of the Main Thermocline and the beginning of the Deep Isothermal Layer. SVP of
large ocean basins has Deep Channel Axis between @200 m and 2000 m.



The following image provided courtesy of NAVOCEANO provides a good visual representation
of the effects we have discussed in this section.

. 19 i
-W'. [t v "

“Sound Channel Surface Duct

Convergence Zone

Bottom
Bounce
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Problems:

1. State whether the gradient for each of the following layers is positive, negative or zero and
state why?
a) Surface layer,
b) Seasonal Thermocline
c) Main Thermocline
d) Deep Isothermal Layer.

2. What happens to the range at which the shadow zone occurs when the source (or receiver) is
moved from the top to the bottom of the mixed layer?

3. Since the speed of sound increases as depth increases solely due to increasing pressure in the
deep isothermal layer, what is the gradient in the deep isothermal layer?

Sound velocity profile in the deep sound channel
sound velocity (m/s)
1490 1500 1510 1520 1530 1540 1550 1560
O 1 P
/C;L
500
1000 -
Cy c1=1517.9 m/s (surface)

1500 4 c,=1493.5 m/s (1200m)

2000 c-=1556.0 m/s (4800 m)
B
£ 2500
o
[]
o

3000 -

3500

4000

4500

Bottom Cs3
5000 -
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4. A sound source is at a depth of 0 m (just below the surface). There are two primarily
important rays that form the boundaries of a convergence zone. One is called the “upper
limiting ray.” The other is called the “lower limiting ray.”

a) Draw a ray from the source making an angle of 0 degrees with respect to the horizontal
and draw it until it reaches the surface again (the upper limiting ray)

b) Draw a ray from the source making an angle of 6 with respect to the horizontal. The
angle, 0 is chosen such that the ray just grazes the bottom and can return to the surface
again. Draw the ray until it reaches the surface again. Compute the angle, 0 below.

Upper Limiting Ray

c) What is the radius of the upper limiting ray between the surface and 1200 m?

d) At what angle does this ray reach 1200 m?

e) What is the horizontal distance traveled by this ray between the surface and 1200m?

f) What is the radius of the upper limiting ray below 1200 m?

g) At what depth does the ray become horizontal?

h) What is the horizontal distance traveled by the ray between the point where the ray is at
the depth of 1200 m and the point where it is horizontal?

1) What is the horizontal distance traveled by the ray between the source and the point
where it is horizontal?

Lower Limiting Ray

J) At what angle does the lower limiting ray leave the surface?

k) At what angle does this ray reach 1200 m?

I) What is the radius of the upper limiting ray between the surface and 1200 m?

m) At what horizontal range does the ray reach 1200 m?

n) What is the radius of the lower limiting ray below 1200 m?

0) What is the horizontal distance traveled by the ray between the point where the ray is at a
depth of 1200 m and the point where the ray grazes the bottom.

p) What is the total horizontal distance traveled by the ray from the surface until it grazes
the bottom?

Convergence Zone

g) What is the distance to the first convergence zone?
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On the SVP below, draw the continuation of the rays from the source until they hit the
bottom, surface or reach the right hand side of the page. Draw and label any limiting rays
and any shadow zones.

Sound velocity profile

sound velocity (m/s)

1490 1495 1500 1505 1510 1515 1520

L AN

1000

/
\

1500 -
2000 /
2500

3000 -

Depth (m)

3500 -

4000 +

4500 -

5000
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Continue these rays until they hit the surface, the bottom or reach the right hand side of the
page. Draw other rays to show how a sound channel is formed.

Sound velocity profile

sound velocity (m/s)

Depth (m)

1495 1500 1505 1510 1515 1520
0 ‘ ‘ ‘ .
500 / .
1000
1500 <
2000 \
2500 \ \_/
3000 \
3500 1
4000 |
4500 \
5000
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Continue these rays until they hit the surface, the bottom or reach the right hand side of the

page.

Sound velocity profile

sound velocity (m/s)

1495 1500 1505 1510 1515

1520

0 ‘ ‘ /
500

1000

€

1500 \
2000

Depth (m)

2500

3000

3500 -

4000

4500 /

5000
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8. In the following sound velocity profile draw rays leaving the source towards the right hand
side of the page at a large variety of angles with respect to the horizontal to show any:
Surface duct ray paths
Bottom bounce ray paths
Shadow zones
Convergence zones
Limiting rays
The depth excess
Or other phenomena

Sound velocity profile
sound velocity (m/s)

1495 1500 1505 1510 1515 1520

»>

0 . . /
500

1000

1500

2000 -

Depth (m)

2500 -
3000

3500 \

4000 \

4500 \

5000
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Nominal SVP (Sound Velocity Profile)
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Lesson 5

CZ Effect on Transmission Loss (TL)

TL(dB) 4 |

Deep Shadow Zones
O _‘ﬂ.

[

} N .Sw‘.layv.(k;!.

BD =17(LD)1/2  if LD < 60m.
BD=LD +60m if LD > 60m.

Deep sound channel

Sound speed range

|

SOuND
CHARNEL

depth

Mixed Layer Example
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"
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L =100 m
C,=1500 m/s
g=0.017 s
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* Find sound speed at S and at bottom of layer
Angle of the rays at the source
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 Radius of curvature of the ray
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Mixed Layer
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Boundary Losses

Let’s revisit Snell’s Law and investigate what happens to a sound wave incident upon a
boundary.

Using the figure below, we will try to determine how much of the sound energy of an
incident wave is actually reflected at the boundary. According to Snell’s Law,

CosO; coso, Incident Reflected
c, c, Wave Wave

ei v 9; P1,C1
Additionally, we expect that the ) o,
incident angle and the reflected \ P2.C2
angle are the same. This follows Transmitted
logically from Snell’s Law as well Wave
since the speed of sound for the

incident and reflected waves are the same.

C0sO; CosO,
Cl Cl

=0. =0

1 r

Reflection Coefficient

The reflection coefficient expresses the ratio of the intensity of the reflected wave to the
intensity of the incident wave (I, = RI;). In all cases we are referring to the time average of the
acoustic intensities and the rms acoustic pressures and particle velocities. The equation for the
reflection coefficient would be:

P
R = I, _ PG _p_f
A
P1C

To figure out how much energy is reflected, we must examine the following boundary
conditions:

1) The pressure at the boundary is continuous.
2) The normal component of the velocity must also be continuous at the boundary.



To say that a property is continuous means that it is the same on both sides of the
boundary. Let’s look at the first condition concerning the pressure. To state this condition in
equation format:

Pi +P, =P,

Since both the incident and reflected wave are on the same side of the boundary, their rms
acoustic pressures added together must equal the rms acoustic pressure of the transmitted wave.

To satisfy the second condition, the component of the velocity normal to the boundary
must also be continuous at the boundary. An equation for this would be:

|u;|sin®, —|u, |sin®, =|u,|sin 6,

The negative sign in the reflected term is because it is moving in the opposite direction as the
other two velocities.

We can relate the rms particle velocity to the rms acoustic pressure using the following
relationship:
p, =ZUu=pcu

where z=pc is the acoustic impedance of the medium. Thus:

P sing, ~Prsing. =P sineg,
P:Cy P:Cy P,C,

If we substitute in the value of transmitted acoustic pressure from the pressure boundary
condition we have,

P sin 0, — P sin 0, = Pi* P 0, = P in 0, + P

sin®,
P,Cy P,Cy P,C, P,C, P,C,

Remembering that the incident and reflected angles are the same, we will rearrange to bring
terms with reflected pressure and incident pressure on opposite sides of the equation.

Pisin 0, ~ P in 0, = P sin 0, +Pe sin 0,
P1Cy P2C, P1Cy P2C,

Rearranging,
P (p,C,sin6, —p,c,sinB, ) =p, (p,C,sin6, +p,c,sind,)
Or,



. . (pzsinei —%in etj
P, (PsC,5in6; —p,c;sin®,) | p, c,

P, (pC,sin6, +pc,sind,) (

P2 gjn 0, + “sin et]
Py C,

Using this result, we can easily establish an expression for the Reflection Coefficient, R.

9 ) e 2
R(ei,et)=p—;= ms!nei ns!net
p; msin 6, +nsin o,
wherem=P2 g n=%
Py C,

Notice that the subscripts are reversed in the equations for m and n. From this equation we can
see that the Reflection Coefficient is dependent upon not only the mediums on each side of the
boundary, but also the angle of incidence and the transmitted angle of the wave.

Further, we can express 6 in terms of 6; using Snell’s Law and some trigonometric identities.

C0osO, Cos0,
Cl C2
C cos 0,
c0s0, =—2c0s6, = '
C, n
2
. cos” 6,
sin®, =4/1-cos’ 6, =, |1-——
n

A more useful expression for R then becomes:

R(6,)— msin 0, —,/n’ —cos® 6, 2
| msin®, +4/n? —cos? 0.

where m and n are as expressed earlier.

Normal Incidence

A useful case to study is when the incident wave arrives at an angle of 90° or normal to
the boundary surface. Substituting 6; = 90°, we get the following for the reflection coefficient:



2
_(m—nj
m-+n
dB Loss

A logical definition for the loss at a boundary is to subtract the reflected level from the
incident level in dB. Applying the definition of the decibel level and the rules for subtraction,

dB,. =L;, —L,; =10log (Ilﬂj—lo log (I;—efj =10log (:'—”J =-10log [II'—”J =-10log(R)

0 ¢} ref in

Total Reflection

One special case is when there is total reflection (R=1). This occurs when the incident
angle is less than a special angle called the critical angle. For there to be a critical angle, the
speed of sound in the incident medium MUST BE less than the speed of sound in the second
medium or:

C
L <«1
C2

If this condition exists, the critical incident angle can be calculated using Snell’s Law and letting
the transmitted angle go to its minimum possible value of zero:

L[ c
0, =cos™| L
C2

We will define the Transmission Coefficient in a manner consistent with the Reflection
Coefficient.

Transmission Coefficient

p;
I c c, p> n p?
T:_t:pzzzpllp_tz_p_t
Ii

L? P,C, pi2 mpi2
p,C,

The Transmission Coefficient can be easily derived if we take a look at the rate at which
energy of the wave crosses the boundary. Since the energy of the incident wave must be
conserved, it must equal the energy in the reflected plus transmitted wave. To express this in
terms of an equation:



1=T+R
thus,
T(ei):l_R(ei)

Rather than establishing a separate equation for the transmission coefficient, we will generally
first calculate the reflection coefficient using the equation above and then solve for the
transmission coefficient by subtracting the reflection coefficient from one.

dB loss on transmission across a boundary would be defined similar to that for the dB
loss on reflection.

in

dB,. =L, —L,., =10log (Ilij —~10log [I”ﬂ} =10log {IILJ =-10log LITﬂJ =-10log(T)

0 I 0 trans

Angle of Intromission

One special case for the Transmission Coefficient is when the Transmission Coefficient
equals one (T(6;)=1) and there is complete transmission of the incident wave and none of the
energy is reflected. This occurs only at one angle (if it occurs at all) and that angle is referred to
as the angle of intromission, 6,. Using the equation for Reflection Coefficient when R =0, and
solving for the angle, we find:

m? —n?
(Note that the quantity ((2—1)) must be positive and less than 1 for the angle to exist. This is
m —

a rare case for most acoustics problems.)

Example

An example to illustrate how each of the coefficients vary as a function of angle is
shown. For this example we will use m = 0.65, n = 0.98 and plot the Reflection Coefficient and
Transmission Coefficient as a function of the angle of incidence (6).



Reflection and Transmission

1 YT R R s E E e = - = = - = ==
_o0s{ /|
c
806 R
8 04 Angle of Intromission (6y) --=-T
O 0.2/
Critical Angle 0.38 0.78 1.18 1.58

Angle (radians)

If we solve for the critical angle and angle of intromission we find:

6, =cos™(n)
0. =0.20 radians or,
0, =11.5°

and

— cos (m2 _nz)
[ <m21>}

0, = 0.26 radians or,
0, =15.2°

as seen on the plot above. Also of interest to note is that the Reflection Coefficient is equal to 1

below the critical angle, 6., but the Transmission Coefficient is equal to 1 only at the angle of
intromission.
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Reflection from a Rough Surface

This entire discussion has assumed reflection from a sound ray bouncing off a smooth
surface. This is called “specular reflection.” Often the boundary is not smooth as in the case of
a coral filled or rocky ocean floor, or a wind blown wave filled surface. In this case sound
comes of the surface at various angles and the result is referred to as scattering.

S T
/F

Some of the energy comes back in the direction toward the source of the incident sound and is
called backscattering. In the operation of an active sonar system this backscattering results in the
reception of unwanted sound which tends to mask the target echo. This unwanted sound is
called “surface reverberation.”



Problems

1. Givenm=0.5andn=0.7, determine:

a) The angle of intromission if it exists.
b) The critical angle if it exists.
c) Sketch a plot of the reflection (dashed line) and transmission coefficients (solid line) as

functions of angle from 0° <9 <90°. Also compute R(90°) and T(90°).

Amplitude
A

d) Using your graph above, if I; = 0.2 W/m?, determine I, and I if:
i) 6,507
i) 6,=6,?
i) 6,=90°?

2. An SH-60F produces noise with an intensity of 750 KW/m? in a hover just above a glassy
smooth sea. Given c; = 343 m/s, p1=1.2 kg/m®, ¢, = 1500 m/s, and p, = 1000 kg/m?,
determine the level of sound transmitted underwater in dB re 1 uPa (strikes sea surface 61 =
90°).

3. If the transmitter is positioned at an angle where the reflection coefficient is 0.57, determine
the intensity of a sound wave immediately below the surface of the sand if the incident
intensity is 75 W/m?,

4. For asound wave in water incident onto a specially coated material,
m =0.85
n=0.95
Sketch a plot of R = I/l and T = I{/l; as a function of 6 from 0° to 90°. (note that T=1-1)
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5.

6.

Given the following data for the sediments in the Arctic Ocean bottom and for sea water near
the bottom:

Density Sound Speed
Sea Water 1050 kg/m® 1520 m/s
Artic Bottom 1300 kg/m® 1440 m/s

a) For a plane acoustic wave incident on the bottom from the water, is there a critical angle?
If so, calculate it.

b) Is there an angle of intromission? If so, calculate it.

c) Express the reflection loss in dB (assume normal incidence). The db loss would be found
from 10 log (R).

d) Sketch a plot of R = I/l;and T = I¢/l; as a function of 6 from 0° to 90°.
(notethat T=1-1)

A plane sound wave is incident normally from air onto a smoth ocean surface. Given the
following data:

Density Sound Speed
Air 1.20 kg/m® 350 m/s
Artic Bottom 1000 kg/m® 1500 m/s

a) If the intensity of sound in air is 10? W/m? incident normal to the air-water interface,
what is the intensity of the sound in the water just below the surface?
b) What is the level in dB re 1 uPa below the surface?
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Transmission and Reflection
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Transmission Coefficient

P
T:L‘: P2 _ PG pizﬂpi
B pc,p mp;
Incident Wave Reflected Wave P
pu.c
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o1
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I
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Angle of Intromission
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2
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Wave
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m= Pr & n=-21
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Example: m = 0.65, n = 0.98

Reflection and Transmission

1 L I B e
0.8 f

=
; 0.6 4 —_R
E 0.4 4 Angle of Inromission (0,) =T
©0.2

bk
Criical Angle 0.38 0.78 1.18 1.58

Angle (radians)

Find the critical angle and the angle of intromission

Non-specular Reflection

A

Backscattering
Reverberation
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Fourier Analysis

In our Mathematics classes, we have been taught that complicated functions can often be
represented as a long series of terms whose sum closely approximates the actual function.
Taylor series is one very powerful application of this idea. In the case of Taylor series, the
function is approximated by a constant value of the function at a particular point added to
successive derivatives evaluated at that same point and multiplied by specific constants or
coefficients. Another type of series is the Fourier series. Here specific constants are multiplied
by sine and cosine terms to generate the series that approximates the function.

As an example, consider the following series of five terms that represent the oscillating
pressure sensed by a hypothetical detector as a sound passes by:

1. %005[5 t] + %cos[lo t] + % sin[5t] + % sin[10 '[]}xlo5 Pa

f(t):{2

Notice some things about this series. The first term is a constant, sometimes called the “DC”
term using an analogy to electrical voltages and currents. The second and third are cosine terms.

The angular frequency of the second term is 5 rad/sec and the amplitude is 1/3x10°Pa. The
third term has twice the angular frequency so it oscillates twice as fast, but has and amplitude of

only 1/4x10°Pa. The fourth and fifth terms have the same frequency and amplitude as the
second and third but are shifted in phase by 90 degrees relative to the cosines. When plotted for

5 sec, this series looks like this:
| 2V 3 Vo4 v

Most often in experimental acoustics, we have a detector to receive a signal like this one and it is
our purpose to work backwards and determine the frequencies and the amplitudes of the tones
(terms in the series) that make up the periodic signal. The method of finding these tones is called
“Fourier Analysis.” Finding the frequencies is simply a matter of determining the overall period
of the repeating signal. The fundamental frequency, or frequency of the first sine or cosine term
in the series (in Hertz), is simply the reciprocal of that frequency. Higher frequency terms are
just multiples or harmonics of the fundamental frequency. Generally the frequency is given in
rad/sec instead of Hz.

f(t) x10°Pa

5  t(sec)

Finding the coefficients or amplitude of each term occurs using a very clever bit of mathematics
discovered by Fourier. This method is sometimes called “Fourier’s Hammer” because it is used
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to hammer out each of the coefficients (amplitudes) in the series. We’ll study this method in
some detail below.

In fact, many sounds are combinations of discrete frequency components that we hear as
one sound. In class, we will use spectrum analyzers and digital oscilloscopes which use digital
signal processing algorithms to find the magnitude (proportional to the Fourier Series
Coefficient) and frequency of each component of a signal.

Calculating Coefficients

Starting with a periodic function (such as a sound wave), we can breakdown this
function into separate frequency components by using Fourier Analysis. Note that we must
KNOW the period of the wave and BE ABLE TO DEFINE the function, f(t), over that period to
be able to use Fourier Analysis. Often the function will be zero, a constant, or a straight line
with constant slope. Whatever it is, we must be able to write a math expression (or a good
approximation) for the function over the entire period.

First let us be very specific about the frequency in rad/sec. Once we have identified the
period over witch the function repeats, the angular frequency is:
271
0=—
T
In the example plot of the periodic function above, the period is approximately 1.25 sec by
inspection of the time scale. This is consistent with the equation we plotted since

_2n_ 2mrad

= ~ b5rad/sec.
T 1.25sec

Other terms in the Fourier series will have frequencies that are multiples of 5 rad/sec, e.g. 10
rad/sec, 15 rad/sec, 20 rad/sec,.....

Calculating the amplitudes is somewhat more complicated. First consider the equation
we plotted above (where | have dropped the units and constant 10%:

1 1 1 . 1 .
f(t)== os[5t] + =cos[10t] + = sin[5t] + = sin[10t
(t) 5 [51] 1 [101] 3 [51] 1 [10 1]

Even though we know the amplitude of the first cosine term is 1/3, let’s try to develop a method
to unmask it. First, multiply each term by cos(5t).

f (t)cos(5t) :%cos(St) 0s[5 t]cos(5t) + %cos[lo t]cos(5t)

+ % sin[5 t]cos(5t) + % sin[10 t]cos(5t)
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Next, we find the time average of each term in the series using the normal definition for the time
average of a function. This is a reasonable approach because we are looking for a representative
value for the amplitude averaged over at least one cycle, not an instantaneous value.

:1}f (t)dt
T 0
The result looks complicated and long but wAll quickly simplify.
i}f(t)cos(St)dt =£}1cos(5t)dt + 1 os[5 t]cos(5t)dt +L _T[Ecos[lo t]cos(5t)dt
T3 T52 T T4

171 11 ¢
+? !5 sin[5 t]cos (5t )dt + 7 !sin[lo t]cos (5t )dt

A quick inspection of the left side of the equal sign reveals that most of the terms integrate to
zero. In fact all but one term are zero since,

T T T
jsin notcos motdt = _[sin notsin motdt = jcos notcos motdt =0
0

unless m=n. In that case, (sine would be identical)

17 1 1
— j cos nmt cos motdt :—J'cos notdt ==
T T 2

This leaves us with the foIIowing

—jf cos 5t)dt—0+% 0s2[5 t]dt+0+0+0 %)

Rearranging slightly shows that the coefficient We were trying to find,\«e. the 1/3, must be
calculated as follows:

= :—ff )cos(5t)dt=a

The name we will give to this coefficient is a;. We arbitrarily decide to call all the coefficients
for cosine terms “a” and for sine terms “b.” The subscript tells us which harmonic of the
fundamental frequency the coefficient is associated with. In this case, n=1 is the fundamental
term.

Hopefully you see that this approach can be used to find any coefficient (any value of a,
or by). All we have to do is multiply the series by either cosnmt or sinnwt and time average the
result. Since most of the terms average to zero, the result can be summarized in the following set
of rules. In truth, finding Fourier coefficients can be a very mechanical procedure that you can
perform simply by learning these rules.

Let us start with any time varying signal, f(t). If f(t) is periodic over the interval O<t<T, it
can be broken down into a series of frequency components (coefficients) where:



21

T
the coefficients are calculated by:

=—If cos nmt dt forn=0, 1,2, 3,.

b, :?J'f (t)sin(not)dt forn=1,2,3, ...
0

Note that n goes from 0 to o for a, but n goes from 1 to oo for b,. That is because there is no by
term. The sin of (nwt) where n=0 is always 0, thus by is always 0.

The coefficents ao, a1, az, ..., and by, by, bs, ... are the Fourier coefficients of the function,
f(t). Now the original function f(t), can be described as the summation of many different sine
and cosine functions.

f(t) :%a0 +a, cos(ot)+a, cos(2mt)+a, cos(3wt) +
+b, sin(ot)+b,sin(2wt)+ b, sin(3ot) +
or,

i[a cos(not)+b sm(nmt)]

n=1

Example

0 whenO<t<m

1 whenn<t<2n

which repeats every 2z seconds. A sketch of the function would look like:

Given the periodic function : f(t) :{

fit)

t  (sec)

A
N

-2n T 21

The function can be expanded into a series of sine and cosine terms that when added together,
replicate the original function. It is our job to find the coefficients of those terms.
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First we must identify the period of the repeating function. Hopefully it is obvious that T = 2x
seconds. From this we find the angular frequency, ®

_2n_ 2mrad

T 2nsec

This is a convenient result since the angular frequency of harmonic terms is just no = n rad/sec.

=1rad/sec.

The coefficients are then found as follows. Notice that we break the integral up into 2 pieces
where the function has two different constant values, zero and one

:—J'f cos(nt)dt = —IO*cos nt)dt+— jl*cos (nt)dt

1
== [ cos(nt)dt=—
a, nJ'cos nt) rmsm(nx)

a :n—ln[sin(n +2m)—sin(n*m)]=0

n

and

2n b 2n
b, :%}[f(t)sin(nt)dt:%IO*sin(nt)dH%jlsin(nt)dt

1 4 . 1 2n
b == t)dt=——
) J'sm(n) rmcos(nx)ﬂ

n

b = —n—ln[cos(n *2m)—cos(n#m) |

b, :—ni(l—cos(nn)) forn = odd numbers otherwise b, =0
T
b, __2 for n = odd numbers
nm
and

=—jf cos(0*t)d t=%.rf0*dt+{fl*dt
ao :;Idtzl

thus, the original function can be expanded to:

f(t)za?o+i[an cos(nwt)+b, sin(nmt)] %_% SInl(l )+Sln§3t)+3|n25t)+m
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If we added up all the terms of the Fourier Expansion, a graphical representation would
look like this:

Fourier Analysis

f(t)

1.5 g

— — —a0+hl
""" a0+bl1+b3
— =~ — a0+b1+b3+b5

— © 7 T a0+b1+b3+b5+b7

a0+b1+b3+b5+b7+b9

time

The important thing to note is that the original square wave function can be composed
from adding components of multiple sine and cosine functions with frequencies that are
multiples of the base frequency. The base frequency of the components is the same as the base
frequency of the square wave.

Odd or Even Functions

By looking at the form of the input signal, f(t), we can come up with some shortcut rules
for deriving the coefficients. If we can determine if the f(t) is an odd or even function, we can
determine whether the a or b coefficients are equal to zero as in the last example. A function is
odd or even based on the following:

Even Function : f(- t) = f(t)
Odd Function : f(- t) = —f(t)

Even functions are thus functions that are symmetric about the y-axis. Odd functions are
functions that are symmetric about the x-axis AND are mirror images of each other (symmetric
about the origin). Many functions are neither odd nor even, but understanding this characteristic
function type lets us anticipate which Fourier coefficients might be zero.



Some samples of even and odd functions.

An odd function f(t) = sin (wt)

v

A

An even function f(t) = cos(wt)

A

An odd function f(t) =t

A

7-7
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An even function f(t) =t

v

v

Since cosines are even, other even functions are made up only of cosines. On the other hand,
odd functions are made up only of sines. Thus the coefficients for the different type functions
are:
J a, =0
If f (x) is odd then t
(x) b_:gff(ﬂsin(nmﬂdt forn=1.2.3. ...
L 9

T

2
A t)dt forn=0,1,2,3, ...
If f (t) is even then A T! (t)cos(nwt)dt forn

b,=0

n

Remember, some functions are neither even or odd in which case you must simply calculate all
the Fourier coefficients and see what results are obtained.
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Problems

1. Given the following pressure function, p(t), which can be described as a square wave of 1 Pa
for T/3 sec, and 0 Pa for 2T/3 sec shown below where T =1 sec :

PCt)

VN

1Pa — >

t(s)

I I
T/3 2T/3 T 4T/3 5T/3 2T

1Pa, O<t<%
p(t) =

0 Pa, 3 <t<T
a) s this function odd, even, both, or neither? How do you know?
b) What is the base or fundamental frequency of the square wave?
c) Perform the integrations to calculate the coefficient, “a,”.
d) Perform the integrations to calculate the coefficient, “a,” coefficients.

e) Perform the integrations to determine the “b,” coefficients.



f) Fill out the following table for 0<n<9:

a, (Pa) b, (Pa) T, =T/n f, =1/Tn
(sec) (Hz2)
N/A N/A N/A

g) What is the pattern here? List the frequencies of the first nine non-zero harmonics of the
fundamental that go make up the first nine terms of the Fourier Expansion.
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Lesson 7

Fourier Series — Periodic Functions

f(t)= a—z‘) +Z::[an cos(not)+b, sin(not)] or,

f(t) :%a0 +a, cos(ot)+a, cos(2mt)+--
+b,sin(wt)+b,sin2(wt)+-

for a function f(t) where :

2 -
= ?” the coefficients are calculated by :

;
a, = TEJ‘ f(t)cos(nwt)dt forn=0,1,2,3,....
0
2T
b, = ?J' f(t)sin(nwt)dt forn=1,2,3,....
0

Example

f(t): 0 whenO<t<rz
1whenrz<t<2r

10)

2

Coefficients
a, = %Z" f(t)cos(nt)dt :%Tlcus(nt)dt +%j’0 *cos(nt)dt
a = %i{cos(m)dl - %sin(nx)’.'

a, :%[sm(n*br)—sin(nwr)]: 0

1% 17, 1F0usi
b, ==|f(t nt)dt == | 1 it)dt+—| 0 it)dt
N n! (t)sin(nt) 7"! sin(nt) +1t'£ #sin(nt)

b, =

1% 1 2

= t)dt = ——

7[Isln(n) rIﬂcus(nx)r
1

b, =—— 2m)—

., nK[cuS(n* ) —cos(n*7) |

b, = —i(l—cns(nn)) forn = odd numbers otherwise b, =0
nm

b, :—i forn = odd numbers
nr

n 2n
2n _ rad
: T=2nsec=>wn=—=1—
Note: T sec
Time Domain Frequency Domain
Fourier Transform of a Square Wave
1
© %00
é. 0.4 1’
| ! | | t = ﬁi lonens
-2n x o 0 7 15 23 31 39
’ ’ Frequency (rad/s)
0 when0<t< i i i
f(t)= { ;r f([):lig[sm(lt) . 5|n(3t)+ 5|n(5t)+m]
1 whenz <t<2rz 2 nl 1 3 5

Demos

» Mathematica
« Logger Pro

Odd and Even Functions
Even Function : f(- t) = f(t)
Odd Function @ f(- t) = —f(t)

Even Odd




Lesson 7

Odd and Even Functions

Even Function : f(- t) = f(t)
Odd Function @ f(- t) = —f(t)

Even odd

|

| |

.
a, :%J‘f(l)cos(nml)dl forn=0,1,2,3,....

o
b, =0

If £(t)is even men{

I (t) is odd then ’a" =0

-
b, :%J‘f(l)sin(nmt)dt forn=1,2,3, ...
0




Spectrum Level and Band Level

Intensity, Intensity Level, and Intensity Spectrum Level

As a review, earlier we talked about the intensity of a sound wave. We related the
intensity of a sound wave to the acoustic pressure where:

J— pzmax
<I> = —2pc or,

pc pc
Next we defined the Intensity Level, L, as the decibel quantity defined to be consistent
with the fact that our ears registered intensity on a logarithmic vice linear scale.

IRu S

1010e D)
L=10log—+
ref
In this definition, I.fwas determined by a standard convention. Intensity Levels in water were
most usually referenced to 1 puPa pressure which is equivalent to an intensity of 6.67 x 107"
W/m®. In air the intensity reference is most usually 1 x 10> W/m?” which is equivalent to a
reference pressure of 20 pPa.

We will now define a new quantity, the spectrum level or intensity spectrum level (ISL).

The intensity spectrum level (ISL) is the intensity level of the sound wave within a 1 Hz
band.

This is accomplished by comparing the intensity in a 1 Hz band to the reference level ina 1 Hz
band. The equation for the ISL is:

I(in 1 Hz band) 101 I(in 1 Hz band)*1Hz
= Og

ISL=10lo
& (in 1 Hz band) |

ref ref

While this might seem a needless distinction, we can easily show in the lab that a pure tone with
an intensity of 0.01 W/m?2 is painfully loud. On the other hand, the same intensity spread as
noise over the entire audible frequency bandwidth (20 Hz to 20 kHz) is nowhere near as loud.
The ISL gives us the intensity in the 1 Hz band compared to the reference level (normally 1 pPa
corresponding to 6.67 x 10™"° W/m? in water). This allows us to truly compare apples to apples.
We saw in our brief study of Fourier analysis that most sound waves are made up of the
combination of many different frequencies of sound waves. To compare one level to another, we
must compare both levels within the same 1 Hz band. But what if the bandwidth of our
equipment is different than 1 Hz?
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Band Level

Let’s describe the processing within a typical sonar system. In this system, a sound wave
is incident upon a transducer or hydrophone, which converts the varying acoustic pressure to a
voltage level using a piezoelectric material such a naturally occurring quartz crystals or man
made ceramic materials like PZT. Piezoelectric materials respond to external applied stresses by
building up charge on their surfaces. This charge redistribution is sensed as a voltage by
electrodes attached to the surfaces of the piezoelectric material.

This voltage is then passed through a set of parallel band pass filters to separate the
voltage signal into the different frequency bands. After passing through the band pass filters, all
frequencies outside the particular band are eliminated. The voltage representing pressure in the
band is then converted to an rms power level by squaring the voltage and taking the average over
a period of time called the integration time. An intensity level is created by dividing by the
reference intensity, takirig!the logarithm and multiplying by 10.

band 2
pass -~ v
i;liter (Afband )Rref
hydrophone
band 5
bass > v BN Output
filter v |
#2 (Afband )Rref

O -
/_\ band
/\ pass V2
filt
#13 . (Afband )Rref

acoustic
pressure

v

The result is then an average intensity level in each of the bands that we have split the
signal into, as shown on the following graph. This is called a “Band Level” and given the
symbol, BL. In this simple example system, there are only 3 bands. Real systems have many
more bands. After the display is created as a plot of average intensity level in a band versus the
frequency of the band, we see we have essentially created the Fourier Transform of the time



domain signal. Devices capable of measuring and displaying frequency components of a signal
in this manner are called spectrum analyzers.

A

band §

level

v

band #1 band #2 band #3
frequency

The Band Level is the intensity level over a band other than 1 Hz.
Below is a plot representing the spectrum level of environmental noise within an

imaginary environment. To determine the band level in the frequency band shown on the plot,
we can use the following equation:

I(ina 1 Hz band ) Af

BL = 10105_3;‘—"t =10log

ref Iref A
ISL
The Intensity in a 1 Hz band is often called the ISL,..
Intensity Spectral Density. Using the /\/\ Vd
multiplication rule for logarithms, \
I(ina 1 Hz band)x1H 1\/\/\/\

BL =10log (ina 1 Hz band) x 2 +10log A

I, 1Hz -
BL=ISL, . +10log ( Af) fy f, frequency

where Af =f, —f

This equation can be used to compare the energy in a band other than a 1 Hz band. It might
appear in the second term that we are taking the logarithm of quantity that has units. This is only
because it is conventional to drop the 1 Hz in the denominator when writing the equation.

Example

Using the plot of ISL as a function of frequency shown below, calculate a) the band level
of every band and b) the total band level.



60

Intensity
Spectrum
50

Level P e

(dB) AevTT

30 b e e e T T i i

v

100 200 282 355
frequency (Hz)

a) To calculate the band levels:

BL, =ISL, +10log(Af)
BL, = 60+10log(100)

BL, =80 dB
BL, =49.1dB
BL, = 68.6 dB

b) To calculate the total band level:

BL, BL, BL,
BLo =1010g(10 A)‘l‘lo A)+IO A)j

BL, =80.3dB

tot

Types of Spectrums

A broadband spectrum is one where the sound pressure levels are spread continuously
across a spectrum. A tonal spectrum is one where there is a discrete non-continuous spectrum
with different frequency components. Sound pressure level measurements may contain
components of broadband sounds as well as tonals as shown below.



A - tonals

Spectrum
Level

broadband
noise

»
»

frequency

To calculate the total band level of broadband and tonal spectrums, we must add in the
band level (or ISL if they have a 1 Hz bandwidth) of each tonal separately with the band level of
the broadband noise. An equation would be:

BL,, =[ISL,, +10log(Afy, ) |®L, 0 ®L 0 ® ...

tonal #1

Example

In the following figure, the background noise is constant (40 dB) over the band width from 500
to 600 Hz. There are two tones with levels of 60 dB and 63 dB respectively. What is the total
Band Level?

Spectrum containg both noise and tones

70
60 -
50
40
30
20
10 A

0 ‘
450 500 550 600 650

Frequency (Hz)

ISL (dB)

BLtot = I:ISLave + 10 IOg (AfBB ):| @ Ltonal #1 @ Ltonal #2
BL,, =40dB +10log(100Hz)® 60dB ® 63dB = 66dB
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Bandwidth and Common Bandwidths

Using the example above, let’s describe some features of the frequency bands. First, it is
often easier to describe a frequency band by stating the center frequency and the bandwidth
versus stating the bottom and top frequency of the band. The center frequency or “average”
frequency (though it is not a true average) of a frequency band can be found by using the
following definition:

Mathematically this frequency is the geometric mean of the upper and lower frequencies.
The bandwidth is simply:

Af = f,— f,

Constant Bandwidth

Where all bands are the same number bandwidth, i.e. all bands are 10 Hz wide.

Proportional Bandwidth

Where the ratio of the upper frequency to the lower frequency are constant.

One-octave bandwidth

The first band from 100 Hz to 200 Hz, used in the previous example is an example of a
one-octave bandwidth. A one-octave bandwidth is where:

f,=2"f,
Also, using the definition to calculate the center frequency we find it is 141 Hz.
Half-octave bandwidth
The second band is an example of a half-octave bandwidth. A half-octave bandwidth is
where:

f,=21,

Note also that the center frequency of the one-octave band above is where the octave is split into
two half-octave bands. An octave band with a 200 Hz lower frequency has an upper frequency
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of 400 Hz. The center frequency is J200Hz *400Hz = 283Hz, exactly the same number
calculated from the definition of the half octave band. It may have seemed odd that the center
frequency was not the simple average of the upper and lower frequencies. Hopefully this
observation explains the use of the geometric mean for calculating the center frequency.

A

60

Spectrum
Level

(dB) 50

30

v

frequency (Hz)
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Appendix A —Why is center frequency a geometric mean vice a
simple arithmetic average?

It has been observed that noise in the sea from the wind driven surface is not flat across
all frequency bands. Instead we see that noise decreases with increasing frequency. The exact
shape of non constant noise is called a Knudsen spectrum and Intensity Spectral Density is
proportional to 1/f*.

Sample Knudsen Spectrum

Spectral Dgnsity 4y

Intensity Spectral Density (W/m2/Hz)

\

0 fe f, 12

frequency (Hz)

The exact mathematical description of a Knudsen spectrum is:

dlzédf

f2
where A is a constant. The intensity in a band from f; to f; is then:

f,
IBandzjézdf:A 11 :i(fz—fl):iAf
L f £ f) ff, ff,
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If the noise spectrum where constant, the total intensity in the band is just the Intensity Spectral

: : . A
Density x bandwidth. In the case of the non-constant spectral density, the term ——represents
172

the best average value of the Intensity spectral density. It is evaluated at the center frequency.

A = Spectral Density, . = da = éz
f1f2 df ave fc

As such, we see that the center frequency must be:

fc = fl fz

Simply looking at the Knudsen spectrum above shows us the problem with using the arithmetic
average for the center frequency. Our knowledge of approximate integration tells us the area
above and below the average Intensity Spectral Density must be approximately equal. This is
clearly not the case. Instead, a lower average value must be to balance the equal areas.

Sample Knudsen Spectrum

/ Equal Areas

Spectral Density 4

Intensity Spectral Density (W/m2/Hz)

o

frequency (Hz)
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Problems

1. Given the following FET for pressure p(t) {where T = 1 sec, p, = 1 uPa, p = 1000 Kg/m’, and
c = 1500 m/s}:

p(t) =[1+4cos (271t /T )—-3cos(272t/T)+6cos(25t/T) +
2sin(2z1t/T)+5sin(273t/T)+8sin(275t/T)] Pa

a) Complete the table below for 0<n<6:

n a, (Pa) |b,(Pa) |T,(sec) |, (Hz) |P’ms |<IL>W/ |BL,

(Pa) m’ (dB)

b) Plot the Cosine Amplitude spectrum a, (Pa) vs f (Hz). Use your own graph paper

¢) Plot the Sine Amplitude spectrum by, (Pa) vs f (Hz). Use your own graph paper.

d) Plot the time averaged Intensity spectrum, <I,> (W/m?) vs f (Hz). Use your own graph
paper.

e) Plot the discrete Band Level spectrum, BL,, (dB) vs f (Hz). Use your own graph paper.

f) Determine the total Band Level, BLtot for 0Hz < f <6Hz and the average Intensity

Spectrum Level, ISLayve using the information above.
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2. The intensity Spectrum Level (ISL) is given below for a source of noise:

Intensity Spectrum Level
for a particular noise source
70
S 60 r
T
>
(O]
- 50 |
£
2
5
© 40
9]
>
2 30
g
=
20 T T T T
0 20 40 60 80 100 120
frequency (Hz)

a) Over what frequency interval is the Intensity Spectrum Level a constant 60 dB?

b) What is the Intensity Spectrum Level in the range 60 Hz <t < 100 Hz?

c) What is the Band Level (BL) for the noise in the frequency range 20 Hz <f < 60 Hz?
d) What is the Band Level (BL) for the noise in the frequency range 60 Hz <f < 100 Hz?
e) What is the Band Level (BL) for the noise in the frequency range 20 Hz <f < 100 Hz?

3. Ifthe Band Level is 100 dB in a white noise bandwidth of 50 Hz, what is the (average)
Intensity Spectrum Level?

4. For aone-third octave band centered on a frequency of 1000 Hz, calculate the lower and
upper frequencies and the bandwidth.

5. The lower frequency of a one-third octave band is 200 Hz. Find the upper frequency, the
center frequency, and the bandwidth.

6. a) For a one-octave bandwidth, show that the bandwidth is about 71% of the center

frequency.

b) For a half-octave bandwidth, show that the bandwidth is about 35% of the center

frequency.

c) For a third-octave bandwidth, show that the bandwidth is about 23% of the center
frequency.
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7. Given the following graph of “white noise” and tonals:

ISL vsf
180
170 Jo ettt et eeees e
i ]
QB0 grocrrerrrnrcentitinrsntissiianarianaans L R R R TR I S :
B — N——————
S 1480 4-vorrerennraiiiiicninnns L Rl L ;
L AN} A svsns sonoonngs suEsuie s nn Jhad TSI, 4 TR A
(dB) o TR AR e T . @rinaae _.,_.m1 I
110 FETTTTT TR Sy E N ans S rsrrrrssOrPOPIUE SRR
1[0 +JF PP PPP A SRR S ST ST
= PP SN SO
./ T S S S PP
|
1 I T T BT
| 60 v o - - - 4
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

a) Compute the total band level BL,y, for a receiver having a one octave bandwidth centered
around 637.4 Hz. Assume each tonal has a Af=1 Hz.
b) Compute the average “white noise” intensity spectrum level, ISL,ye.
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8. Using the figure below, estimate the noise level at 1 m from a U.S. Mark 48 torpedo traveling
at 30 knots in the frequency band ranging 200 Hz to 10 kHz.

Intensity Spectrum Level for a Mk 48 Torpedo

180

170
60 knot

160

150

140

ISL (dB)

130 -
30 knot

120 -

110

100 T
0.1 1 10

Frequency (Hz)

a) Repeat for a torpedo traveling at 30 knots.
b) Repeat for a torpedo traveling at 30 knots but for a sonar receiver with a band ranging
from 100 Hz to 10 kHz.
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Lesson 8

Intensity, Intensity Level, and
Intensity Spectrum Level

2
<I> _ Pamax or,
220 . L= 1010gQ
<I>=@=p;rms Lt
pc pc

The spectrum level is the intensity level of the sound wave
within a 1 Hz band.

l(in 1Hz band) —10lo l(in 1Hz band)-le
I, (in 1 Hz band) € L

ISL =10log

A Sonar System

System Output

band
level

frequency

* Fourier Transform of the Time Domain Signal

» Frequency Analyzer

v
TT| @R
hydrophone
1L v: Output
(Afyang R T
-
.
o IR
Example

p(t)= {%+5cos[2n(] 10Hz)t | +3cos[ (2)2x(110Hz) t |+ 4cos[ (3) 2 (1 IOHZ)tJ}Pa

f(t) :%a,, +a, cos(t)+a, cos(2mt)+---

+b, sin(ot)+b, sin2(wt)+--

Pressure  (Pa)
12.5

A

V\/U”'Tf\/\/°\°f\/v KL -

Fourier Coefficients

n f, (H2) Prax (P2 P2 s (PR) | (W/m?) L (dB)
0 0 1 0.5 33x107 17
1 110 5 125 83x10° 131
2 220 3
3 330 4
|J(\):{%+5ms[2n(lIOHL)1:|+3cos|:(2)2n(l10H4)|]+4co>[(3)2n(1IOH;)!]}Pa
2 2 2
5 Pmax - an + bn
Pressure 2
4 2
(Pa) PZ _ Pmax
3 ms
2
2 2
| <I> P _ P
\ ‘ pc  2pc

I ' T T t t
110 220 330 440 f(Hz)

Band Level

1 I(in a 1 Hz band) Af
BL=10log—*=10log————
[ [ ISt

I(ina | Hz band) 1Hz
BL=1 Ologli
et

BL=ISL,,, +10log(Af) fo6 frequency
where Af =f, —f;

+1010gA—f
1Hz

The Band Level is the intensity level over a band other than 1 Hz.




Lesson 8

Example

Intensity
Spectrum 5
frm

Level
(dB) o AT aray

100 200 282
frequency (Hz)

» Using the plot of ISL as a function of frequency
shown, calculate
— the band level of every band

— the total band level
— the total band level in a band from 150 Hz to 300 Hz

Types of Spectrums

Spectrum
Level

broadband
noise

frequency

BL,, =[ISL,, +1010g(Afyy) [® L1 ® L 1o ® ..

tot

Spectrum containg both noise and tones
70
60 1
I
g 4
@ 30
= 20
10
0
450 500 550 600 650
Frequency (Hz)

What is the total BL?

Common Bandwidths

« Constant Bandwidth

Af = constant
+ Proportional Bandwidth e

. (dB} e o

— Octave Bandwidth R — A

o f,=2'f :.:.:%

— Half Octave Bandwidth L R

. f=212¢ R
i ] 100 200 282 355

=141
frequency (Hz)

» Center Frequency

f.=if,

Preferred Octave Bands

AR 0t

£
EdEmscuazuuz|
E

GO IR T

§iE

Ezz
E

Why do we care?

Source Level (SL) and Noise Level (NL)
are both examples of Band Levels (BL)
where the frequency band(s) are defined
by the frequencies of our Sonar System




Passive SONAR Equation Intro

There are many forms of equations that comprise the passive SONAR equation but what
is common amongst all forms of the equation is that they try to quantify all the affects on passive
detection of sound from a contact or target. The form of the equation that will be presented this
semester most often is:

L = SL-TL - (NL-DI)

In the below schematic of the undersea battle space, the sound emitted by one of the submarine
platforms is represented by Source Level, SL. Losses sustained during sound propagation are
represented by the Transmission Loss, TL. Back ground noise in the battle space are represented
by the Noise Level, NL, and receiver characteristic, Directivity Index, DI.

Why are we presenting this now?

For the rest of the semester, we will take a closer look at each of the components of the
passive SONAR equation. The goal is for each of you to enhance your understanding about each
of the components and understand what actions can minimize or maximize the factors as
appropriate to your tactical undersea warfare situation. Undersea warfare is a complex process
where those with the best understanding of their craft, survive to fight again.



Parts of the Passive SONAR Equation

Signal to Noise Ratio

The intensity level on the left is the ratio of the signal received by a sonar receiver to the
noise. Anyone who has ever tuned a radio station manually has experienced the station’s signal
in the static noise of the receiver. Signal to noise ratio is an important concept because it
represents the degree to which an amplifier can be successfully employed to improve this
situation. If signal to noise ratio (S/N or SNR) is two low, the noise is nearly equal to the signal.
In this case, amplification will also increase the noise and provide no substantial improvement.
For high signal to noise ratios, amplification will improve the magnitude of the signal relative to
the noise.

A very good question to ask is, how large a signal to noise ratio is necessary? For
consumer electronic audio, listeners demand a very high SNR. If all that is necessary is the
identification of information, low SNRs might be tolerated. In fact, some systems adopt the
convention that the minimum SNR required is 1.0. Regardless of the exact nature of the
detection criteria used, we refer to the criteria as Detection Threshold (DT). Any actual signal
above the Detection Threshold is referred to as Signal Excess. Sometimes we set the minimum
signal to noise ratio such that a trained sonar operator will be able to pick a target out of noise
50% of the time. We refer to this signal to noise ratio for 50% detection as the “Recognition
Differential.”

Remember that the passive sonar equation compares “levels” (in dB) vice the actual
intensities. As such, Lg is defined

Signalre uire
Lo/ :10|og[—N0is‘:e d]

Detection Threshold and Recognition Differential are also a decibel quantities.

Signal Level Received

The signal level received at the detector is the difference of the first two quantities on the
right side of the SONAR equation above. The origin of these two terms is the intensity of the
signal that is transmitted to the water from the target. This is called the Source Level (SL).

SL=10 Iogl—s
I0

I = Signal Intensity

I, = Reference Intensity

As the signal travels through the water, some of the signal is lost through various
mechanisms. The totality of this loss is quantified as the Transmission Loss (TL).



TL=10 Iog:—S (For a plane wave)

R
I, = Received signal intensity

The source level minus the transmission loss determines how much signal is received at
the detector.

L, =(SL—TL)=Signal Level

As a general rule, Transmission Loss is a dependent on the distance between the source
and the receiver. Since this distance is often the tactically significant quantity in an undersea
engagement, we often rearrange the passive sonar equation to solve for the Transmission LosS.
The loss that can be tolerated and still meet the detection criterion is termed Figure of Merit.
This quantity provides a means to estimate the distance at which detection can be achieved.

TLaiowable = Figure of Merit = SL- Ls/N Threshold - (NL-Dl)

There are several conventions we will adopt in refining these basic definitions. Specific
items to pay attention to are the location of the source level. Additionally, the frequency bands
that contain the signal and noise must always be considered.

Noise Level Present

The Noise Level (L,or NL) is the sum of the total effect of background and self-noise
hindering our ability to detect the target signal. Background noise much be estimated from a
variety of sources including wind and weather, shipping, biologic activity, and industrial activity

NL :10|og'—n
I0
I, = Noise intensity

The Directivity Index (DI) is a ratio of the noise level detected by the detector, to the total
noise level over 360°.

N
DI =10log—2

ND
N,, = Noise power from non-directional receiver
N, = Noise power generated by actual receiver

When a detector is omni-directional, the power ratio is one, corresponding to 0 dB. If a sonar
receiver is an array of elements, beams (directions) are formed where the system is more
responsive due the interference of coherent sound. In this case, all isotropic noise does not reach
the receiver. Since only the noise in the correct beam reaches the receiver, it is effectively
lowered compared to the omni-directional case.

9-3



The Noise Level (L) is the sum of the total effect of background and self-noise hindering our
ability to detect the target signal.

L, =(NL-DI)

Nomenclature conventions and the Passive SONAR Equation

There is little standardization in the symbols used in various references. In writing the
passive sonar equation above, the nomenclature adopted by various academic sources (Urick)
was used. In the Naval Warfare Publications (NWPs), the Navy has a slightly different set of
symbols.

An “L” quantity is an absolute level (dB referenced to a standard). An “N” quantity uses
level subtraction to compare two intensities or pressures. These two acoustic parameters can be
measured at different platforms or different times. The below chart compares some of the terms
used in the passive (and active) sonar equation.

Urick Description Navy
SL Source Level Ls
TL Transmission Loss Nw
NL Noise Level Ln
Dl Directivity Index Npi
DT Detection Threshold Nrp
Lsn SNR | Signal to Noise Ratio Nsn
RL Reverberation Level Lr
TS Target Strength Nrs




Problems

1. A submarine is conducting a passive barrier patrol against a transiting enemy submarine. The
friendly sub has a sonar with a directivity index of 15 dB and a detection threshold of 8 dB.
The enemy sub has a source level of 140 dB. Environmental conditions are such that the
transmission loss is 60 dB and the equivalent isotropic noise level is 65 dB.

a) What is the received signal level?

b) What is the received signal-to-noise ratio in dB?
c) What is the figure of merit?

d) Can the enemy sub be detected? Why?

2. A submarine is attempting to detect an aircraft carrier transiting the Straits of Malacca. The
aircraft carrier has a source level of 90 dB. The submarine’s passive sonar has a directivity
index of 20 dB and a detection threshold of 15 dB. Biological noise in the Straits is 54 dB.
The submarine’s self noise is 50 dB. Given that TL = 10 log r, where r is the range in yards
(we will show you where this comes from soon), at what range can the carrier just be
detected?
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Lesson 9

The Passive Sonar Equation

Will the sensor detect the red submarine?

Signal to Noise Ratio

Signal _ Signal Intensity
Noise  Noise Intensity

Signal

The higher the SNR, the more likely
you are to hear (detect) the signal.

Noise (quiet)

Noise (Loud

Source Level and Transmission Loss

SL =10log (I—S]
IO

TL=10log (:3]

R

L, =SL-TL

Noise

L, =10 Iog(S'gnal] L, -10 Iog[ Noise Ilntensny] —SL_TL-10 Iog[NO'Se Ilntenslty

o 0

)

Sources of Noise

Shipping Noise
Wind and Weather
Marine Life — Biologic Activity

Self Noise Iy \

— Flow of Water
— Machinery

Omni directional Noise

Isotropic Noise /'

Directivity Factor

« Some detectors are only able to provide a voltage proportional to all
incident sound from all directions. (non-directional = ND)

« Other detectors use more sophisticated signal processing and form
beams thereby providing a voltage proportional to sound incident
from a particular direction. (directional = D)

N,, = Electrical power generated by actual directional receiver

!
N, = Electrical power generated by equivalent non-directidnal receiver

The Passive Sonar Equation

Lo :1OI09(Slg{1alj: L, -10log M =SL-TL-10log W
Noise I N

=Lg ~ Ly receives :SL_TL—(NL—D|)

L, ~10 IOg[Slgnal]

Noise

‘ Lgy =SL—TL—(NL-DI) ‘

SL =10log [:—S]

0

NL =10log [II—N]

0

TL:lOIOg[:isJ DI =10Iog(d)

R

J




Lesson 9

Figure of Merit

« Often a detection threshold is established such that a
trained operator should be able to detect targets with
that Lg, half of the time he hears them. Called
“Recognition Differential.” (RD)

« Passive sonar equation is then solved for TL allowable at
that threshold. Called “Figure of Merit.” (FOM)

‘ TLaIIowabIe = Figure of Merit = SL- I-SIN Threshold ~ (NL'DI) ‘

« Since TL logically depends on range, this could provide
an estimate of range at which a target is likely to be
detected. Called “Range of the Day.” (ROD)

* Any Lg, above the Recognition Differential is termed
“Signal Excess.” (SE) Signal Excess allows detection
of targets beyond the Range of the Day.

Example

« A hostile submarine with a
Source Level, SL =130 dB re
1 pPais near a friendly
submarine in a part of the
ocean where the Noise Level
from all sources, NL = 70 dB re
1 pPa. The directivity factor is
3000 for the friendly
submarine’s sonar. If the
Reco?nition Differential for the
friendly submarine is 20 dB,
what is the Figure of Merit?

« If the actual Transmission Loss
is 50 dB, what is the Signal
Excess.

Signal to Noise Level

Signal Intensity] —10log [ Signal Intensity] 10log ( Noise IntensityJ
| 1

L, =10lo
SN g[ Noise Intensity

0 o

I

But we \will be measuring the signal
intensity level at the receiver/detector, I
(in the frequency band of the detector)

This is different from the signal intensity
level leaving the target, Ig

| | |
e glg 1y 10log (— 10log [i]—lolog [—5
T l ly I

=SL-TL

Fraction of emitted intensity reaching receiver

)

Noise Level and Directivity Index

I\ Received _ IiNé Ly meones =1OIOQ(IN Receivm]=1olog ['—Nj—lolog(d)
IO d ID I\:’

Iy
NL =10Iog[||’“]

0

L =NL-DI

N Received

DI=10log(d) 'N ‘

Ny, = Electrical power generated by actual directional receiver |
1 N
N,,, = Electrical power generated by equivalent non-directidnal receiver

Adding Decibels

10 = v e
3 Nomagram for Adding Decibels
-
T~ :
;l (dBI > dB2 )
8 = ]
2 - ]
s | .
2 01 L == T ]
= : ?-h_‘ 3
l L]
0.01 + + } | -
0 2 4 6 8 10 12 14 16 18 20

d8i -dB2




Transmission Loss

The oceans form a very complex medium. Sound in the medium does many things
except follow a straight path as we would want it to. We will study how the ocean affects the
propagation of sound.

To this point we have introduced the passive SONAR equations and provided some
mathematical definitions. From this section on, we will break the equation into the individual
terms and discuss all the factors that determine the value for each.

Our first parameter is Transmission Loss, TL. Transmission Loss is the parameter that
compares the amount of intensity of the signal at a specific range from the source to the source
intensity at one yard. The equation for this would be:

TL =10log 1(1yd)

1(r)

Note: Due to early work in transmission loss being done referencing the intensity at one yard
from the source, all quantities for the transmission loss equations typically are IN YARDS!
Be careful.

Why is transmission loss defined as it is?

As you should remember, levels are expressed in decibels and are just ratios of one
quantity to another. This allows us to express terms with large variations (several orders of
magnitude or so) to each other rather easily. It also makes calculating quantities in the SONAR
equations much easier.

For example, let us look at the combination of the source level and transmission loss,
which defines the quantity, the received source level, Ls. If we substitute the definition of source
level and transmission loss into the equation for the received source level, we get:

L= SL-TL  101og YY) _g1og 1 1¥9)

L I(r)

L, = IOlogM+IOlogﬂ

I ref I (1 yd)

L :IOlogLr)

S
ref

We can now see that the resultant, the received source level, is the ratio (in dB) of the actual

intensity at range, r, compared to the intensity of a reference signal with an rms pressure of 1
pPa.
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Transmission Loss results from:

1. Geometric losses due to one of two types of spreading, spherical or
cylindrical.

2. Attenuation due to absorption, scattering, viscosity, and thermal
losses. This will be discussed more, later in the section.

Spreading Loss

Let’s assume we have a point source, which emits a signal in all directions (that is in
three dimensions.) The source would produce wave fronts that were spheres that would grow in
size as the wave propagates away from the source. Note that the power in each wave front

NN NANNAAS

I3

/w

would be a constant, even though the size of the wave front would grow. (This assumes no
power is lost from the wave due to attenuation.) The power of a wave front or sphere can be
expressed in terms of the intensity of the wave where:

P=IA=1({4ar?)
But again, we said the power of each wave front is a constant as the wave propagates so:

I:)1 = Pz
|47’ =1, 4n1;

P 2
1, _ 4, :(r_z}
2
l, 4, I,
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Note the reversal of the subscripts on the right side of the last equation compared to the left side.
As we see the intensity decreases as 1/1°.

Now using the definition of Transmission Loss:

I(r)

TL =10log l(1yd)

where
I(lyd)= 47r(|’)2 _ r’
I(r)  4z(lydf (1yd)’
thus

2

r
TL = lOlogl—2
TL =20logr

NOTE: The range, r, is the range in yards since the definition references the intensity at
range r, to the intensity at 1 yard.

The equation above is for transmission loss only due to spherical spreading. Spherical
spreading is the most dominant factor in the transmission loss portion of the passive SONAR
equation but there are other factors that must be considered.

Cylindrical Spreading

What if the sound wave from a source does not spread out in 3-dimension but gets
trapped within some boundaries such as in a surface duct? If we expand the picture that we
previously used to show the wave fronts spreading out from a source, we see that the fronts at
some point no longer form concentric spheres.

When the wave fronts hit the surface and the bottom, as in the case shown below, the
power in the wave fronts is reflected back into the ocean and power is not lost out of the “top” of
the wave fronts. All the power of the wave front is resident in the sides of the “cylinders”
formed by the wave fronts. We can think of the wave front as being a concentric cylinder that
spreads out from the source. Again, the power of each wave front is a constant but now the area
of the cylinder where the power is resident is:

A=2arH
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Can be
approximated as the
sides of a cylinder
with a surface area

‘:."'._'. / of 2TEI'SH

I's

transition range

Note that we can neglect the surface area of the top and bottom of the cylinder because
the power is reflected back at those surfaces and we assume no power is lost in the up or down

direction.

Using the same mathematical process as we used for the spherical spreading case, we can
determine the transmission loss if we only consider cylindrical spreading where:

I(lyd) 2arH  r
I(r)  2z(lydH  (1yd)
TL = 1010gl(l—yd)
I(r)
TL =10logr

The only limitation of this equation is that it does not take into account the spreading of
the wave spherically until it reaches the “transition range” where the wave starts to spread
cylindrically. To derive an equation that takes both factors into account, we can use one of the

properties of logarithms where:

1L = 1010g 1Y) _ 1910 YD) 100 H(0)

16) ) I(r)
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where 1y is the transition range. If the first term accounts for the spherical spreading and the
second term accounts for the cylindrical spreading, substituting in our previous equations for
each, the sum becomes:

TL = 20logr, +10log—
;

0

Thus, if there is a transition range, ry, we can calculate the total transmission loss due to
both forms of spreading losses.

Transition Range

The range at which spreading losses switch from spherical to cylindrical spreading is not
easily determined. The best method to determine the transition range would be to use a complex
computer model of the ocean and determine the transition range. One approximation that can be
used is presented in Urick, Principles of Underwater Sound on page 153. In the book, the

author presents one formula where:
RH H
r, = 1/ —_——
8 VH-d

where the terms in the equation are defined as:

H = mixed layer thickness
d = depth of the source
Cn

R= = radius of curvature of sound ray
gcosd,

This equation has some severe limitations. One, it is only good for the case of a well-
defined surface layer (the most likely case where cylindrical spreading will occur) of depth, H,
with a constant gradient, g. Two, this is only valid for one particular ray of sound from the
source. Any other ray that leaves the source at a different angle 6 will have a different transition
range. Thus, at best this equation can only be used as a rough approximation.

In summary, the student may assume that only spherical spreading occurs unless told

otherwise in a problem. Further, the student should not expect to calculate the transition range
but should be given a value when one is required.
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Attenuation

Attenuation is the lessening of the intensity per unit distance the sound travels.
Attenuation losses occur from both absorption losses and scattering losses. Seawater is a
dissipative medium, it absorbs part of the energy of the transmitted wave.

Absorption is the conversion of acoustic energy to heat in the fluid. There are three main
causes of absorption losses:

1. Viscosity — Shear and Volume viscosity where as the molecules “rub” together, acoustic
energy is converted to thermal energy heats up the fluid.

2. Change in Molecular Structure — Molecules in the seawater are disassociated or broken
down into component ions which then recombine after the sound wave travels over the
molecule. Above 100 kHz this involves the relaxation of MgSO4 and above 1kHz the
relaxation of (B(OH)3).

3. Heat Conduction — This process is negligible and we will not present it here.

This attenuation causes a decrease in the amplitude of the wave and an exponential decrease
in the acoustics pressure resulting in more spreading loss. To account for attenuation in the
transmission loss equation, we must define a new term, o, the attenuation coefficient. Using this
new term, we can calculate the transmission loss using the equation:

TL = a(r—(1yd))x10~ dB

attenuation
where r is in yards.

Generally, since the range, r, is usually much greater than 1 yard, we can ignore the -1
yard term in the equation. Thus the transmission loss can be expressed as:

TL = a(rx107)dB

attenuation

The student should also note that o will be expressed in dB/kyd or dB per thousand
yards. In the equation, that is accounted for by the x10™ to convert the range, r, from yards to
kiloyards (kyd).

The most difficult problem will be to determine a correct value for o, the attenuation
coefficient.

Viscosity

The viscosity losses are due to two distinct effects. Each of these effects are dependent
on not only how the molecules act together in the medium as defined by the coefficients of both
shear and volume viscosity but also the frequency of the sound waves.
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The first, shear viscosity must be accounted for due to the movement between layers in
the medium itself or the shearing of the medium. A theoretical prediction for how shear
viscosity affects the attenuation coefficient, a, is given by the equation:

1672

Aspear = r’&/us

f2

where L 1s the shear viscosity coefficient, which is a property of the medium.

The second viscosity effect, volume viscosity, must be accounted for due to the “time
lag” of molecules filling in holes in the molecular structure of the medium. A theoretical
prediction for the volume viscosity affect is given by the equation:

167% (3 s
yolume = 3| /uvf
3pc" \ 4

where L, is the volume viscosity coefficient, again a property of the medium.

When both terms are combined and nominal values used for the density, speed of sound
and the coefficients, the value for the attenuation coefficient becomes:

a=2.75x107"f?

where f is the sound wave frequency in kHz. This theoretical value is still 3 times less than
actual measure values for higher frequencies. Another factor must account for further
attenuation.

lonic Relaxation

The most dominant disassociation-re-association process in the attenuation coefficient for
seawater involves the finite time that it takes for magnesium sulfate (MgSOj) ions to dissociate
and reassociate as a sound wave passes through the medium.

MgSO, +H,0 <> Mg* +80,* + H,O
If the period of the wave is different than the time necessary for the molecule to recompose itself
(relaxation time), the process is reproduced at every change in density as the wave moves by and
permanently dissipates energy. An equation to describe how this process affects the attenuation
coefficient is:
_4of

where once again, the frequency, f, is in kHz.

10-7



It is particularly interesting that this process has such a large affect on the attenuation
coefficient when MgSO,4 makes up less than 5% (by weight) of the total dissolved salts in
seawater.

Another disassociation-re-association process that becomes a dominant factor in
determining the attenuation coefficient below approximately 1 kHz, is the boron-borate
relaxation process.

B(OH), +(OH) <> B(OH),

Though many factors affect this complex process, simply suffice it to say that an equation for
this process’ affect on a would be:
0.1f°

Q, = —F
boron—horate 2
1+ f

A non-absorption factor, scattering

The last factor that we will discuss is the scattering of sound energy due to
inhomogeneities in seawater. This factor we can approximate as a constant, not dependant on
frequency and would only be a dominant factor below 100 Hz or so. This can be expressed as:

- 0.003dB

ascattering kyd

Attenuation Summary

When all these factors are combined, the equation for transmission loss then becomes:

TL = arx107)dB
where

0.1F2 N 40?2
1+ f* 4100+ f*

o= [0.003 + kyd

+2.75x107* fzJ dB
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A plot of the transmission coefficient, o, as a function of frequency, is shown below.

To}
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(Source: Principles of Underwater Sound, Third Edition, Robert J. Urick, McGraw-Hill Book
Company, 1983, p. 111) One should note from the graph that the attenuation coefficient is very
small for any frequency below 10,000 Hz. Below 10 kHz, the attenuation coefficient is less than
1 dB per thousand yards. Generally speaking, one can usually neglect attenuation at any
frequency below 10,000 Hz.

Francois-Garrison Attenuation Model

(Source: An Introduction to Underwater Acoustics, 1st Edition, Xavier Lurton, Springer-
Verlag, 2002, p. 21)

ff2 £ )
CZ:AiF)1 f12+f2+AZP2 f22+f2+A3P3f

The first term is for Boric acid, the second for Magnesium Sulfate and the third for viscosity.

For frequencies less then 1 kHz, this results in ¢ < 0.01dB/km, for f= 10 kHz, ¢ = 1dB/km, for
f=100 kHz, a ~30—-40dB/km, resulting in max ranges of @ lkm, and for f = IMHz limits the
max range to (@ 100m.

Depth Dependence
Depth can have a large impact on sidescan sonar and underwater data transmission. If the

frequency is high enough so that MgSO;, is the major attenuation effect, we can multiply a by the
pressure effect, P,. As an example, a = 40 dB/km at the ocean surface, 30 dB/km at 2000 m, and

22 dB/km at 4000 m.
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Active Transmission LoSS

For the case of active sonar, the one way transmission loss is determined exactly the same
as the passive case. The return echo experiences exactly the same transmission loss on its way
back. Because of this, the active transmission loss is twice that of the passive case for the same
range. Note that because spherical and cylindrical spreading are logarithmic, it would be
incorrect to double the range.

Summary

What is the dominant factor in transmission loss? Does the frequency of the signal
determine the amount of transmission loss? Can any of the factors in the transmission loss
equation be neglected? These are some of the questions that the student should try to answer
before using the transmission loss equations.

The most dominant factor in all of the transmission loss problems will be spherical
spreading. If we have a source level 1 yard from our source, at what distance will the received
signal level drop by 3 dB (* original intensity)? In other words, due to spherical spreading, at
what range, r, will the transmission loss be 3 dB? Solving for this using the spherical spreading

equation:
TL=3dB= 201og(%1 y d))

S r=1.4yds

In other words, the intensity drops quickly due to spherical spreading. If we do the same
for a signal at 50 kHz and only consider attenuation, the range where the intensity drops to - its
original intensity would be:

TL=3dB = a(r - (1yd)x107)
a=3.164B kyd from graph above

- r=950yds

This is a significantly further range than calculated for the spherical spreading case.
Notice also that the frequency was very high. If the frequency were lower, the range for a 3 dB
attenuation transmission loss would increase significantly. Thus spherical spreading is usually
the only significant factor in figuring transmission loss.
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Problems:

Calculate the transmission loss for the following:
a) spherical spreading only at 10 yds, 100 yds, 1000 yds.
b) cylindrical spreading only at 10 yds, 100 yds, 1000 yds. (assume transition range, r,=1yd)

What is the transmission loss over a range of 70 kyds if the transition range is 30 kyds?
(Ignore attenuation.)

For only spherical spreading with absorptive losses, calculate the transmission loss for a 5
kHz sound at:

a) 1km

b) 5 kyds

c) At what range would the transmission loss be 70 dB?

The following information is to be used to do the next problem:

4.

An acoustic signal is used to control a remote sub. The signal has a source level of 220 dB;. ;

wpa at 1 yard from the source attached to the bottom of the research ship.

a) If the absorption coefficient of seawater at a particular frequency is 0.095 dB/Kyd, at
what distance would the acoustic signal lose Y2 of its intensity due to absorption?

b) Given the signal above, at what range from the source would the signal lose "% its
intensity due to spherical spreading?

c) What is the absorption coefficient of seawater if the frequency of the transmitter is raised
to 10 kHz?

Where is cylindrical spreading more likely to occur?

A Sonarman on an Aegis is trying to calculate the expected two-way transmission loss of an
active sonar ping directed at a target 20,000 yards away. If he assumes that absorption losses
are negligible and IMAT tells him that the transition range is 6000 yards for the current
environment, what is the two-way transmission loss?

A submarine is attempting to detect an aircraft carrier transiting the Straits of Malacca. The
aircraft carrier has a source level of 90 dB. The submarine’s passive sonar has a directivity
index of 20 dB and a detection threshold of 15 dB. Biological noise in the Straits is 54 dB.
The submarine’s self noise is 50 dB. Assuming spherical spreading and neglecting
attenuation, at what range can the carrier be detected.

Arctic transmission loss measurements are made at the three frequencies as a function of
range in km and shown in the below graph. Theoretical spherical spreading is also shown for
comparison by the dashed line. If 100 Hz frequency signals with a source level of 150 dB
are propagating, find the detection range of the source using an omni directional hydrophone
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10.

1.

12.

(DI =0 dB) operating in a total noise level of 60 dB. The signal to noise level of detection
(DT) is 10 dB. Ignore attenuation at 100 Hz.

Artic Transmission Loss
60 T %
80 | /f. e )
o 1 Spherical
= 1 Spreading
»n 100 -
w 4
o i
— i
S 120 -
2 ]
0 1
£ 140
[ i
g |
= 1
160 E 3000 Hz 100 Hz
180 - — —
1 10 100 1000 10000
Range (km)

The intensity level 200 m from a sound source is measured as 100 dB re 1 pPa. What is the
intensity level at 2000 m assuming:

a) Spherical spreading

b) Cylindrical spreading

For a given shallow water homogeneous bounded water column, the transition range between
spherical and cylindrical spreading occurs at 1500 yards. Assuming only geometric

spreading losses (no attenuation), plot transmission loss vs. range from 500 yds to 10,000
yds.

The absorption coefficient is 2 dB/kyd. Calculate the transmission loss due to spherical
spreading and absorption:

a) Atarange of 5,000 yds.

b) Atarange of 10,000 yds.

The intensity level at 4,000 yards from a source is 150 dB and at 12,000 yards is 130 dB.

Assuming that this loss is due to spherical spreading plus absorption, calculate the absorption
coefficient in dB/kyd.
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Lesson 10

Transmission Loss

Review of Passive Sonar Equation

Terminology

« Signal to Noise
The ratio of received echo from target
to background noise produced by everything else.

* Detection Threshold (DT)

The measure of return signal required for an operator using
installed equipment to detect a target 50% of the time.

Lsn=Ls-Ly>DT

Passive Sonar Equation
Lgn=SL - TL - (NL - DI) > DT

- \

. Display Decision: target “present”
or targer "sbsent”
- = - -
Observer
—

[y 0 S o

- = = Transmission Loss 1/
Noise Level, NL ™™ . ™ T —{1m.
* v

Receiving
o Electranics

Dirsctivity
Index
DI

The Passive Sonar Equation

‘ Lgy =SL—TL—(NL-DI) ‘

sL :lolog[l—sj NL =10log [ITN]

0 0

TL:lOIog[I—S] DI =10log(d)

I

Making the Sonar Equations Useful
Passive Example

Known
Can Measure

Function of
E?uipment

- - . Can Measure
SL-TL-NL+DI>DT T

ONLY UNKNOWN

Figure of Merit

» Often a detection threshold is established such that a trained
operator should be able to detect targets with that L, half of
the time he hears them. Called “Recognition Differential.”
(RD)

« Passive sonar equation is then solved for TL allowable at that
threshold. Called “Figure of Merit.” (FOM)

TLaIIowabIe = Figure of Merit = SL- I-S/N Threshold ~ (NL'DI)

« Since TL logically depends on range, this could provide an
estimate of range at which a target is likely to be detected.
Called “Range of the Day.” (ROD)

* Any Lg, above the Recognition Differential is termed “Signal
Excess.” (SE) Signal Excess allows detection of targets
beyond the Range of the Day.
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Range ???

¢ FOM helps to predict RANGE.

— The higher the FOM, the higher the signal loss that can
be suffered and, therefore, the greater the expected
detection range.

« Probability of Detection
— Passive
« If FOM > TL then > 50% prob det
* If FOM < TL then < 50% prob det
¢ Use Daily Transmission Loss (Prop Loss/[FOM)
curve provided by Sonar Technicians

HW Example

« A submarine is conducting a passive barrier patrol against
a transiting enemy submarine. The friendly sub has a
directivity index of 15 dB and a detection threshold of 8
dB. The enemy sub has a source of 140 dB.
Environmental conditions are such that the transmission
loss is 60 dB and the equivalent isotropic noise level is 65
dB.

« What is the received signal level?

* What is the signal to noise ratio in dB?

* What is the figure of merit?

« Can the sub be detected? Why?

Prop Loss Curve
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Transmission Loss

 Sound energy in water
suffers two types of losses:

—Spreading
—Attenuation

Combination of these 2 losses: |

- =

TRANSMISSION LOSS (TL)

Spreading
 Spreading
— Due to divergence
— No loss of energy
— Sound spread over wide area
— Two types: ——
« Spherical g
— Short Range: r, < 1000 m
TL=20logr

Cylindrical e —
- Long Range: r,> 1000 m 1L T —]

TL=10IogrL+20Iong°
. Spherical component
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Spherical Spreading

TL=10log [I—SJ
[ NN ANNNAAS
P=FR
1,4z = 1, 4a1}

TL = 20l0g (LZ) ~20log [fj —20logr
L 1

Cylindrical Spreading

TL =10l0g '(Il()r';’) ~10l0g 'fl(:;‘;) +10log I|((r:))

spherical cylindrical
rs I

Canbe
approximated as
the sides of a
cylinder with a
surface area of
2nrH

r
transition range O

TL = 20logr, +lologL
r,

0

Spherical to Cylindrical Transition Range
in a Mixed Layer

[RH [ H
r=,—
8 VH-d

H = mixed layer thickness
d = depth of the source

C .
=——"— =radius of curvature of sound ray
gcosé,

Attenuation

¢ 2 Types
« Absorption
— Process of converting acoustic energy into heat.
* Viscosity
« Change in Molecular Structure
« Heat Conduction
— Increases with higher frequency.
 Scattering and Reverberation
— All components lumped into Transmission Loss Anomaly (A).
— Components:
« Volume: Marine life, bubbles, etc.
« Surface: Function of wind speed.
« Bottom Loss.

— Not a problem in deep water.

— Significant problem in shallow water; combined with refraction and
absorption into bottom.

Absorption

 Decrease in intensity, proportional to:
— Intensity
— Distance the wave travels

« Constant of Proportionality, a

dl = —aldr

|_2 _ e—a(rz—rl)

1

Absorption Coefficient

TL=10 Iog:—l =10loge®"*™

2

TL=a(r,—r,)10loge =4.343a(r,—r,)
TL=a(r,-r)
o =4.343a Has units of dB/yard

TL=a ( rnL-n ) X107 o Has units of dB/kiloyard
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Example

« Spherical Spreading

 Absorption coefficient, o = 2.5 dB/kyd

 Find the TL from a source to 10,000 yards

* Find the TL from 10,000 yards to 20,000 yards

TL= 20Iog(%]+a(r2 —1)x10°
1

General Form of the Absorption

Coefficient
" Af f2
f2+f?

f. = relaxation frequency. It is the reciprocal of the relaxation
time. This is the time for a pressure shifted equilibrium to
return to 1/e of the final position when pressure is released

f = frequency of the sound
_Af 2
f

r

When f<<f, o

Estimating Absorption Coefficient

* Viscosity — Classical Absorption - Stokes

2
o= 16153 uf?
3pcC

W=p,+ Zuv Shear and volume viscosity

o =2.75x107*f? For seawater, dB/m, f in kHz

Chemical Equilibrium

Magnesium Sulfate:

MgSO, +H,0 <> Mg* +S0,” +H,0

40f?
o Elpa— fin kHz
4100 +f
Boric Acid:
B(OH), +(OH) < B(OH),
L .
= 1+f2 in kHz

Scattering
» Scattering from inhomogeneities in seawater

0. =0.003dB/ kyd

» Other scattering from other sources must be
independently estimated

e S
22 Do Yelrmme

£ % Beecrh
B N

Femad

All lumped together as Transmission Loss Anomaly

Attenuation Summary

[
||
L
|
L
NN

Boron 7 / Note that below 10000Hz,
e 4 attenuation coefficient is
- \/;’ extremely small and can be

A7 neglected,
3 "@y /

g

3

Aterughon coaffcent, dB.yd

3

3

TL = &(r x10°*)dB
where
0.1f2  40f?

={0.003+———+——— 1275x10“f2| dB
“ [ 1+ f2 a00+ 2 0% ] kyd
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Example

¢ Submarine sonar systems include a forward
looking, high resolution active sonar whick can be
used to detect moored mines and ice keels. This
system operates at 30 kHz and emits a source level
of 130 dB re 1 pPa.
— Calculate the attenuation coefficient

— Assuming a transition range of 1000 yards, what is the
transmission loss at a range of 5000 yards?

— What is the Signal Intensity Level received by a second
submarine 5000 yards away.

— At this frequency, Noise Level is 40 dB and DI for the
receiving sub is 20 dB. What is the signal to noise
level?

— If the Detection Threshold is 25 dB, will the second sub
detect the first?

Transmission Loss Equations

TLH10 |@“ 30 ‘< aR )l( A )}—— Transmission Loss Anomaly

—> Absorption
Range > 1000 meters

Cylindrical Spreading

I
Range < 1000 metgrs

Spherical Spreading

Absorption

TLA

Terminology

* Source Level (SL)
— For ACTIVE sonar operations:
* The SONAR’s sonic transmission (transducer generated)
— For PASSIVE sonar operations:
« Noise generated by target
* Noise Level (NL = NL;® NL,)
— Self (NL,)
« Generated by own ship at the frequency of interest.
— Ambient (NL,)

« Shipping (Ocean Traffic), Wind and Weather - Sea State
(Hydrodynamic)

« Biologic and Seismic obtained from other methods

Terminology

* Directivity Index (DI)
— Receiver directional sensitivity.
—Ly=NL-DI
 Transmission Loss (TL)

— Amount the Source Level is reduced due to

spreading and attenuation (absorption,
scattering).

Passive SONAR Equation
(Signal Radiated by the Target)
* SNR required for detection = DT
» To achieve detection > 50% of the time...
- SNR>DT
-Lg-Ly>DT
e Lg=SL - TL (one way)
«Ly=NL-DI
— Remember NL = NL; @ NL,
 Therefore...

Lgy=SL - TL - (NL - DI) > DT




Ambient Noise

The background noise of the sea.

When trying to detect a target or contact out in the ocean, one of the most difficult parts
is to “hear” the target through all the background noise. This is just like trying to hear a friend
talk while standing in a crowd of people at a noisy rock concert. But out in the ocean, what are
the sources of the background noise?

Major sources of background noise in deep water

Tides

A small contribution to ambient noise is the movement of water due to tides. This
movement can create large changes in ambient pressure in the ocean. These changes will be
most significant at very low frequencies (<100 Hz) but will decrease in strength with increasing
depth. Overall though, tides contribute little to the ambient noise level.

Seismic

Another source of very low frequency noise is that due to the earth’s seismic activity.
The noise due to seismic activity is not significant though, above 10 Hz. As with tides, we will
treat seismic sources as being insignificant in our calculations of ambient noise levels.

Turbulence

This can be a significant factor in ambient noise levels below 100 Hz but generally, we
will not consider the affect of turbulence in our calculations.

Ship Traffic

In the North Atlantic, there can be more than 1000 ships underway at any one time. The
noise from this shipping traffic can sometimes travel up to distances of 1000 miles or more. The
frequency range where this man-made noise is most dominant is from 10 Hz to 1000 Hz. Noise
levels depend on area operating in and “shipping density”. Close proximity to shipping lanes
and harbors increases noise levels. Shipping traffic is one of the two dominant factors we will
use to determine ambient noise levels. The below chart shows how shipping density varies
throughout the oceans of the world.
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AMBIENT NOISE VALUE GUIDE
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Sea State

Sea State (or more importantly wind speed) is the dominant factor in calculating ambient
noise levels above 500 Hz. The noise levels depend on sea state and wind speed. Less the 10
Hz, wind-generated turbulence induces pressure variations similar to acoustic pressure
variations. Greater than 100 Hz, wind generated microbubbles in the shallow water layers burst
and cause pressure changes.

Wenz Curves

For ASW operators to predict the ambient noise levels for a given condition and
frequency band, we have the Wenz Curves. Wenz Curves are plots of the average ambient noise
spectra for different levels of shipping traffic, and sea state conditions (or wind speeds ). Below
is a complex example given in the Naval Warfare Publication. At the end of this handout are the
simplified Wenz curves you will use for all homework, quizzes and exams.
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AMBIENT NOISE LEVEL VERSUS FREQUENCY

10-100 Hz — Noise levels depend heavily on shipping density and industrial activities. Levels
are typically in range of 60-90 dB with very little frequency dependence.

100-1000 Hz — Noise in this band is dominated by shipping (decreasing intensity with frequency

increases). A significant contribution is also from sea surface agitation. Urick (1986) developed
a model for predicting this shipping noise:

f
NLspipping = NLigo _ZOIOQLEJ

Where NL1qo is 60-90 dB based on shipping density

1-100 kHz — Sea surface agitiation is now the dominant factor, unless marine mammals or rain is
present. Knudsen (1948) presented a model to predict this contribution:

NL,, IFf <1000 Hz

NLgor =
SURF NLiK—17log(ﬁj IFf >1000 Hz

NL 1k is in the below table, and is based on sea state.

A new model has been developed by APL (1994), it is more accurate but is more complex.
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Beaufort Sea Windspeed NL 1K

Force State Knots dB Description Sea Condition
0 0 0 44.5 Calm Sea like a mirror
1 0.5 1-3 50 Light Air Ripples but without foam crests
2 1 4-6 55! Light Breeze Small wavelets. Crests do not break
3 2 7-10 61.5 Gentle Breeze Large wavelets. Perhaps scattered white horses
Moderate
4 8 11-16 64.5 Breeze Small waves. Fairly frequent white horses.
5 4 17-21 66.5 Fresh Breeze Moderate waves, many white horses

Large waves begin to form; white foam crests,
6 5-6 22-27 68.5-70 | Strong Breeze probably spray

Sea heaps up and white foam blown in streaks along
7 7 28-33 Near Gale the direction of the wind

Moderately high waves, crests begin to break into
8 8 34 -40 Gale spindrift

High waves. Dense foam along the direction of the
wind. Crests of waves begin to roll over. Spray
9 9 41 - 47 Strong Gale may affect visibility

Very high waves with long overhanging crests. The
surface of the sea takes a white appearance.
The tumbling of the sea becomes heavy and
10 9 48 - 55 Storm shock like. Visibility affected

Exceptionally high waves. The sea is completely
covered with long white patches of foam lying
11 9 56 - 63 Violent Storm in the direction of the wind. Visibility affected

The air is filled with foam and spray. Sea completely
white with driving spray. Visibility very
12 9 64+ Hurricane seriously affected.

>100 kHz — Noise is dominated by electronic thermal noise (we will discuss causes later)
NL;, =-75+20log f

The total ambient noise level is derived by calculating the level sum of the contributing noise
factors given by the following equation:
NL

= NL,,;, ® NLg

amient ship
The appropriate level of shipping is selected based on location. The “heavy shipping” curves
should be used when in or near the shipping lanes in the North Atlantic. The “light-shipping”
curves should be used for more southerly, remote areas of the ocean.

The regions below 10 Hz and above 200 kHz are dominated by other factors that are
quantified by the solid lines.

General Rules —
1. NL generally decreases with frequency increasing
2. NL decreases at great depths since most noise sources are at the surface.

3. Ambient noise is greater in shallow water (noise is trapped between sea floor and the ocean
surface).
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Example

For a sonar receiver set with a band width of 100 Hz, centered around 200 Hz, what is the
ambient noise level? (Shipping is heavy, sea state is 3.)

To calculate the upper and lower frequency of the band:
f.=4ff,
200Hz = ./ f,( f, + 100Hz

— f, =156Hz
f, = 256Hz

From the Wenz Curves (end of handout):

ISLave shipping = 69 dB ISL ave sea state = 67 dB
Thus:
NLtot = I\“‘ship ® NLSS
NL o = (ISL ey +1010g AT ) @ (ISL,,55 +10l0g Af )
NL,, = 89dB ®87dB
NL, =91dB

tot

Transient Noise

Just for passing interest, there are numerous other sources of noise in the oceans. Many
of these sources are transitory in nature though which makes them hard to quantify. They may
only affect detectability of contacts for short periods of time. These sources may include but are
certainly not limited to:

e Human industrial sources ashore — particularly in coastal areas
e Biological factors including

0 snapping shrimp — mostly in warm, shallow coastal areas
= generate intense broadband noise, f = 1-10 kHz, SL =60-90 dB

o0 whales, dolphins, etc — echolocation and communication

» =12 Hz - @2-5 kHz for “whale songs”, SL up to 188 dB
= Echolocation — 50-200 kHz — similar to active sonar, SL up to 180-200 dB
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e \Weather — rain

o0 Rain drops impacting sea surface and implosion of air bubbles caused by rain, f =
1-100 kHz, max SL @ 20 kHz, SL can be up to 30 dB above sea surface noise
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Problems

1. What is the principal cause of ambient noise at frequencies
a. 1to20Hz
b. 20 to 500 Hz
c. 500 to 50,000 Hz
d. above 50,000 Hz

2. Using the Wenz curves, determine the isotropic ambient noise level for an area with heavy
shipping. Assume that wind speeds are 14 knots and we are interested in the noise level at
exactly 200 Hz (use a 1 Hz bandwidth).

3. The SONAR receiver onboard ship operates in a frequency range from 50 Hz < f < 1000 Hz.
Using the Wenz curves, determine the isotropic ambient noise level in the operating band of
the receiver. Assume that winds are light as 4-6 knots and shipping traffic is moderate.
(Note: You will have to determine an average ISL from the Wenz curves and calculate the
appropriate band levels.)

4. List three intermittent sources of ambient noise.
5. Using the wenz curves for average deep water ambient noise, estimate the band level noise
for heavy shipping and sea state 6 for the following conditions:

a. Noise received in a band between 20 and 50 Hz.
b. Noise received in a band between 2000 and 5000 Hz.
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Lesson 11

Major Sources of Noise

« Sea State — Dominant
factor above 500 Hz
« Ship Traffic — Dominant
factor 10 to 1000 Hz
* Minor Sources
— Tides
— Turbulance
— Seismic
« Transients

2

Wentz Curves

AMBIENT NOISE VALUE GUIDE
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N

L,

S|

1-100 kHz

NLy IFf <1000 Hz

VRN, —17|og(L) IFf >1000 Hz

1000

NL falls at 17 dB per decade above 1000 Hz

Beaufort | Sea | Windspeed | NLIK
Force | State Knots a8 Description Sea Condition
[ [ [ 445 | cam Sea like a mirror
1 05 i3 50 Light Air Ripples but without foam crests.
2 1 4-6 55 Light Breeze Small wavelets. Crests do not break
3 2 7-10 615 | GentleBreeze | Large wavelets. Perhaps scaltered white horses
Moderate
3 1-16 645 Breeze ‘Small waves. Fairly frequent white horses.
5 4 17-21 665 | Fresh Breeze Moderate waves, many white horses
Large waves begin to form; white foam crests,
6 5-6 22-27 685-70 | Strong Breeze probably spray
‘Sea heaps up and white foam blown in streaks along
7 7 28-33 Near Gale the direction of the wind
Moderately high waves, crests begin to break into
8 8 34-40 Gale
High waves. Dense foam along the direction of the
wind. Crests of waves begin to roll over. Spray
o ] 41-47 Strong Gale may affect visibility
Very high waves with long overhanging crests. The
surface of the sea takes a white appearance.
The tumbling of the sea becomes heavy and
10 9 48-55 storm shock like. Visibility afected
Exceptionally high waves. The sea is completely
covered with long white patches of foam lying
1 ] 56-63 Violent Storm i the direction of the wind. Visibility affected
The air is filled with foam and spray. Sea completely
white with driving spray. Visibility very
12 9 6a+ Hurricane seriously affected.

Spectrum level, g re [ pPa
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Frequency, Hz

Above 50 kHz

» Thermal Agitation of water molecules
» Thermal noise in electronics
6 dB per octave increase in noise

Total Noise

NLambient = NLship ® NLSS

Example

» For a sonar receiver set with a width of 100
Hz, centered around 200 Hz,

« Shipping is heavy,
» Sea state is 3,
* What is the ambient noise level?
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Wentz Curves
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Transients

* Human industrial activity

« Biological Activity
— Snapping Shrimp 1-10 kHz, SL = 60-90 dB
— Whales, dolphins

« Whale songs 2 - 5 kHz, SL = 188 dB
« Echolocation 50 — 200 kHz, SL = 180 — 200 dB

» Weather — Rain
—1-100 kHz, SL(20 kHz) is 30 dB above sea

General Noise Rules

» NL generally decreases with frequency
increasing

» NL decreases at great depths since most
noise sources are at the surface.
» Ambient noise is greater in shallow water

(noise is trapped between sea floor and the
ocean surface).

state noise
f=fff ¢ From the Wenz Curves:
c 1'2
200Hz = /7,(f, +100Hz) ISL ave shipping = 69 dB
= f,=156Hz ISL ave sea state — 67 dB
f, = 256Hz
NL,, = NLy;, ® NLg

NL g = (ISL yggnp +1010g AT ) @ (ISL, 055 +1010g AT )
NL,, =89dB ®87dB
NL,, =91dB

tot




Self-Noise

Self-noise is the noise that own ship produces and is detected by own ships sonar system,
contributing to the overall noise interfering with the detection of other vessels. Some of the
sources of self-noise are:

Propeller Noise - Rotating propellers generate spectral lines in VLF band, f = 0.1-10 Hz.
These frequencies depend on rotation speed of propeller and its geometry. Cavitation induced
creates broadband noise at higher frequencies. Cavitation depends on:

1. Rotation speed of propeller

2. Type of propeller (fixed or variable pitch)

3. Depth of propeller (deep depths inhibit cavitation)

Flow Noise — Turbulence generated by flow of water over ship’s hull. Depends on ship
speed, shape and placement of transducer.

Machinery Noise — Ships have numerous noisy machines - engines, reduction gears,
generators and hydraulic machinery. This machinery causes vibrations in the hull by solid
transmission through internal structures or through the air. These vibrations are then passed on
to the water. Machinery noise is independent of ship’s speed, therefore it is the major
component of self noise at low speeds and is masked at high speeds by flow noise. Both primary
frequencies and harmonics are transmitted.

Submarine Transient Noise - Acoustic stealth can be degraded by transmission of short
transient noises (from few milliseconds to several seconds). These transients are caused by
opening torpedo tube doors, control surface movement, and starting/stopping machinery. These
are very characteristic of submarines and can help classify them as such.

Activity Noise — Civilian ship activities can be very noisy (drilling, trawling, seismic
surveys, etc).

Ship Radiated Noise Model — Self noise represents continuous broadband noise
spectrum whose level increases with ship speed. The maximum level is typically around 100 Hz
and generally decreases by 6 dB per octave above a few hundred hertz. In VLF band,
narrowband components (spectral lines) exceed broadband noise. The combination of spectral
lines and broadband forms a ship’s “acoustic signature” and can be used to classify a ship
passively.

The ship’s self noise can be modeled by two components:
1. RNLk at f =1 kHz, from which we can derive the level at other frequencies.

f
RNL(f) =RNL, —20log| ——
() = RNL, g(lOOOj
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Radiated &
noise level

‘Spectral lines

RNgp | / ..... l
E_R

l Ul 0 High speed

‘/ Wideband noise
RNLg T, (—6dB/octave)
Low speed
100 Hz 1,000Hz Frequency

Figure 4.4. Generic spectrum of ship-radiated noise.

2. Radiated noise of the spectral lines RNLg,_ - these lines are generally described by
their maximum level.

Considerable time and money has been spent to improve acoustic performance on
submarines and other naval vessels since WWII. In the below table from Lurton, we see how the
RNL has decreased for French submarines since WWII (modern US submarines lower RNLs
than those presented here.)

Radiated Noise at 4 kts

RNLs. | RNLk
WWII Deisel 140 120
Sub
(Electric)
Modern Diesel 100 80
Sub
(Electric)
Modern Diesel 140 120
Sub
Modern SSN 110 90
Modern SSBN 120 100

Above 10-20 kts, flow noise becomes the dominant factor and significantly increases
with speed (@1.5-2 dB/KT)

Thermal Noise — In electronic circuits, resistors create some electric noise due to
electronic agitation. Nyquist formula describes the voltage created:
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U = /4KRTAf

K — Boltzmann constant
T-°K

For ideal hydrophone, we need only consider resistivity, therefore:

R, = Z—'icsf, S, -hydrophonesensitivity

This creates electronic noise voltage:

U =+/4zkpcT 87'* AND p, :M

A
= NIS,.,, = —75+20log f —10logn

n - transducer efficiency
Noise Measurement

There is no way to calculate the self-noise of a platform however it can be measured for a
given platform. Very difficult to assess the self-noise level of transducer, since it is a
combination of several components:

1. Acoustic noise radiated in the water by the platform and received by the transducer
through the water.

2. Mechanical vibrations passed on to the transducer.

3. Electronic noise radiated by other high-power electrical devices if inadequately
shielded.

Most modern sonars have self-monitoring capabilities to measure real-time self noise
levels. For this course, it will normally be given for students in a problem.

How self-noise is taken into account in our evaluation of the sonar equations is that self-
noise is a second component of the overall noise level. The total noise level of sources that
interferes with detection of other vessels is the combination of the ambient noise (that we
determined in the previous section) and the self-noise. In other words:

NL

= NL @ NL

tot ambient self

Additionally, this self-noise level is the combination of the broadband and tonal noise.
This must be added to the self-noise as shown below:

NL = NLBB C—D NLtonaI ((—D NLtonaIZ @ NL @ )

self tonal 3 '

where NLg; = ISL;; +10log Af

12-3



Problems:

1. Determine the isotropic ambient noise level for a lightly traveled shipping lane. Assume
that winds are moderate at 12 knots, the sea state is equal to 3 and the receiver is set to
look in the 100 Hz < f <500 Hz range.

2. Using the conditions from problem 1 above, and given the following table of data:

a. Plot the total ISL as a function of frequency from 100 Hz to 500 Hz.
b. Compute the total noise level.

BI—s‘.hrimp 76 dB
ISI—engine at 400 Hz 124 dB
BLqenerators 99 dB
BI—propellers 89 dB
BLpumps 92 dB
BI—whales 44 dB
BLhuil flow noise 80 dB
BI—rain 78 dB
BI—crew noise 82 dB

3. a) Using the figure below, compute the increase in radiated noise spectrum level when
the cruiser’s speed is doubled from 6 knots. Also compute the increase when the speed is
increased by a factor of 5 from 6 knots.

Cruiser Intensity Spectrum Level at 5 kHz

150
‘T 140
—
T
< 130
o
%)
@ /
o
° 120
S
1S /
— 110
2
g
= 100 &
<2

90 T T T T T T

0 5 10 15 20 25 30 35
Ship Speed (knots)

b) If ISL=10logk"+ A, where Kk is the speed in knots, and n and A are constants. Use the
figure above to solve for n and A.
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4. a) Using the figure below, estimate the radiated noise level of the British sub traveling
on the surface a 7 knots and in a band ranging from 50 to 200 Hz.

British Submarine Radiated Noise Spectrum Level

180

170 B

160 -

150 - /Q <
—&— 7 knots

140
‘/ \. —&— 15 knots
130

120 A

ISL (dB re 1 microPa at 1 m)

110 A

100 ‘ ‘ w —— ‘ ‘
10 100 1000 10000

Frequency (Hz)

b) Estimate the radiated noise level of the sub traveling at 15 knots in a band from 50 to 200
Hz.
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Lesson 12

Self Noise

» Acoustic noise radiated in the water by
the platform and received by the
transducer through the water.
Mechanical vibrations passed on to the
transducer.

Electronic noise radiated by other high-
power electrical devices if inadequately
shielded.

Propeller Noise

» Rotating propellers generate spectral lines in
VLF band, f = 0.1-10 Hz. These frequencies
depend on rotation speed of propeller and its
geometry. Cavitation induced creates
broadband noise at higher frequencies.
Cavitation depends on:

» Rotation speed of propeller

» Type of propeller (fixed or variable pitch)

» Depth of propeller (deep depths inhibit
cavitation)

Flow Noise

Turbulence generated by flow of water
over ship’s hull. Depends on ship speed,
shape and placement of transducer.

Activity Noise

» Civilian ship activities can be very noisy
(drilling, trawling, seismic surveys, etc).

Machinery Noise

 Ships have numerous noisy machines -
engines, reduction gears, generators and
hydraulic machinery. This machinery causes
vibrations in the hull by solid transmission
through internal structures or through the air.
These vibrations are then passed on to the
water. Machinery noise is independent of ship’s
speed, therefore it is the major component of
self noise at low speeds and is masked at high
speeds by flow noise. Both primary frequencies
and harmonics are transmitted.

Submarine Transient Noise

 Acoustic stealth can be degraded by
transmission of short transient noises
(from few milliseconds to several
seconds). These transients are caused by
opening torpedo tube doors, control
surface movement, and starting/stopping
machinery. These are very characteristic
of submarines and can help classify them
as such.

Ship Radiated Noise Model

f
RNL(f)=RNL,, —20log| ——
(f) =RNL,, 9(1000

RNL, RNL,

su 1

WWII Deisel 140 120
Sub

(Electric)
Modern Diesel 100 80

(Electric)
Modern Diesel 140 120
Sub

i Modern SSN 110 90

Figaer 44, G cctrut of dhpradiated nobe Modem SSBN 120 100

Radiated Noise at 4 kis

Above 10-20 kts, flow noise becomes the dominant factor and
significantly increases with speed (@1.5-2 dB/KT)

)
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Total Noise

NL,, = NL ® NL

tot ambient self

NL, o = NLy, ® NLgg

ambient ship

NL,yr = NLgg @ NL gy (ONL g ® NL 00 ®...)

self tonal2 tonal3 "

NL g, = ISL,, +10log Af




Beam Pattern Function for
Two Element Array

If we had a single hydrophone, with an omni-directional response, sounds would appear
to come from all directions. In other words, we could not determine what direction a sound
came from. If we could somehow limit the direction our system would listen, we could possibly
determine the bearing a sound came from and maybe increase the ratio of the signal power
received to the noise power received. (Increase SNR which is a good thing.)

One way to do this is to use more than one hydrophone. What if we use two
hydrophones connected at a distance d apart from each other. Recall from our previous studies
that the hydrophone converts the mechanical sound signal to an electrical signal or voltage. We
can mathematically describe this process by introducing a quantity M, the transducer sensitivity
constant. M is used to convert the mechanical pressure quantity to an electrical signal, where:

v(t)=M *p(t)
Now let’s look at the arrangement of the two hydrophones and how their output is used.
First examine the diagram for a basic two-hydrophone array, sonar system. The outputs
of each hydrophone are combined in a beam former (they are added together), then the quantity

squared to find the amount of power in the signal and noise incident on the hydrophones. (See
the following diagram.)

@ Beam Former
@ E

output = (v, +v, f

v

v

If a sound wave is incident upon the two hydrophones at some angle other than
perpendicular to the axis of the two hydrophones, the sound wave will have to travel some
distance Ax further to reach the second hydrophone. (See diagram below.)
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Beam Former

0
7 —>
d
Ax (%) 2

2) output = (v, +V, )

v

v

where AXx =dsiné

A phase factor, 5, can be inserted in the one-dimensional wave equation to describe the
pressure of the wave as it is incident upon each hydrophone where:
v, =Mp, (t) =Mp,,, cos(k(0)+ot)
v, = Mp, (t) = Mp,,, cos(k(-Ax)+ ot)
V, +V, = Mp,, [ cos(wt)+cos(-5 +ot)]

where & = kAx =kdsin0

When the output is then squared it is actually measuring is the power of the incoming signal (or a
signal proportional to the rate of sound energy incident on the hydrophones.)

2 2
PoWer — Vv _ output
R R

2
P= W[cos(wtﬁ cos(— & +at)[*
If we then display the time-averaged power derived from the equation above, we get:

p'“ax cos’ wt + cos?(wt — 5 )+ 2 cos wt cos(wt — 5)>

=R
<cos wt + cos? (ot — 5) + ZE {cos(2at — 5)+cos 5 }}>

+= +(cos(2at - 5)) + (cos&)}

N |-
N |-

(P)= MpF';ax [1+cos 5]

So depending on the value of & (which is equal to kdsin(0)), the time averaged power will be:
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0< <p> < 2(MPya )2

Two-dimensional Beam Pattern

Why have we calculated the time-averaged power? Since the value for 6 depends on the
angle of the incoming sound wave from the array axis, the power received depends on the angle
at which the sound ray is incident on the array. We can describe this angular dependence with
one equation to relate the actual power received to the time averaged power on the axis (where
6=0° and the power is a maximum.) This ratio is the two-dimensional beam pattern function of
the array, b(6) where:

P(6) W(ﬂ cos J)

__(Plo) _
b(0) = (P(O=0°) (MpFr;ax f (1+cos0°)
b(g) ) (Mplgax) (1+ Cos(kd sin 9)) _ (1+ COS(kd sin 9))
» (Mp,,, )* i
R

using a trigonometric identity that 1+cos6 = Z(COSZ (gD :

(6) = _Cosz(kd sin 9}
2

b(6)= :cosz(ﬂd jn 9)_

The beam pattern function determines the magnitude of the received power at every
angle, to the maximum received power, thus the beam pattern function will vary (as a function of
angle) between 0 and 1.

0<b(g)<1

The key now is to determine what important parameters we can determine from the beam
pattern function. Below is a polar plot of the beam pattern function for a two element array
where the separation in elements is equal to twice the wavelength.
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Beam Pattern Function

(\/d = 0.5)

6=0°

1

enuII

eBW

.olsd-

emax
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Maximum Power Angles (Gnax)

Any angle where b(6) = 1. Using our previously derived formula for b(0), there can be
many angles where this occurs. From b(6):

b(6,,)=1= cos{

|:7ZdSin9m }
0§ ——— = | =1
A

d sin Hmax}

% =nz wheren=0,1,2,3,...
sing, ., _n
d

0oy = sin‘l{ﬂ}
d

Below are listed the max power angles for various ratios of A/d:

7\a/d 6I’l’laX
(between 0° and 90°)
2.0 0°
1.0 0°,90°
0.5 0°, 30°, 90°
0.333 0°, 19.5°,41.8°,90°
0.25 0°,14 5° 30°, 48.6° 90°

Notice that the lower the ratio of A/d, the higher the number of maximum power angles.

Null Angles (G.un)

The angles where the beam pattern function is equal to zero. If any sound ray arrives at
any of the null angles, little or no power from the incoming sound ray is received because of
destructive interference between the signals received by each of the separate elements in the
array. We calculate the null angle by setting the beam pattern function equal to zero as shown
below.
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b@&,,)=0= cos{

os[ﬂd sind,, } 0
A

dsind,,
A

N0 _ 37 wheren =1,35,7,..
) 2
Sir]enull M
2d

Below are listed the null angles for various ratios of A/d:

Ald enull
(between 0° and 90°)
2.0 90°
1.0 30°
0.5 14.5°, 48.6°
0.333 9.6°, 30°, 56.4°
0.25 7.2° 22.0° 38.7° 61.0°

Beamwidth (6sw)

The beamwidth of a beam is the angular displacement between the angles where the
beam pattern function, b(6), is greater than 0.5. If any sound ray arrives at any angle within the
beamwidth, the sound ray may be detectable. We assume that if a ray arrives at an angle outside
the beamwidth that the signal will not be detectable. Within each beam, at least half of the
power of the original wave will be received (not cancelled due to destructive interference
between the elements of the array.)

The beamwidth is important because it is proportional to the bearing accuracy of the
specific beam.

When we detect a sound, we can electronically determine which beam that the sound
arrived in but not specifically at what exact bearing in that beam. Thus, the smaller the beam
width, the greater the bearing accuracy. It is important to not then that beam width is not only a
function of the frequency of the sound but what beam the sound arrives in.

Referring to the diagram on page 13-4, the beams on the “beam” of the array

(perpendicular to the array axis) are much narrower than the beams on the array axis (also called
the “end-fire” beams.)
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Dependence Of Beam Pattern On Frequency

For most physical arrays, the separation distance between the elements, d, is a fixed
distance. Since all of the previous parameters depended on the ratio of A/d, every one of the
parameters will depend on the frequency (and thus the wavelength) of the sound incident on the
array. To show the dependence of the beam pattern of a fixed array on frequency, several beam
patterns are shown below:

Frequency = 750 Hz Frequency = 1500 Hz

0s 051

' '
05 05

Frequency = 3000 Hz

Frequency = 1975 Hz Frequency = 5314 Hz

051

051
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Three-Dimensional Beam Pattern

Lastly, we must remember that we live in a three-dimensional world. So why did we
spend so much time exploring the two-dimensional beam pattern? The beam pattern is
independent of the angle ¢ in a three-dimensional environment. An example of a three-

dimensional beam pattern is shown below.

.51

.....

array elements

The only difference between the two-dimensional beam patterns we previously derived
and the three-dimensional beam pattern shown above is that the three-dimensional beam pattern
is the two-dimensional pattern rotated about the array axis. In the example above, the elements

lie on the x-axis as shown.
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Problems:

1. You have a two element array as shown in the sketches below. The separation between the
elements is as indicated. Each point element is omni-directional and calibrated to give 0.001
volt per Pascal. Find the total voltage generated from the array for a traveling wave

p(x)=p, cos(%x—mtj (with maximum amplitude p, = 1 Pa) in each of the following

situations. The time is at the instant shown in the sketch

a)
peak peak
trough
*r——9 >
“«— A —>
b)

peak

peak trough
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c) Repeat b) for an angle of 30°. (Draw your own sketch)
d) Repeat a) for the case where one of the elements is moved to the trough. (draw your own
sketch)

2. Given a 2 element array with a 1.0 m spacing between elements, determine the following
assuming the frequency is 3000 Hz and ¢ = 1500 m/s.

a) The wavelength of the sound.
b) The maximum power angles from 0° <6 < 90°,

c) The null angles from 0° <
6 <90°.

d) The beam width about 0°

e) The beam width about 30°.

f) Complete a polar plot of
b(6).

3. The half power beamwidth is
defined as:
a) The angular separation between the first two null angles of an array.
b) The angular separation between the two “3dB down” angles of the main beam of the
array.
c) The directivity index of the array divided by 2.
d) The area of the beam pattern of an array where there is no chance of detection.

4. You are given a two element array with identical omni directional hydrophones. Let the
spacing between the hydrophones be A/2. Calculate the beam width of the main lobe (beam
width is the angular separation of the half power points)

5. An array consisting of two identical elements placed 40 cm apart is receiving sound of a
wavelength of 12 cm.
a) Locate the angles where there are nulls in the beam pattern function.
b) Locate the angles where there are maxima (or side lobes).
¢) Calculate the value of b(6) for a sufficient number of additional angles such that you can
plot b(6) for 0<6<90. Plot b(0) vs 6 on polar graph paper.
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6. Design a 2 element array with a half —power full beam width of 25 degrees at 15 kHz. The
spacing between the two elements is:
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Superposition

Dy, 1)
X

Dafx, 1)
X

Ds(x, 1)

Dix, n=Dyix, 1)+ Dalx, 1)+ Dalx, 1)

Fourier Series
D(m)

1.0
0.5
0.0

0.5

1.0 x(m) -=1.0 i 2" R x(m)
04 02 00 02 04 -04 02 00 02 04

(a) (b)

Constructive Interference of a pulse

(b)
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Time /\

—p N

Destructive Interference of a pulse
(a)
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Destructive Interference of
Harmonic Waves
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2 Dimensional Example
Single Hydrophone

Constructive
interference

v(t)=M = plt)

e (Mp(v)
— I Puwer:%:i( DFE )

hydrophone

processor

“omni-directional”

Destructive
inserference
(b}

Two Hydrophones Incident Wave

Beam Former

0
v(t)=M *p(t) /«/Sé't utput o (v, + v, )°

Beam Former
o—— ou(puhx(v,+v2)z
hydrophones  processor v, = Mp, (t) = Mp,,,, cos(k(0)+wt)
v, = Mp, (t) = Mp,,, cos(k(-Ax)+wt)
Why not output oc V12 4 v§ 297 output o< (v, +v,)* = {Mpmax [cos(mt)+cos(78+mt)]}Z
where 8 =KAx =kdsin®
|dentities Power Output from the Processor
. , 11 2
sin@-+cos’0 =1 cos e=5+§c0529 p— (Mplgax) [cos(et)+ cos(— & + at)f
cos(0+¢) =cosOcospFsinOsin¢ (P)= <Mp};“"”‘>z {cos® @t + cos?(at - 5)+ 2 cos at cos(at - 5))
C0S0+COS$= 2cose;2¢sin 9;24) (P)= (Mp’;“)z <cos2 ot +cos? (ot - 5)+ 2[% {cos(2et - 5)+ cos&}}>
(P)= (Mp [E+l+<cos(2wt -8))+(cos a>}
cosecos¢:l[cos(e+¢)+cos(e—¢)] P
2 (P)= (MPF'{“”) [L+cos 5] 8=kAx =kdsin®
e*® = cosO+isin® 0<(P)< 2(Mp,,, f
- a R
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Beam Pattern Function

M max ’ o
e
TR (Lrees0) 5= kax = kdsin®
b(6)= (1+cos(:dsin 0))
Trig identity b(6)= [cosz[kd szin Hﬂ
1+cos0 = 2(0052 (QD or
2 7d sin @

Example A =.5d

b(e)
1
.8
o6 h((?):[cas’[L szing]]
or
0 b((]):[cos’[”d jn Hﬂ
0
Theta
-3 -2 -1 1 2 3

Example A =.5d

Beam Pattern Function .
(1/d = 0.5) P

array elements

Maximum Power Directions

b(‘gmax ) —1=cos? { % :} 332:1 :a;l)em Function o=

[;zd sinemx}
cos| ——— ™ (=41
A

%:nn wheren =0,1,2,3,... T L, S

siné, ., = nt
d

6, =sin {nd—ﬂ .

artay elements

Null Angles

Beam Pattern Function
(Wd=05)

b(6,,)=0= cosz[

cos[ﬂd sing,, } _o
A

%w% wheren=1357,.. e Ko "

dsing,,
yA

0=0°

ni

null = |
2d iy lens

O, =Sin7" nt
2d

siné,

Beam Width

« The beamwidth of a Ea——
beam is the angular (4d=05)
displacement between
the angles where the
beam pattern function,
b(0), is greater than 0.5.

« 3dB down points

¢ The beamwidth is
important because it is
proportional to the
bearing accuracy of the
specific beam.

0=0°
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3-d Beam Pattern

Effect of Increasing Frequency

Frequency = 750_Hz Frequency = 1500 Hz

Frequency = 300.? . Frequency = 6000 Hz




Directivity Index and Multi-element Arrays

At the beginning of the last section, we began discussing how it would be possible to
increase the response and the signal-to-noise ratio by increasing the number of elements that we
used to receive sound. This also led to the formulation of the beam pattern function and drawing
the response patterns for a simple two-element array.

We will quantify the affect of increasing the number of elements in our array by deriving
an expression called the Directivity Index. The Directivity Index is the ratio of the total noise
power in an isotropic noise filled environment, incident on an array, compared to the power
actually received by the system.

DI — 1 0 log Nomni—directional noise

directional noise

where Nomni-directional noise (NND) 18 the power of the isotropic noise incident on the array and
Nirectional noise (ND) 18 the power of the isotropic noise received by the array.

To calculate the Directivity Index of an array,

Ny = 4],
N, = [[1b(6,0)dA

rd®

rcos 0dd

v
<
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As shown in the above sketch, 6 is the latitude angle measured up from the plane of the equator
(x-y plane) and ¢ is the longitude angle measured from the x-z axis. The area of a small
elemental area on this surface can be found from the following equation, obtained by multiplying
the dimensions of the element.

dA =1’ cos0d0dd

The integrations over 6 must be from 0 to 27 and the integration over ¢ is from —n/2 to +m/2.
When calculating the omni or non-directional power, b =1 and it is easy to show that the
integration over 0 and ¢ result in a factor of 4w.  Similarly, to calculate the directional noise
level:

N,, = [[1.6(6,4)r" cos 6d0dd

2

Ny, =Lr* [ [ b(6,¢)cos0d0do
0

e R

[SYE]

Since the beam pattern function is independent of 6 such that b(0,)=b(0) and because the beam
pattern function is symmetrical about the x-axis, the double integrals can be evaluated as below.

g 27
N, =Ir* [ b(6)cos0d6 [ do
2 0
b
N, =2nLr’ J b(6)cos0do

TE2
N,, =4nlr [ b(6)cos 0do
0

When this is all combined to calculate the Directivity Index:
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DI=1010gh
N

D

2
DI=10log ;nr L
2
4xlr’ [ b(6)cos 0d0
0
1
DI=10log 4
2
| b(6)cos6d0

0

If we can solve the integral of the beam pattern function in the formula above, we can determine
the Directivity Index of a given array. The key will be to determine the beam pattern function
for the specific array and to evaluate the integral.

Directivity Index for a 2-element Array

If we evaluate the integral in the equation above for a 2-element array, we get the
following:
2

o8]
27:%

DI=10log

1+

Since the denominator inside the logarithm is simply:

p2 % , in(2nd
_fb(G)cosedO: _fcosz(ndsmejcosede—H%%A)

The student should note then that the Directivity Index of an array varies as a function

of frequency (or wavelength) of the incident sound. When we are evaluating the Directivity
Index for an array, normally we will calculate the DI using the center frequency of the frequency
band of the processor.
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n-Element Array

Beam Pattern Function

\

0 d

A

o,
000000700

Close in view of 2
adjacent elements

AX

We will study an n-element array with separation, d, between elements and an acoustic wave
incident at an angle 0 just as we did for the two element array. To find the total voltage from all
n-elements we have to add up the voltage from each element and then square the result. For the
two element case we were able to accomplish this mathematical task using trigonometric
identities. The task is more complicated with 3 or more elements so we will use a technique

borrowed from electrical engineering called phasor addition.

Recall from our electrical engineering that we often used phasor addition to add up AC sin waves
in three phase systems. In this technique, the voltage from each array element is represented by
a vector-like arrow whose direction is defined by the difference in phase that the element has
from the voltage of the adjacent array elements. This “phase angle” representation is where the
technique gets its name. The so called “phasor” diagram if formed by connecting the individual
“phasors” head to tail analogous to vector addition. If the output from a hypothetical array with
three elements each differed by 120° or 2n/3 radians, the below expressions would represent the

output from each:
v, =V, cos(ot)

v, =V, cos(mt +Ej
3

v, =V, cos(cot +4—TEJ
3

If we added up these three voltages, the phasor diagram would appear as below at the time, t=0
sec. If somehow we had an output equal to the sum of these three voltages, the output must be

zero volts.
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V2

120°

Vi

More often in our EE class, we were interested in the difference between 2 phases of a system.
We employed phasor subtraction to find the real and reactive parts of this difference. Hopefully
it is obvious that the magnitude of the difference between v; and v, in our example is V,.

For our multi-element array, the difference in phase between adjacent elements is 6 =k Ax. In
the above diagram, we see that each element of the array sees the same wavefront after it has
traveled an additional distance Ax = d sinf from the element next to it. The phase difference
between elements is then ¢ = kdsinf. The total voltage of beamformer obtained by summing the
individual elements is therefore:

Vior = Mp, {cos(k [0] + ot) + cos(k [—d sin 9] + ot) + cos(k [—2d sin 6] + ot) +...cos(k [—(n —1)dsin 9] + o)t)}
Vior =V, {cos(ot) +cos(ot —8) + cos(wt — 28) +...+ cos(wt — (n —1)3)}

Vior = Acos(ot +¢)

Using a phasor representation, we want to find the resulting amplitude of the sum, A, and
sometimes even the resulting phase angle, ¢. A geometric construction of each of the phasor
elements in the sum is drawn as in the diagram below. In this case a 6 element array is shown.

P 0=kdsin0

Segment AG is the resulting amplitude of the sum, A. We see that the phasors are
approximating the arc of a circular path of radius, R, such that

.8 V,/2
SiIn—~=
2

where R is distance AP
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since Z APa is % Similarly, since £ APM = ?8 and the midpoint of the chord is — 5 _VO

sin (n?fij ~ V(?{) /2 Where R is distance AP

Combining these two results and solving for V(0),

sinnE

=A
. 0
nsin—

V(0) =nV,

It is customary to write nV, in the numerator since this would be the voltage if the wave arrived
at each element of the array at the same time. In this case we would call nV, the maximum
voltage, Vi,

The overall phase of the resulting sum is simply,
b0
2

Since 6 = kdsin® = 2ntdsin6/A, the total voltage can be written as a function of the angle, 0,

. ( nndsin® )
sin
V(0)=V.

. [ ndsmGj

nndsin® )

The power seen by the beamformer is then,

V? (
P(0) =
®) R [ndsmej
nsin

Finally, the beam pattern function is defined,

2
sin (nnd sin 9)
P(6 A
O e |
nsin (}» sin Gj
Side lobes and maximums are dependent on the number of elements in the array. For six

elements, a null can be created from a hexagon of the 6 representative phasors. This corresponds
to a phase angle, 8, of 60 degrees between phasors. Additional nulls can be found when & is 120°

(triangle), 180°, 240°, and 300°. Below is the beam pattern (/b () )for a six element array along
the y-axis with d/A =0.5.
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In general, the greater the greater the number of elements, the more nulls and therefore more side
lobes are created. Each lobe is narrower resulting in increased bearing resolution. Below is the
beam pattern for an eight element array along the y-axis with d/A=0.5. Can you describe the
phasor diagram that creates each of the nulls?

Directivity Index

Calculating the Directivity index for an n-element array is fairly difficult. Using the definition of
Directivity Index,

1

DI=10log %
2
[ b(6)cos0do

0
we state without proof that if the beam pattern function for an n-element array is evaluated, the
result is:

DI=10log

Linear Arrays

A linear array is a continuous collection of many very small elements. The phasor diagram is
similar to the one above with n a very large number and each individual element having a very
small length. Because of this, the same beam pattern function can be used as the n-element array
with the substitution that array length L = nd. Additionally, with many small elements, the
denominator is the sine of a very small angle allowing us to use the small angle approximation,
sina. = a.
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d ’ L ’ L ?
sin (m; sin 9) sin (nk sin 9) sin(a sin GJ
b(0) = I R N I D N

nsin 7T—dsine nn—dsine Esin6
A A A

Below is the beam pattern function for a linear array along the y axis with L/A = 2.

Nulls and Side Lobes

ntLsin®

Nulls occur when sin(

j =0. The sine function has zeros at integer multiples of 180

degrees or 7 radians.

mhsind o n=12.3...

. . . sina .
Between these nulls are secondary maxima or side-lobes that occur when the function isa
a
. nlsind . .
maxima. (a = P ). We can find cases where this occurs with a computer and observe that

smallest value is & =1.437. For this value, b(6)=0.04719 and 10logh(@)=—13.3dB. This

means that the first side lobe next to the main lobe at 6 = 0 degrees is reduced in amplitude by
13.3 dB.

Directivity Index

Again without proof, the directivity index of a linear array reduces to the following simple result
so long as the array length is much greater than the wavelength.

1 2L
DI=101 =101 —
og% og( . )
Ib(@)cos@d@

0
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Piston Arrays

A plane piston array as shown above is thought of as composed of a very large number of
elements arranged in 2 dimensions on it’s surface. Since there is no fixed phase relationship
between these elements, phasor addition will not work. Instead, it is necessary to integrate over
the elements making up the surface. Experience has shown this is best done in polar coordinates
and the results will not be repeated here. The resulting beam pattern function is

. 2
2, ( nDsin O ]
_\ A )
nDsin 0
A
where J; is the Bessel Function of the first order and first kind. It’s values are well tabulated in
mathematical handbooks much like the trigonometric functions. As seen below, maximum

values and zero crossings for this Bessel function are not as orderly as the trigonometric
functions.

b(0) =

0.6
0.4
J1(7DsinO/A)
0.2
5 10 15 20
-0.2
ntDsinO/A

J1(nDsin6/A) has zero crossings (nulls) at tDsin6/A = 3.83, 7.02, 10.17, 13.32, 16.47, ......
J1(mDsin6/A) has extremes (near the side lobes) at tDsin0/A = 1.84, 5.33, 8.54, 11.71, 14.86, ....

14-9



From this we see that the first zero crossing corresponding to a null in the beam pattern function
occurs when

3.83A :1'221
nD D

sin@ =

The first side lobe occurs when

The actual value of the maximum corresponding to the first side lobe is found by iterating with a

mDsin ~5.33, and the exact value is sin9 = % .

computer. It is near the place where

Note that the center beam occurred at O = 0 where both the numerator and denominator are
approaching zero.

Below is the beam pattern ( /b(@) )for a piston array along the y-axis with D/A = 2.0.

A Table showing the piston array results for lobes, nulls, and beam widths as well as those for
linear and two element arrays appears on the following page.
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2-element array

continuous line array

circular piston

defining
parameters

element separation distance

array length — L

array diameter - D

beam pattern

2
sin {nL sin GJ
I A |

2
2], (nD sin 6)
)

. nd
2 sino
function cos (k sin J - _—
Tsme Tsm@
b(®) =
directivity index i |
Dl
2 2
10log IOlogz—L for L >>2 IOIOg(@) for D >> A
sin(zn%) A A
1+
275%
null angles , A
() = 0 sin0=(z)5
0= A in 0= A =1.22, 2.23, 3.24,4.24
Ol sin —(m)ﬁ sin —(m)f z =1.22, .D, 24,424, .
m=1,35,.. m=1,273,.. roots of J, (%sinGJ:O
_ nlsin®) ( nLsin®
side lobes tan =
A " " in0 =
b(0)=1 sinB:mE - A SIMY=wo
0 sin :y(—j _
max m=0,1,2.3 ... L where w 1.64, 2.68, 3.70,
where y = 1.43,2.46,3.47,4.4
half power
angles
b(0)=0.5 o DA
3 % = g sin®, = 0442 sin, =0.512
hp P L P D
eBW=29hp n= 19 35 55 75

(only for beam
about array axis)
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Problems:

1. Given a 2 element array with a 1.0 m spacing between elements, determine the Directivity
Index assuming the frequency is 3000 Hz and ¢ = 1500 Hz.

2. Find the directivity Index of a line of 6 elements spaced 10 cm apart when receiving sound of
wavelength 30 cm.

3. The Directivity Index of a sonar array depends on all of the following except:

a) the physical dimensions of the array.

b) the speed of sound in the water.

c) the layout of the hydrophones in the array.
d) the efficiency of the array.

4. Determine the null angles from 0 to 90° of a 0.25 m active linear array operating at 25 kHz.
5. A 200m linear array is used for receiving a 300 Hz signal. What is the directivity index.

6. A continuous line array of length 150 cm is receiving sound of 5 kHz. The sound speed is
1500 m/s.

a) Find the angles at which there is a null in the directivity pattern.

b) Find the angles to the maximum points of all side lobes.

c) Calculate the half power beam width.

9 Calculate b(0) for 6 = 10°, 20°, 30°, 40°, 50° 60°, 70°. 80°, 90°

e) Calculate the Directivity Index.

7. Find the directivity index for a linear array of length 125 cm, when operating at 15 kHz in
water where ¢ = 1500 m/s.

8. Find the directivity index for a circular piston array of diameter 125 cm, when operating at 15
kHz in water where ¢ = 1500 m/s.

9. A plane circular piston array of diameter 100 cm is receiving sound of frequency 7 kHz. The
sound speed is 1500 m/s.

a) Find the angles at which there are nulls in the directivity pattern

b) Find the angles to the maximum points of all side lobes.

c) Calculate the half-power beam width.

10. a) Design a plane circular array with a half-power beam width of 25° at 15 kHz. The
diameter of the array is .

b). Design a continuous line array with a half-power beam width of 25° at 15 kHz. The
length of the array is
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11. What is the spacing, d, required for a 4-element line array (detecting frequencies of 10 kHz
in water) so that:

a) The first null in the beam pattern occurs at 90°.

b) The second major lobe (of magnitude unity) in the beam pattern occurs at 90°.

c) Compute DI for a)

d) Compute DI for b)
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Lesson 14

Directivity Index

D I =10 log N omni—directional noise

directional noise

N=[[1b(6,0)dA
but dA =1” cos 0d0d¢

rdo

_ rcos 0do

y

o

Directional Case

Ny = 4mr’],
N, = [[1b(6,0)dA

N, :jjlib(6,¢)r2 cos 0d0de

b(6,¢)cos 6d0d}

— 0l

2n
N, =L |
0

wla

With Rotational Symmetry

3 2
No = 1,r* [b(@)cos 6d6 [d¢
T 0

2

b(6 )cos ad o

—uln

Ny =27’

SN

2

No = 4zl,r* [b(0)cos 6d6
0

DI with Rotational Symmetry

DI :1010gh
ND

4nr’l

DI =10log A !

2
47,1 [b(0)cos O
0

DI =10log

be(t‘))coséd 0

0

DI for the Two-element Array

2
DI =10log
'i27zd |
1+sm /1
27zd/1




Lesson 14

N Element Array

P
P
0
o )
v, =Mp, (t)=Mp,,, cos(k(0)+awt) 2
v, =Mp, (t)=Mp,,, cos(k(-Ax)+aot) ]
vy =Mp; (t)=Mp,,, cos(k(-24x)+wt) O
v, =Mp, (1) =Mp,,, cos(k(-3Ax)+ot) o

=My ()= M cos((-(N-1)ax) o)

output o (v, +v,) = {Mp,,, [cos (t) +cos (=5 + ) + cos(-28+ wt) + cos (~35 +ot) +... +cos (~(N~ |)5+<m)]}3

where & =kAx =kdsin0

Phasor Addition

&=kdsinf
o cos(k[0]+wt)+cos(k[-dsin 0]+ wt) +
s Vior =P sk [~2dsin 6]+ ot) +...cos(k [~(n ~ )dsin 6] + wt)
C_ [eos(ot) +cos(ot—8) + cos(@t —28) + ..
V1ot =Yo  Los(ot - (n — 1)3)

Vior = Acos(ot+¢)
ns2
G @ =R sm[lfj Where R is distance AP
M )
5 sinn
= V(©)=nV, 2
e nsin2.

i sin(“—ndsme) '
=b(0)= 2

nsin (ansin ej

Beam Patterns for 6 and 8 Element Arrays

6 element array oriented vertically

B s os A

8 element array oriented vertically

Directivity Index for an
n-Element Array

DI=10log

Linear Array

sin[“)idsin e) sin(“)—Lsine) sin [%Lsin 9]
b(0) = d = d =
. (md . nd . al .
nsm[Tsme) nTslne Tsme

. nLsin0
Nulls: ———=nm, n=1,2,3,...
A
DI :1010gy%:1010g %)

;
| b(6)cosodo

0

Beam Pattern for a Vertical Linear Array
L/A=2.0




Lesson 14

Piston Array

. 2, ( nD ;1n 9)
D _
b(6)= 7Dsin 0
A
0-6 Bessel Function
J,(nDsin6/2.) 04
0.2
5 m\/ 15 20
-0.2
nDsin®/2

J,(nDsin6/L) has zero crossings (nulls) at nDsin6/A = 3.83, 7.02, 10.17, 13.32, 16.47, ....
J,(nDsin6/}) has extremes (side lobes) at nDsin6/i = 1.84, 5.33, 8.54, 11.71, 14.86, ....

Beam Pattern for a Piston Array
D/A=2.0

s

2-element array continuous line array circular piston
defining parameters | clement separation distance - d array length - L array diameter - D
(snfZsino] |
beam pattern function co;‘[ﬂsmﬂ Z
)= / Aino
2
directivity index :
o 0t oriss 2 | 1010g™2) forpss 2
I+ 4 A/
null angles . ; sn\[l:(z]%
b(g):o sing = (m)= sinf=(m)= 2=122, 223, 3.24,424,...
it - - (
=135, =123, 7
m=h " roots of J \iamg\:o
a7
side lobes i ing) (ssne) -
b(@)=1 sing=m% \ VA sing=wl
9 d D
max m=0,1,2,3 \ where w=1.64,2.68,3.70,
where y =1.43,2.46,3.47, 448,
half power angles
b(8)=0.5 g, = , B
[ ad sinf,, = 04425 sind,, =0.51%
o n=1357. L b
 85,=28,,, -
(only for beam about array axis)

Beam width of a piston array

1
b . 2
08 ZJI(T[D;mej
b(8)=| ——2 2| —05
06 nDsin 0
r
0.4
0.2
2 4 6
Dsin®
A
Dsin6
P16 sino=10%_ 5%
A n D D




Detection Theory

The criterion for detection requires that the amount of sound energy collected by the
receiver must exceed a threshold level to register a detection. The most common way to do this
is first to express the ratio of signal to noise in decibels where:

SNR =10 |og(8'gf'a'j
Noise

The minimum SNR that is required to determine that there is a signal present in the environment
a pre-established percentage of the time, is called the detection threshold, DT. The goal of this
lesson is to be able to determine by calculation, a DT for our sonar system. It should be apparent
that detection threshold is a statistical concept since the background noise that masks our signal
fluctuates in randomly in time. Because of this, we will have to discuss some statistics ideas
before we can calculate our Detection Threshold.

Threshold setting

Let's assume that in our environment there is random noise. Let us also assume we have
a sonar system with a hydrophone that converts incident acoustic pressure into a voltage sent to
the sonar processor. A plot of the voltage output from a hydrophone in an environment with
noise might look something like that in figure 1.

Figure 1 - 2 Volt Random Noise
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Now let's assume that there is a signal also present in the same environment as shown in
figure 2 where the hypothetical signal is plotted without noise.
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Figure 2 - 2 Volt Signal with no Noise
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Figure 3 is a depiction of the sum of the signal plus noise. The question then becomes,
what detection threshold should be set in the sonar system so that the signal can be detected

through the background noise.

Figure 3 - 2 Volt Random Noise with 2 Volt Signal
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Should the threshold voltage be set at voltage V1 where only the signal that is well above
the noise will cause a detection? Or should it be V, where not only will some of the signals be
detected but also some of the noise will cause a false detection? Or should it be V3 where a good
portion of the noise as well as most of the signals cause detections? What threshold voltage to
set is a very difficult question to answer. The more important question though is, what
percentage of the time can we tolerate a false alarm and tolerate missing a detection. Both

circumstances are directly related to one another.
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Binary Decision Table

Though there are only two possible answers at any moment for the conclusion that there
is a signal present or not, there are two possible outcomes for both answers, the conclusion was
either correct or incorrect. This is best summed up by the following two tables:

Decision/Hypothesis
Signal Signal

present not present
Actual input | Signal present Correct Missed
detection detection

p(D) p(miss)=1-p(D)
Signal not False Correct

t Alarm no detection
presen p(FA) p(nul)=1-p(FA)

In this Matrix presentation, statisticians call the “decision” the “hypothesis.” It should be
clear that for a given situation, the two hypothesis are mutually exclusive. If a signal is actually
present, either hypothesis “signal present” or hypothesis “signal not present” must be selected.
We are not allowing for an unknown hypothesis. Because of this, the sum of the probability that
the “signal is present” and the probability that the “signal is not present” must add up to one.

There are two desired outcomes. We hope that anytime a signal actually exists, we chose
the “signal present” hypothesis. Otherwise we have selected a “false negative” and have missed
a valid target. On the other hand, if there is no signal present, we hope to always select the
“signal not present” hypothesis. In this case, selecting “signal present” would be a “false
positive” and would represent a false alarm. The below chart summarizes this idea.

When there is

When there is

noise only signal and noise
Decision noise only signal + noise | noise only signal + noise
correct wrong wrong correct
p(null) p(FA) P(miss) p(D)
comments you are correct, | wasted torpedoes | you missed the hostile sunk
continue hostile
searching
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Probability Density Function

A better representation of the voltage output of a hydrophone to be used in determining
the threshold setting is to plot the probability density function of the voltage. The probability
density function represents the number of times the voltage was at a certain voltage (represented
on the x-axis) per unit time. For good empirical reasons, we mathematically model the noise as a

Figure 4 - Noise Only

A threshold
HN voltage, v,

/

PDF

p(FA)

v

hydrophone voltage

normal or “Gaussian” distribution of voltages about a mean value, pu. The mathematical
description of a Gaussian probability distribution function (PDF) is:

(vn)
e 262

pV) = ———
216

This equation tells us the probability of a particular value of voltage occurring in an
interval of time. For each distribution we define the variance, ¢*>. Variance tells us how much

the distribution of the voltage “varies” about the mean value.
2
v—pu) dv
D
j dv
Standard deviation, o, is the square root of the variance. We say that the probability that

the voltage will lie within one standard deviation of the mean is about 67%. More exactly,

L Te(VZ:Z)Z dv

0.67 =

oV2rn

Figure 4 above represents the probability density function of the receiver voltage for
gaussian background noise only. The x-axis represents the voltage output of the hydrophone and
the y-axis represents the probability that the voltage was at the level on the x-axis. This is
roughly the same as the percentage of samples the sonar system will get at a particulate value of
voltage in a particular time interval. From the curve, depending on where the threshold level, v,
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is set, the shaded area under the curve and to the right of the threshold represents the probability
of getting a false alarm. Since the total area under the curve represents 100% of the time, the
remaining area represents, p(null), the probability that there is no signal.

For simplicity, we will often shift the distribution of noise such that it has a mean value
of zero. With this shift, we could calculate P(FA),
1 ¢
Ie 20" dv

p(FA)=

oV2m

Figure 5 -Signal + Noise
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If we look at the probability density function of a signal plus gaussian background noise,
we get a distribution like Figure 5. This curve is shifted to the for exactly the same reason that
the curve in figure 3 is shifted up while the signal is present. From this curve, the shaded area
under the curve represents the probability that a detection p(D) will occur. This probability can
be calculated as follows:

l £ _(V—HS+N)2
p(D) = Ie 2 (v

oV2n

The area to the left of the threshold voltage represents the probability of a missed
detection, p(Miss).

Detection Index

Now to relate the time varying magnitude of the hydrophone voltage due to noise, to the
time varying magnitude of the signal plus the noise, we define the quantity, d, the detection
index. The detection index can be thought of as the "processed signal to noise ratio”. That is the
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ratio of the signal to the noise after the sound energy has been converted to a voltage level and
processed electronically. The formula for the detection index is:

2
d= ( s+n _“n)

Lok, +o?)

where p is the mean voltage of the signal plus noise (s+n) or of the noise (n) (denoted by the
subscript), and o is the variance. An example of the detection index for two PDF curves is
shown below.

A

noise only

POF \./

signal + noise

v

hydrophone voltage

Threshold
Voltage

signal + noise

noise only T

PDF ~

v

hydrophone voltage
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Compare the detection indices for the two PDF’s shown above. Notice that the higher the
ratio of signal to noise, the higher the detection index or in other words, the more likely a
detection will occur at a particular threshold. Since the noise is the same in both cases, the
probability of false alarm is the same for both detection indices. But since the d =8 case is
shifted to the right, more area is under the signal + noise curve to the right of the threshold. This
tells us the probability of detection is greater in this case.

Receiver Operating Characteristic (ROC) Curves

To put all the preceding information together we can plot the probability for detection as
a function of the probability of false alarm for various detection indices. The ROC curves are a
set of curves that make our lives simpler by allowing us to be able to determine the probabilities
for a sonar system for various signal to noise ratios. An example set of ROC curves for an ideal
receiver system is shown below.
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From Urick, R. J. Principles of Underwater Sound, 3 ed. McGraw-Hill Book Company.
1983. p 383

This plot shows that for a given detection index, d, (which is the "processed signal to
noise ratio™), that choosing a probability of detection determines the probability of false alarm or
vice versa. Understand also that these ROC curves are dependent on the sonar system being
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analyzed and will look different for a real sonar system compared to the idealized curves shown
above.

One characteristic common to all ROC curves is the detection index line labeled d = 0,
called the chance diagonal. With improved signal to noise ratio, the series of curves moves up
and to the left of the chance diagonal corresponding to improved probability of detection, p(D),
and fewer false alarms, p(FA).

Detection Threshold

The ROC curves discussed above are important in that from these curves, we can
determine a good detection threshold, DT in dB, for our sonar system. As a first step, you must
decide (or be provided) the necessary detection probability you desire. This must be balanced
with a reasonable probability of false alarms. It does you no good to insist on perfect probability
of detection if you sonar system is constantly crying wolf with false alarms. Often the
probability of detection specified is as low as 50%.

As an example, consider a required p(D) = 50% and a p(FA) = 0.2%. The necessary
detection index is then 9. Conversely, if the relationship between signal and noise is such that d
= 4, then a probability of detection of 70% can not be obtained without accepting a value of 10%
for p(FA).

Imagine yourself in a noisy stadium at the concert of the year by your favorite artist. Can
you hear what your friend is trying to tell you? Well that depends on many things including how
loud the concert is as well as how loud your friend is talking. One other thing that can help you
though is whether you see their lips moving or not. If you can "correlate” their lip movement to
what little that you do hear from them, it is easier to tell what they are saying. The same holds
true for sonar systems.

Active Sonar System or Correlator Detector

If we can compare the received signal and noise to a known signal, as in the example
above, it will be easier to determine if there is an actual signal present or not. This is exactly
what an active sonar system does. The active system sends out a signal with a known frequency,
and pulse shape, and looks for a return signal with the same frequency and pulse shape through
the background noise. Knowing this, we can better relate the detection threshold to the detection
index. To find the equation for an ideal correlator detector, we must first review the meaning of
detection index.

Previously we defined detection index,
2
d= (Hs+n _Mn)

- Y(ct.+ol)

For the case of correlation, we might expect signal and noise to have the same variance.
Detection index then is proportional to a ratio whose numerator is related to the average signal
intensity and whose denominator is related to the average noise intensity.
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Further we state without rigorous proof that the constant of proportionality is the number of
samples, m, obtained by the sonar system in a time period T, called the integration time.

S
(N)
A well known sampling theorem by Nyquist states that “the sampling rate must be at
least twice the bandwidth, o, of the received power so that no signal information is lost.”
Nyquist’s theorem requires that the number of samples be at least, m = 2(Af)T . The average

signal to noise ratio is then,
() d_d
(N) m 2(af)T
Detection threshold for a correlation detector is then defined the expected way band
levels in dB are calculated.

DT=10Iog<<—§I>>=1OIog 2(Adf)T

Passive Sonar System or Energy Detector

Imagine yourself at the same concert that we discussed above but now, your friend is
facing away from you towards the stage. It would be much harder to determine what they were
saying or even if they were talking to you, without the visual clue of seeing their lips moving.
The same holds true for a passive sonar system. With a passive system, the operator is looking
for a signal even though he does not know what type or frequency signal or even if there is one
present. For this case, the equation for how the detection index relates to the signal and noise is
different. For the passive sonar, we can show with some difficulty that d is given by the

- d =(Af)T[@J2
()

Again solving for the average signal to noise ratio,

%‘&Agwf

Detection threshold for a passive detector is then defined the expected way band levels in dB are

calculated
1
S 2
DT:10IogQ:10Iog(—OI J:SIog(—d ]

(N) (AF)T (AF)T
** Note that this only holds true for small signal to noise ratios (S/N<<1) and large sample sizes
((Af) T >>1).
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The Sonar System Detection Threshold

Now let's put this together starting with a very basic illustration of the components of a sonar
system. This system is composed of an array of hydrophones, a receiver, a display and an
operator. Each one of these components including the observer or operator contributes to the
detection threshold of the system.

— = == = = — — Deftection threshold —- — — — — -

r !
|
i v
| Receiver Desploy Obser ver Decision
I
: Torget
| Visugol — __ obsent
| presentotion )P 3\ —
Torget
* e present
e
A > B P
i ” Burol -
a B presentotion
A,
Hydrophone
orray

From Urick, R. J. Principles of Underwater Sound, 3 ed. McGraw-Hill Book Company. 1983. p
378

We have only discussed an idealized prediction of the detection threshold of the above

system. Many other things will reduce the detectability of the system but we can not increase the

detectability above the idealized case. Some of the items that can affect the systems detection
threshold.

= Fluctuating signal from the target will degrade system performance. P(D) will be a
function of amplitude density probability of signal. If signal follows a Rayleigh
distribution it can be shown that p(D) can be approximated with threshold Y, and
detection index d.

= valid if pg> 0.1 and ps, < 0.01
= |f there are more than one signal present.

= |f there is multipath propagation.
= |f bandwidth- time product (wT) is not greater than 1.
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= |f post-detector averager or smoothing filter is used to remove noise from processor
output.
We will leave the study of these factors to a more in depth study of sonar systems.
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Problems

1. The curves below represent the probability density functions for the “voltage” distribution of
signal plus noise and noise alone. The detection threshold is set at 60 mV. If the area under
the curve shaded ////=0.10 and the area under the curve shaded \\\=0.30, calculate:

a) p(D)
b) p(miss)
c) p(FA)
d) p(null)
e) The detection index
A
Threshold
Prob(noise only) .. Ve
Prob(signal + noise
PDF \ : (Sig )
© o=15 ..
................ i /(<< | >
20 40 60 80

Processed hydrophone voltage (mV)

2. A series of 5 processed voltage readings, for the case of noise alone , is tabulated below:
Trial # Processed “noise” voltage

1 2
2 1
3 3
4 2
5 1

A series of processed voltage readings for the case of signal plus noise is tabulated below
Trial # Processed “noise” voltage
1 2
2 3
3 4
4 2
5 3
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a) Complete the following table and draw the receiver operating curve corresponding to the
coordinate (p(FA), P(D)).

Threshold
Voltage

P(FA)

P(D)

0.5

15

3/5=0.6

5/5=1.0

2.5

3.5

4.5

100

ROC curve

90

80

70

60

40

30

20

10

10

20 30

40 50
p(FA)

60 70 80 90 100

b) Compute the mean, us.n and the standard deviation, cs:, for the processed “signal +noise”

case.

(% —n)’

Note that sample variance is found from ¢* ==

n-1

c) Compute the mean, u, and the standard deviation, o, for the processed “noise alone”

case.

d) Compute the processed signal to noise ratio parameter, d
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. The human ear can be modeled as an energy detector (passive system) of bandwidth 50 Hz
and integration time of 0.50 seconds. What will be the detection threshold for the ear given a
60% probability of detection and a 5% probability of false alarm?

. A scuba diver must be able to hear a 1000 Hz tone in a backround of ocean noise that is

isotropic with a constant intensity spectrum level of 80 dB. If the ear is modeled as an
energy detector with a 50 Hz bandwidth and an integration time of 0.5 sec, what is the
minimum rms pressure in pPa necessary for him to hear the tone with a probability of
detection of 50% and a probability of false alarm of 0.05%? Transmission loss is neglected
here. Let the directivity index equal 3 dB.

. A cross-correlator receiving (active) system is used to detect a known signal in a background
of Gaussian noise. The predetermined criterion for detection is such that p(D) = 50% and
p(FA) = 0.2%. Calculate the system’s detection threshold given that the signal duration is
200 milliseconds. The bandwidth is 100 Hz.

. A surface ship is trying to prosecute an enemy submarine. If the surface ships sonar system
has P(D) = 75% and P(FA) = 0.1%, what is the probability that a torpedo will be wasted on a
false target?

. A passive continuous line array sonar 30 m long receives signals in a one half octave
bandwidth centered on a frequency of 400 Hz. The sonar’s receiver may be modeled as a
passive energy detector with an integration time of 2.0 seconds. The line array is towed in an
environment where the ambient noise spectrum level due to distant shipping is 51 dB, the
ambient noise spectrum level due to wind driven waves is 54 dB, the self noise spectrum
level is 52 dB, and the local sound speed is 1500 m/s. All spectrum levels are constant in the
range of the frequencies in the sonar’s receiver bandwidth. What is the sonar’s figure of
merit (FOM) against a target radiating white noise (with a spectrum level of 120 dB at the
sonar’s center frequency) given a requirement for p(D) = 50.0% and p(FA) = 0.10%. The
directivity index is given by DI = 10 log(2L/\) where L is the array length and A is the
wavelength. Considering only spherical spreading and no attenuation (TL = 20 log r), solve
for the detection range.

15-14



Lesson 15

Signal and Noise
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T Fall Correct
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correct wrong
p(nully P(FA)
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wrong correct
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NAME

Passive Sonar Wrap-up Exercise

The two submarines described below are to engage in a sonar detection exercise off the coast of Kauai.
Use the following data for all questions.
(Note: all numbers are made up and do not reflect reality.)

USS Memphis (Target)
SL of sub 180 dB in band from 100 Hz to 500 Hz
Main tonal in band = 400 Hz due to sound short of 400 Hz generator

USS Seawolf (Attacker)

Use hull array consisting of 50 hydrophones in groups of 4 spaced 30 m down the side of the sub
(consider as continuous line array)

Bandwidth of sonar suite = 400 Hz from 100 to 500 Hz

Integration time of sonar suite = 20 ms

Want P(D) = 90%, P(FA) = 0.2% assume ideal sonar processor

NLges = 81 dB in band from 100 Hz to 500 Hz

Environment

Sea State = 1

Shipping = light

transition range = 14 Kyds

1. What is the detection index required for detection of the Memphis by the Seawolf?

2. What would be the detection threshold for detecting the Memphis using passive sonar?

3. What are the angles for the nulls of the Seawolf’s 30 m long hull array (only give from 0° to 90°)?

4. What is the Directivity Index for this 30 m long array at the frequency of the principle tonal?
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5. What is the attenuation coefficient at the frequency of the principle tonal?

6. What is the Ambient Noise Level (Sea State and Shipping)?

7. What is the Total Noise Level?

8. If the Memphis were at 16,000 yds from the Seawolf, what would be the Transmission Loss
(include attenuation)?

9. If the Memphis were at 16,000 yds from the Seawolf, what would be the signal-to-noise level?

10. Is Memphis detectable? If so, what is the Signal Excess?

11. What is the max detection range of the Memphis by the Seawolf (this time you can ignore
attenuation)?
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Miscellaneous Questions

12. If P(D) = 75% and P(FA) = 1%, what is the probability that you will miss a detection of an actual
contact?

13. Is a passive sonar system a correlator detector or an energy detector?

99.9999 4

99.999 4 7
LAUA AL
99.99 7 7 4 4 "

29.9 Ve s

338 >/ y 4 V4 A
99.5 Ly 74 7
99.0 r/ o

1Y 7
90.0 / /.

A
50.0 y

p (D), percent

10.0
5.0 va

2.0 £
1.0
05

0.2 2
o1 Z
0.01 /

0.001
0.0001

; 0001 | 010,052 | 10 | 30,50,70, 90 98,995 | 99,99 |
00001 Q.01 0.2 1 5 20 40 680 80 95 99 999 99999
p (FA), percent
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Passive Sonar Wrap Up Exercise

Passive Sonar Wrap Up
Exercise

And Exam Review

Data

The two submarines described below are to engage in a sonar detection
exercise off the coast of Kauai. Use the following data for all questions.
(Note: all numbers are made up and do not reflect reality.)
USS Memphis (Target)
— SL of sub 180 dB in band from 100 Hz to 500 Hz
— Main tonal in band = 400 Hz due to sound short of 400 Hz generator
USS Seawolf (Attacker)
— Use hull array consisting of 50 hydrophones in groups of 4 spaced 30 m down
the side of the sub (consider as continuous line array)
Bandwidth of sonar suite = 400 Hz from 100 to 500 Hz
Integration time of sonar suite = 20 ms
Want P(D) = 90%, P(FA) = 0.2% assume ideal sonar processor
— NLself = 81 dB in band from 100 Hz to 500 Hz
Environment
— Sea State =1
— Shipping = light
— transition range = 14 Kyds

* Whatis the
detection index
required for

detection of the
Memphis by the
Seawolf?

p(D)=90%

p(FA)=0.2% LT

%, H
W wa B

Thi0. ) w0 )
sl W
Y-

Part 2

Part 3

» What are the angles for the nulls of the
Seawolf’'s 30 m long hull array (only give
from 0° to 90°)?

sinezm&
L

1500™

A== S —3.75m

¥ " a00mz

» What would be the detection threshold for
detecting the Memphis using passive
sonar?

—Bandwidth of sonar suite = 400 Hz from 100 to 500 Hz
—Integration time of sonar suite = 20 ms
18
DT =5log =5log| —————|=1.8dB
TAf 20x10™s 400Hz
2-element array continuous line array circular piston
defining parameters |  element separation distance - d array length - L. array diameter - D
beam pattern function cosz‘lﬂsmﬂ ZL[%smBJ
) = \a J D
75!"9
direcm/[i,[,y fndex 10 IDQZTL forL>> 4 10 |og\’%T forD>> 4
null angles ) smaz(z%
h(g) =0 sind= (m)é smd:(m]% 22122, 2.23, 324,424,
m=135, m=123,.. roots of J,(?slnlly‘:ﬂ
side lobes m"wu[w]
b(@)=1 sino=m SEIRANER i
B m=01,23 sind= y\%,‘ st =081
wherey =143, 2.46,3.47,4.48,
half power angles
b(8)=0.5 _n
( ;n sin, ’:Tl sing,, =0442% SMZW%
eaw:%ehp n=1357, L where w =1.64, 2.68,3.70,....
(only for beam about array axis)




Passive Sonar Wrap Up Exercise

The Angles

0= sinl[m%] = sinl[mczg—Sn:nj =sin™(0.125m)

0,=sin"(0.125(1))=7.2° 6 =sin"(0.125(5))=38.7°
0, =sin(0.125(2))=14.5° O, =sin*(0.125(6)) = 48.6°
0, =sin(0.125(3))=22.0° 0, =sin"(0.125(7)) =61.0°
0, =sin"(0.125(4))=30.0° O, =sin"(0.125(8))=90.0°

Part 4

» What is the Directivity Index for this 30 m
long array at the frequency of the principle
tonal?

DI =10log (&j :10|Og[2x30mj ~12dB
» 3.75m

Part 5

» What is the attenuation coefficient at the
frequency of the principle tonal?

0.1f2 40f2
+

1+f2 4100+ f2

a:{0.003+ +2.75><10’4fzj dB

kyd

fin kHz

1(0.4)°  40(0.4)
q:[0.003+0 (04) | _40(04) 2+2.75x10’4(0.4)zj =0.0184 dBkyd

1+(0.4)"  4100+(0.4)

Part 6

* What is the Ambient Noise Level (Sea
State and Shipping)?

f, = i, =+/(100Hz)(500Hz) = 223.6Hz

|
+ 1
120 =t T T i l l e
' ; - " ]

38

80

A

IV U
P
5
ZId

1
|

i

ES s [ & ISL, = 5508
= < #SL

Spechum et S8 em TP
a
A Y

=44dB

ship

Ambient Noise Band Levels

NL,, = ISL,, +10log (Af)=55dB +10log (400Hz) = 81dB

NLy,p = ISLy,;, +1010g (Af ) = 44dB +1010g (400Hz) = 70dB

NL = NL, @ NL,,,, =81dB @ 70dB = 81dB

Part 7

* What is the Total Noise Level?

NL =NL,,, © NLg

NL =81db ©81dB =84dB




Passive Sonar Wrap Up Exercise

Part 8

« If the Memphis were at 16,000 yds from
the Seawolf, what would be the
Transmission Loss (include attenuation)?

transition range = r, = 14 Kyds
TL = 20logr, +10log— +a(rx10°)
rO

16000
14000

TL = 20log(14000)+10log +0,(16000x10°) =83.7dB

Part 9
« If the Memphis were at 16,000 yds from
the Seawolf, what would be the signal-to-
noise level?
Lo =(SL—TL)—(NL—DI)
Lo :(180dB—83.7dB)—(84dB—12dB)
L, =96.3dB—-72dB = 24.3dB

Part 10

* |Is Memphis detectable? If so, what is the
Signal Excess?

L., =243dB > DT=1.8dB

SE =L, —DT =243dB-1.8dB = 22.5dB

TL=(SL-DT)~(NL-DI)=(180dB-1.8dB)—(72dB) = 106.2dB

Part 11

« What is the max detection range of the
Memphis by the Seawolf (this time you
can ignore attenuation)?

Lgy =DT =(SL-TL)-(NL-DI)

TL=20logr, +1OIogL =106.2dB
r

0
r

14000
r =2980kyds

TL =201log14000+10log =106.2dB




NAME

Passive Sonar Homework

Attacking Platform Data

A passive continuous line array sonar 40 m long receives signals in a one half octave bandwidth centered
on a frequency of 400 Hz.

The Integration time of the sonar suite = 2.0 s.

Want P(D) = 50%, P(FA) = 0.1% assume ideal sonar processor

ISL seif noise = 52 dB

Target Data
ISL target = 120 dB

All spectrum levels are constant in the range of frequencies in the sonar’s receiver bandwidth.
Environment

Wind Speed = 5 knots

Shipping = moderate to heavy (split the difference)

transition range = 5000 yds

1. What are the upper and lower frequencies in the half octave band and what is the band width?

2. What is the detection index required for detection of the target?

3. What would be the detection threshold for detecting the target using passive sonar?

4. What are the first three angles for the side lobes of the sonar’s 40 m long linear array (only give
from 0° to 90°)?

PSHW-1



5. What is the Directivity Index for this 40 m long array at the center frequency?

6. What is the attenuation coefficient at the center frequency?

7. What is the Ambient Noise Level (Sea State and Shipping) in the half octave band?

8. What is the Self Noise Level in the half octave band?

9. What is the Total Noise Level in the half octave band?

10. What is the Source Level, SL, of the target in the half octave band?

11. If the target is at 10000 yds, what would be the Transmission Loss (include attenuation)?

12. If the target is at 10,000 yds, what would be the signal-to-noise level?

PSHW-2



13. Is the target detectable? If so, what is the Signal Excess?

14. What is the Figure of Merit (this time you can ignore attenuation)?

15. What is the max detection range of the target (this time you can ignore attenuation)?

99.9999 4

99.999
TTUWTIATALUL
99.99 4 7 /’ 7 7 4

99.9 - s

338 S A p. 4 4 A
99.5 [y o
99.0 r/ o -
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A
50.0 y

p (D), percent

10.0
5.0 va
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1.0
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0.2 2
o1 Z
0.01 /

0.001
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10001 | 010]05;2 |10 |30,50,70; 90 , 98,995 | 9999 |
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Active Sonar Equation and
Projector Source Level

Active Sonar Equation

We are now going to shift from the case where a sonar system is designed to detect
acoustic energy emitted from a target but masked by the background noise of the ocean to the
case where the acoustic energy originates from our own sonar system, travels to the target and is
reflected back to our system (or perhaps another system). Active sonar functions in a manner
analogous to RADAR. The sonar system must act as both a transmitter and a receiver. Recall
the passive sonar equation,

Ly =SL-TL—(NL-DI)>DT

The equation tells us if the signal received at our detector in the bandwidth of our detector
divided by the noise received at our detector in the same bandwidth it greater than a threshold
ratio, we should be able to detect the target with some established certainty and some acceptable
probability of false alarms. The detection threshold is typically due to energy detection.

o=

r 1

-+

I{r)

TL

™y 6\-’
\5\1 &
o
?\é—J

Fig. 15.10. Diagram used in deriving the expression for target
strength.

For the case of active sonar, there must be a fundamental change to the signal terms.
Specifically, the source level refers to the source level of our projector. The transmission loss is
necessarily twice that of the passive case. Additionally only some fraction of the energy that
reaches the target is actually reflected back to our system. The passive terms SL-TL are replaced
by the terms SL-2TL+TS, where TS is called “Target Strength” and represents the ability of the
target to reflect energy. These terms are collectively referred to as the “echo level,” often
abbreviated, EL. With these alterations, the active sonar equation becomes:

Lgy =SL—2TL+TS—(NL-DI)>DT

Here the detection threshold is due to correlation detection.

16-1



Active sonar is more complicated than the passive case because as an emitter of acoustic
energy, our system adds to the background noise masking the reflected signal. This is
particularly true if there are other non-target items that reflect sound back to our system at about
the same time as the target reflection is detected. Possible sources of reflection are the surface
and bottom, fish, other biologics, air bubbles, and dust or dirt.

Ly =SL—2TL+TS-RL>DT

These reflections are in combination referred to as reverberation. The term that describes the
ability of these unwanted reflections to mask the target signal is called “Reverberation Level.”

The first active sonar equation is the case when the received noise level only limits the
detectability of the return reflection from the target. The second is used when reverberation of
the outgoing pulse, limits the detectability of the return reflection. We will discuss these
equations further during the next few weeks. Unfortunately, much like income tax calculations,
there is often no way to know which method to use until both calculations are done and we see
which is more limiting.

Projector Source Level

Before we delve further into the active sonar equation though, let’s start with a revisit and
redefinition of the source level term, SL. In the active sonar equation, the source level is no
longer the level of the contact or target, but rather the source level of the projector from the
active sonar system. This source level is the level (in dB re 1uPa) of the projector, 1 yard from
the projector.

To solve for the source level, we can start with the definition of passive source level:

I
SL=10log=*
ref
Substituting in the equation for intensity:

2
I _ p ms __ PWl"

lyd — -
pC Areaat lyd

where Area,, , = 4n(1 yd)’

so the SL becomes:
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We can substitute in the nominal values for the density and speed of sound of seawater
(psw=1000 kg/m® and csw=1500 m/s), knowing prer=1pPa and converting yards to meters we get:

(1000 kg/m*)(1500 ms)

4n(1yd)’ (0'9144 f%yd)z (1x10°® Pa)’

SL =10log(Pwr)+171.5 dB

SL =10log(Pwr)+10log

Within the sonar system, there is an efficiency at converting the electrical input power to the
acoustical output power and this can further modify our results where:
Pwr, =P.-E

acoustic

where E is the system efficiency thus:
SL=171.5dB+10log(P; -E)
SL=171.5dB+10log P +10log E

BUT, this is only for an omni-directional hydrophone. We must now account for the
directionality of our transducer.

Directionality of Transducer

Our latest result assumes that the active source is omni directional (all power is
transmitted equally in all directions.) An omni-directional transducer is nearly impossible to
build though and may not be the best option. To account for the directionality of the transducer,
we must add in a directionality term, DIy, the directivity index for the active transducer. The
directivity index is defined as it was for the passive sonar equation, the only difference is that the
intensities would now be the intensities of the active transmission from the transducer.

DI, ﬂOIogM
directional
A well known theorem in acoustics called the Principle of Reciprocity states as one of its
conclusions that under certain conditions the beam pattern b(6,¢) of a receiving array is the same
as that for a transmitting array. This means that the receiving directional properties of n-element
arrays, line arrays, and circular piston arrays will be useful in describing the directional
properties of transmitting arrays.

We can show that the source level of the sound within the main beams of the transducer
becomes:

SL=171.5dB+10logP. +10log E + DI,

Just as passive directivity index prevented us from listening to noise from unimportant directions
and effectively reducing the noise, transmitting directivity index prevents us from directing
sound into unwanted directions, effectively increasing the source level.
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Transducer Sensitivity

We next define transducer sensitivity. This quantifies the quality of the electro-acoustic
conversion. It expresses the relation between the input and output values of the transducer
(acoustic pressure to electric voltage).

SV =10log [:1—V} - 20log (pﬁ]

ref ref
Where pyy is the acoustic pressure 1 m away from the transducer in a given direction for a
voltage of 1 V.

2
For an input voltage of 1 V, recalling that electric power, P. = V? we get:
SL=SV =171.5-10logR; +10log E + DI

Where Rp is the real part of the input electrical impedance. Manufacturers typically use SV to
allow consumers to compare systems with the same 1 V input. To convert SV to actual SL,
simply add 20logV.

Acoustic Cavitation

The maximum transmission power is limited by two physical constraints:

1. If too large a voltage is applied to the transducer, it leads to a non-linear response of the
materials, followed by degradation and failure.

2. Limits of the propagation medium — cavitation.

Cavitation occurs when the local low pressure caused by the acoustic pressure wave causes gas
bubbles to form in front of the transducer, thereby limiting the electro-acoustic efficiency. The
bubbles act as little shock absorbers damping effect of the motion of the transducer face on the

surrounding water. This effect doesn’t occur when the acoustic pressure on the projector wall is
greater than or equal to pcay.

Pea = P +10%Z, Where z is depth in meters

In terms of power that causes cavitation:

2
o = Shﬁi, where S is transmitting surface
pC

Therefore:

SL, =186+10logS+DI+20log(10+2)
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Problems

1. Given the peak electric power of an active sonar system as 850 W, system efficiency as 27%,
Ino = 1, and Ip = 18, determine:
a) The Source Level?
b) The acoustic power level?

2. A sound projector is a plane circular piston of diameter 50 cm and operates at a frequency of
15 kHz with a power output of 2500 W. The speed of sound is 1500 m/s.
a) What is the source level of the projector on the beam axis
b) What is the plane wave rms acoustic pressure at one yard from the acoustic center (i.e. on
the beam axis)?

3. An acoustic homing torpedo transducer is a plane circular array of diameter 25 cm. It
operates at 15 kHz in water where ¢ = 1500 m/s. If the efficiency of converting electrical
energy into acoustic energy is 60%, and a source level of 220 dB is required, what must be
the electric power input?
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Lesson 16

Active Sonar Equation

L

]
1
TL

—
SL . m—— e
— =
Seurce p T

Fig. 15.10. Diagram wsed in deriving the expression for targel
strength,

qv

Adapting Passive ldeas

Passive Case: Lo :SL—TL—(NL—DI) >DT

Target Strength describes the fraction
of energy reflecting back from the target

From our Sonar L» TL+TL'~2TL
r-'::r-- — ."L-":_‘_fj'_'"'
/_/>: AT~

Ly =SL-2TL+TS—(NL-DI)>DT

Reverberation Noise

Reflections from non-target objects
is greater that noise.

Reverberation limited

RL >NL-DI

L, =SL—2TL+TS—RL > DT

Active Sonar — Materials

» Typical piezoelectric materials
— Quartz
— PZT -Lead zirconate titanate
— Barium Titanate

Piezoelectricity

Source Level for an Omni-
directional projector

2

| Pims Pwr
_ lyd l1 Ww=—_ =
SL=10log | pc  Area,

at1yd
ref 4

- nx where Area,,,,, =4n(1 yd )2

Pwr,
>
SL:]Olog[ ﬁn(l ¥d) J:lOlog Pwr-pe
(pz/ ] 4n(1yd) iy
_ pc

(1000 kg/m*) (1500 m/s)

4n(1 yd)’ (‘"9144 ‘%yd)z (1x10° Pa)’

SL=10log(Pwr)+10log =10log(Pwr)+171.5 dB




Lesson 16

Electrical Efficiency

Pwr,

acoustic

=PWrg e - E

where E is the system efficiency thus:
SL=171.5 dB+10log(P; -E)
SL=171.5dB+10logP. +10logE

Efficiency may range from 20% to 70% for most sonar applications

Directional Arrays

non-directional

DI, =10log

directional

Principle of Reciprocity

5(0,0), i =(0.6)

receiving Transmitting

SL=171.5 dB+10logP, +10logE + DI,

Transducer Sensitivity

How many dB for 1 volt input?

SV =10log| 1 | = 2010g| 2v
I Pret

ref

v?

P=

SL(@]V) =SV =171.5-10logR, +10logE + DI
A
Input impedance

Manufacturers typically advertise based on SV. To find SL, add 20logV.

Example

» Compute the source level for an circular piston
projector of diameter = 1 meter radiating 10 kW
acoustic power at a frequency of 15 kHz in water

SL=171.5 dB+10log P, +10logE + DI,

DY n(1m) :
pistonarray: DI, :1010g[“7] :1010g[7] =29.94dB

SL=171.5 dB+10log10* +29.94 dB=241.5 dB

Cavitation
4 .
Pressure Threshold Peay = Parm 71072 (z in meters)
[P
Power Threshold P. =S Pea S = Tranducer Surface Area

cav

2pC

SL,, =186+101logS + DI +2010g(10+ Z)




Target Strength

When an active sonar pulse is transmitted into the water, some of the sound reflects off of
the target. The ratio of the intensity of the reflected wave at a distance of 1 yard to the incident
sound wave (in decibels) is the target strength, TS.

I c
TS=10log| =+ [=10log| —
g[lij g|:475}

I = Intensity reflected from target

T

L.

1

Intensity incident on target

o = Backscattering cross-section

I; depends on the physical characteristics of the target and characteristics of the signal (angle and
frequency). The result in the square brackets comes from the fact that if all the energy reflects
from the target, the Power striking the target and the power leaving the target must be equal.

Lo =4nr’l,
The ratio of reflected to incident intensity is simply
I, o
1 4m’

where r is 1 yard. The backscatter cross section is a number that represents the degree to which
sound is scattered off a target. It is related to the size, shape and reflectivity of a target.

Can the quantity, target strength be solved for analytically? Yes, but only for simple
geometric shaped objects. We will present how this can be done for a convex object and a
simple sphere. For more complicated geometric objects, I have included a table from Urick,
Principles of Underwater Sound, which gives the formula to calculate the target strength for
many other shaped objects. For any irregularly shaped object, we may be able to model them as
a simple geometric object but for a precise value, we would have to use empirical data.

For analysis, assume that the incident wave is a plane wave (valid if source far from
target) and that the scattered wave is spherical originating from the target. I, is measured 1 yd
(or 1 m) from the target.

Target Strength of an arbitrary convex object

In the diagram below, let the surface area of the arbitrary convex surface be dA=ds;ds..
If the sound incident on the surface has an intensity, I;, then the power striking the surface is

dP =1Ids,ds, =1.R,dO,R,d0,

since ds=Rd6. The centers of curvature for the two sides of the surface are not in general the
same point.
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The pivotal question when examining the reflected intensity is what angles d0,” and d6,’
does the sound energy bounce of the surface into. Examination of the ray diagram below shows
that sound hitting the surface within an angle, 0, of the equator, bounce of the surface following
the law of reflection. As such the ray departs the surface with an angle, 20;, twice the incident
angle. We notice that the exiting rays appear to emanate from a point half way between the
center of curvature and the surface. In General Physics we called this a “focal point” and for a
spherical mirror we recall that it was located at one half the radius of curvature.

With this in mind, we identify the surface the energy leaving the surface must pass
through is

dA =ds|ds, =r2d6,r2d6, = 4r*de,do,
The reflected intensity is then:
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[ _dP _LRdOR,dO, IRR,
"TdA T 4r3de,de, 4r?

The resulting Target Strength follows from the definition:

LR R,

2
TS =10log| 2= | =1010g| —4° :101og(R1—%2j :101og(&j
I; I r r=lyd 4

i i

As a special case, let us look at a simple rigid sphere. In this case, Rj=R,=a, the radius of the
sphere. The Target Strength then becomes

a2
TS=10log| —

Let’s see if this result makes physical sense.

Target Strength of Simple Rigid Sphere

Case I: (ka>>1 {or ka > 10} or in other words, when the radius of the sphere is much
larger than the wavelength of the incident wave.)

If the rigid sphere is
large compared with the
wavelength of the incident
sound wave and the sphere is
....................... I an isotropic reflector (reflects

""""" > sound equally in all
8 directions), we can use the

diagram at right:

reflected wavi

The power of the
incident wave incident wave that will be
""""""" reflected is that power of the
wave incident on a cross-
section of the sphere where:

P = Iiﬁa2

where o = nta’

Since the power of the incident wave is all reflected back, we find that:
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power reflected = power incident

Pr = Pi

IT4nr2 = Iina2
L _a®

L 4r*

Then using the definition of target strength, we find:
2
TS=10log T = 10log 2
L |
1 r=lyd
2

a
TS =10log—
£

This is exactly the same result we obtained above as a special case of an arbitrary convex
surface. Note that the above target strength result is independent of frequency (as long as
ka>10). Target strength just depends on the radius, a. For a 1 cm radius rigid sphere,

0, =2.5x107 m” and TS=-46 dB. A 2 m radius sphere however would have a TS= 0 dB. This

simple approximation is only meaningful for high frequencies where the wave effects can be
averaged. For lower frequencies (longer wavelengths), the wave effects must be taken into
account.

Case II: (ka<l)

When the wavelength of the incident wave is large compared to the size of the sphere,
some of the wave will appear to continue past the ball as if it did not exist. There will actually be
very little backscattering. This case, Lord Rayleigh showed that:

2772 2
II_T = %{%cos@—l}
where:

V = volume of the sphere
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180° 0°

For the target strength, p=-1 (cos 180° = -1, straight backscatter) and r = 1 yd. The above then

becomes:
Tszlomg{(ka)“ [%j[a]z}

=0, = 47'5%1(48.6

For Case I, one of the major assumptions was that the entire cross-sectional area (o) contributed
to the backscattering of the incident sound energy. For this case, the ratio of the effective
backscattering cross-section to the geometric cross-section would be:

c

= =2 8(ka)’

. =
ma

Notice that o/ma® increases very rapidly with frequency (oc f ), therefore target is barely

detectable when size is much smaller than the wavelength. As frequency increases there is a
limit to Rayleigh scattering:
ka = 2ma =1
A

Occurs when A=2ma

Case IlI: If 1<ka<10

For this exceptional case, we can use the plot given below which was taken from Urick,
Principles of Underwater Sound, p. 299. This plot shows the ratio of the backscattering cross-
section to the geometric cross-section as a function of ka, which can be used to calculate a value
for the target strength. Target response in this range is dominated by interference between
reflected wave and “creeping waves” refracted around the surface of the sphere.
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—
—
=

2

1072

S
o
_\-

Ratio of backscattering fo geometric cross section o/mra

/

Q. | 10 100
ka = 2ma/A = circumference /wavelength

Qo
4

Fluid Sphere

Spherical target is no longer ideally rigid, therefore in the Rayleigh regime:

c? o T
cb5=k4a6 l_ P _— P2 =Py
3 3pyc; 2p,+p

p,,c, = density and sound speed in water

p,,C, = density and sound speed in target

When p,>p; and c,>c), therefore oy approaches that of ideal rigid sphere. When p,<p; and
co<cj, Ops is dominated by the compressibility of the sphere:

P 2
o, =k*a’ [—plclz}
3p,¢;
obs 18 much higher than for a rigid sphere of the identical radius. For example, the target strength
of an air bubble is 75 dB higher than the target strength of rigid sphere with same radius.
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Scattered Gas Bubbles

Backscatter of gas bubbles in sea water is widely studied because of the important
acoustic implications. Air bubble clouds can create undesirable reverberation from the sea
surface. Gas bubbles are also present in sediment and are an essential component of seafloor
backscattering. Effects of random populations on the acoustic propagation and backscattering
are difficult to predict accurately other than statistically. Gas bubble acoustic behavior is
dominated by resonance. For frequencies near the resonance frequency (fy depends on bubble

size), backscattering and absorption are enhanced;

a3

cTbs = 2 2
f,
[(Oj -~ 1} +8°
f
f, = resonant frequency
d = damping term
Resonant frequency can be approximated as:

£ = 21 P 32 o1,
ma'\ p, a

p,, =1000 kg/m’
P, = hydrostatic pressure in Pa (z 10° (1 +0. lz))

z = depth in meters

v = adiabatic constant for air (= 1.4)

Damping effect is due to the combined effects of radiation, shear viscosity and thermal
conductivity. A good approximation is & = 0.03 >’ for 1 kHz<f, <100 kHz, where f is the
frequency in kHz.

Fish Target Strength

Main contribution for fish target strength comes from the swim bladder. This gas-filled
bladder shows a very strong impedance contrast with the water and fish tissues. It behaves either
as a resonator (frequencies of 500 Hz-2 kHz depending on fish size and depth) or as a geometric
reflector (> 2 kHz). This swim bladder behaves very similar to gas bubbles. The difference in
target strength between fish with and without swim bladder can be 10-15 dB.

A semi-empirical model most often used is:
TSy, =19.1logL+0.9log f, —24.9

Love (1978)

This formula is valid for dorsal echoes at wavelengths smaller than fish length L.
A more detailed model is:
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TS, =20log LTS,
McLennan and Simmonds (1992)

TSpec 1s given in Table 3.1 of Lurton, p.77. Note the lowest TS is for mackerel which has no
swim bladder. As frequencies approach the resonant frequency around 1 kHz, the target strength
increases and can reach -25 to -20 dB.

For many other geometric shapes:

Use the tables given at the end of this lesson. Below are the equations and definition of
terms for a cylinder.

Scattering from Cylinders

Dimensions (L,a) large
compared to wavelength

TS=10log [ﬁj(smo‘)z cos” 0
2N a ) (1ydy TS:IOlogHa_LZJ ! 1
27l — 21 ) (1yd)’

o=——sin®
A

Conclusion

One of the main points of this section is that it is extremely difficult to get an accurate
value for the target strength of a complex target but, if we can approximate the target as a simple
geometric shape, we can calculate a value that sould be sufficient.

For the wavelengths that we typically use for active sonar systems though, a rough
approximation that can often be used is that the target strength will be directly related to the
cross-sectional area of the target.
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t Direction of .
Form TS=10l0g(t) Symbols incidence Conditions
ajap = principal
radii of
Any convex aa, curvature Normal to ka, ka, >>1
surface 4 r = range surface r>a
k =
2m/wavelength
2 .
a a = radius of ka>>1
Large Sphere ) sphere Any >a
2 V =vol. of
Small Sphere 61.7V—4 sphere Any ka<<l
A _ kr>>1
A = wavelength
Infinitely long | ar a = radius of Normal to axis | ka>>1
thick cylinder | 2 cylinder of cylinder r>a
Infinitely long | 9n*a’ a = radius of Normal to axis Ka<<1
thin cylinder 22 f cylinder of cylinder
L = length of
£ cylinder Normal to axis
0 a = radius of of cylinder Ka>>1
Finite cylinder cylinder ri L
. 2 — : f
al? (S V cos?p |27 radiuso At angle 6 with
B cylinder normal
20 B =kLsin0
- - 2
Infinite Plane | r° Normal to plane
surface 4
_ At angle 0 to 2
Rectangular abY ( sinp ’ 2 a,b t s1(lies of normal in plane r>a’h
Plate Ky cos"f | rectangle containing side kb>>1
p B =ka sinf . a>b
2 a,b,c= . ka, kb, kc
Ellipsoid Ej semimajor axis g ?r;llel to axis >>1
2a of ellipsoid r>>ab,c
2 = 1 f
Circular Plate n_azj(ﬂ ! (B_)] cos’ 0 glatzadms ? At angle 6 to r>a’/k
A B B = 2kasind normal ka>>1
. 4\ 46 a = radius Perpendicular
Circular Plate gj k'a K= 27//\ to plate ka<<1
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Problems

1. Johns Hopkins Applied Physics Lab is researching active, mine mapping sonar. The sonar
they are using uses a frequency of 40 kHz. The mines they are trying to detect are spherical balls
that are 1.4 m in diameter.

Which of the following is true:

a) The TS of the mines can be approximated using the large sphere formula
2

(TS = IOIOg%) since ka>>1.

b) the TS of the mines can be approximated using the small sphere formula
2

(TS= 1010g{61.7%]) since ka<<1.

c) The target strength of the mines does not depend on the frequency of the sonar system.
d) Lower frequency sonar should be used to get better spatial resolution of the mines.

2. If the target strength of the mines in problem 1 is found to be —9.1 dB, what would be the
intensity of a return wave if the incident wave had an intensity of 21 W/m*?

3. What would be the best approximation of the target strength of a submarine that is 300
meters long, and 30 meters in diameter? Assume the frequency of the active sonar is 40 kHz.

4. Given a sphere of radius 1.0 m in water (¢ = 1500 m/s) for what range of frequencies is the
sphere considered to be
a) A “large perfectly rigid” sphere (corresponding to specular or geometrical scattering).
b) A “small fixed rigid” sphere (corresponding to Rayleigh scattering).

5. A modern torpedo is roughly 65 cm in diameter and 6 m long. An active sonar of frequency
20 kHz 1s used to measure the target strength when ¢ = 1500 m/s. For each case take r =
1000 m.

a) Why is range, 1, given in this problem?

b) If from the beam aspect, we consider the torpedo to be a cylinder, what target strength is
expected.

c) If from head-on we take the nose to be spherical, what target strength is to be expected?

6. The first teardrop shaped submarine was USS Albacore, shown below at its museum site in
Portsmouth NH.
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Image courtesy of the Historic Naval Ships Association

Consider USS Albacore to be an ellipsoid of length 68 m and diameter 9.0 m at the midpoint.
Calculate the target strength for active sonar at a beam aspect.

7. A sound beam of frequency 15 kHz is being used to search for a thick rectangular flat plate
with dimensions 5.0 m x 3.0 m dropped from an oil rig at a depth of 100 m. Calculate the

target strength of the plate:
a) Atnormal incidence, and
b) At an angle of 30° from the normal in the plane of the longer axis of the plate.

8. Given a sphere of radius 0.20 m in seawater where ¢ = 1500 m/s, use the below figure to

determine:
a) The ratio of backscattering to geometric cross section for 10 Hz, 100 Hz, 1000 Hz, 10 kHz.

b) The target strength for frequencies of 10 Hz, 100 Hz, 1000 Hz, 10 kHz.

10

| / A

UUU

107

102

T

oL
Ol | 10 100
ka = 2ma/A = circumference /wavelength

Ratio of backscattering to geometric cross section o /a2
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9. An acoustic pulse has an intensity of 10 W/m? incident 100 m from the center of an
underwater target. The intensity of the 180° reflected pulse has an average intensity of 3.16
uW/m?* also measured 100 m from the target center. If spherical spreading is the only
transmission loss, find the target strength of the object. Hint: EL =SL —2 TS - +TS
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Lesson 17

Target Strength
TS=10log (I_rJ & =scattering cross section
Ii
Atr=1yd. e l ) Ié
lo=4nr’l, <
TS=10log| — | =10l ij
Og(4nr2 ] °d [41‘5

Factors Determining Target Strength

the shape of the target

the size of the target

the construction of the walls of the target
* the wavelength of the incident sound

the angle of incidence of the sound

Target Strength of a Convex Surface

Incident Power R, a0,
dP = I,ds,ds, ds
: de,
dP = I,R,d0,R,,d0, ds, .
1

Large objects compared to the wavelength

| _ 9P _IRdOR,08, IR
" dA  r2der2de, 4r?

Reflected Intensity

ds, =r2de,

dA =ds,ds, =r2de,r2de,

B

TS=10log (IT'

] (Atr=1m)

ds.
TS=10log (@j '

Special Case — Large Sphere

R,=R,=a
TS=10l0g( & —20Iog(3] g
B 4 ) 2 '

TN

Note:

s al Large means
ey circumference >> wavelength
o = ma’ ka>>1

TS positive only if a > 2 yds

Large Spheres (continued)

:—' =2 lrz [naz +ma’ cot® (g]Jf (kasin 6)]
; o1

e erons sechion oot
7

180°

g

st of backseaitering 1o geome




Lesson 17

Example

* Anold Iragi mine with a radius of 1.5 m is
floating partially submerged in the Red Sea. Your
minehunting sonar is a piston array and has a
frequency of 15 kHz and a diameter of 5 m. 20
kW of electrical power are supplied to the
transducer which has an efficiency of 40%. If the
mine is 1000 yds in front of you, what is the signal
level of the echo. Assume spherical spreading.

Scattering from Small Spheres
(Rayleigh Scattering)

1 _mV [
[
TS=10 Iog[

2
gcose—l)
2

25

ﬁ(ka)a az}

ka <1

Petc, of backacailerin Io qeomeiric eroas saction o wo?

(LR S P e —

Scattering from Cylinders

Dimensions (L,a) large 0
compared to wavelength

2 i 2 2
TS=10log [ﬁj(—sma) oo ‘2
2 )\ a ) (1yd)
a=2LLsin9
A

al?) 1
—0° TS=10log|| =
6=0 9{(27\](1”)2}

ad

Gas Bubbles

+5°

f, = resonant frequency
& = damping term

° 2ra Pu

p., =1000 kg/m®

P, = hydrostatic pressure in Pa (5105 (1+0.1z))

z = depth in meters

1SR 3% o
a

y = adiabatic constant for air (~1.4)

» Damping effect is due to the
combined effects of radiation,
shear viscosity and thermal
conductivity. A good
approximation is

& ~0.03f for 1 kHz<f, <100 kHz

« where f, is the frequency in kHz.

D -
S Fish

. lI;/Iain contribution for fish target strength comes from the swim
a

« This gas-filled bladder shows a very strong impedance contrast with
the water and fish tissues. It behaves either as a resonator (frequencies
of 500 Hz-2 kHz depending on fish size and depth) or as a geometric
reflector (> 2 kHz). This swim bladder behaves very similar to gas
bubbles. The difference in target strength between fish with and
without swim bladder can be 10-15 dB.

« A semi-empirical model most often used is:

TS =19.1log L +0.9l0g f, —24.9

Love (1978)
This formula is valid for dorsal echoes at wavelengths smaller than fish
length L.

A A

= 2Kasing

t
Form Ts=10l0g(0) Symbols Direction of incidence | Conditions
a,a, = principal radii of
aa,
Any convex surface - o Normal to surface f:; ke, >>1
k = 2n/wavelength
Large Sphere 37 a = radius of sphere Any ‘:j:’l
v? V =vol. of sphere ka<<l
Small Sphere 617 = wavelength Any ot
Infinitely long thick ar a = radius of cylinder | Normal toaxis of ka>>1
cylinder 2 = 4 cylinder r>a
Infinitely long thin or'a’ a=radius of cylinger | Normal oaxis of (<
cylinder z cylinder
a’ L = length of cylinder | Normal to axis of
22 a=radius of cylinder | cylinder -
Finite cylinder i
2(SiNB/Y et — radi ; -
() costo | a=reciusofcyinder | angle 0 with normal
——L—— | p=kisino
2
Infinite Plane surface ’7 Normal to plane
Rectangular Plate (abY(sing} ab = sides of ractangle | At angle 6 to normal in L;iﬂi
9 \\7/ e "0 | g kasing plane containing sidea | 7
- (beY a, b, ¢ = semimajor axis N ka, kb, ke >>1
Ellipsoid \E\ ofelipsoid parallel to axis of a P
o 2 _ 2
Circular Plate (= j L}im) costg | &% adius of plate Atangle 0t nomal | £> ¥+




Lesson 17

Example

« What is the target strength of a cylindrical
submarine 10 m in diameter and 100 m in
length when pinged on by a 1500 Hz sonar?

TS

Example

» What is the target strength of a single fish
1m in length if the fish finder sonar has a
frequency of 5000 Hz?




Scattering and
Reverberation Level

When an active sonar pulse is transmitted into the water, some of the sound reflects off of
the target. Additionally, there are many other sources where the sound energy may reflect off
back towards own ship. This scattering is caused by the many sources of inhomogeneities in the
ocean. These sources may include fish, other biologics, air bubbles, dust or dirt as well as the
ocean bottom, and surface.

There are two types of reverberation. The first is volume reverberation. This is caused
primarily from biologics spread throughout the ocean. The second, surface reverberation, occurs
at the two surfaces within the ocean, the surface and the bottom.

Calculating reverberation is a very difficult process that depends on many assumptions
and requires that many factors be known. The reverberation level, RL, is calculated by
comparing the unwanted reflected intensity to the reference intensity:

RL =10log —Irleverb

ref

What we will do is be given an equation for each type of reverberation that satisfies the
above relationship and use that to calculate the reverberation level.

Volume Reverberation

As stated previously, volume reverberation is the scattering of the active pulse back to
own ship from biologics spread throughout the ocean volume. The biologics are not spread
evenly throughout the ocean depths. Since the biologics are sensitive to light, the depth that they
are most prevalent at will vary with the time of day. Additionally, the amount of scattering that
occurs due to the biologics will vary with frequency of the active pulse. Last section we showed
a model for the target strength of a fish which depends on the frequency.

To calculate the volume reverberation level, we can use the following equation:

RL, =SL-2TL+TS =SL—-40logr+S, +10logV

false targets

Hopefully this equation reminds you of the equation for the echo level from an actual target
presented in section 16. The source level and the two way transmission loss are the same as the
echo level. The target strength of the false targets is made up of two terms:

TS =S, +10logV

false targets
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where:

S, =10logs, = Volume Scattering Strength

cT )
V= ?‘I’r2 = reverberation volume

Y= Jb(@, ¢)b’'(6,¢)dQ = equivalent solid angle of arrays
based on type of arrays

r = range to the target in yards

T = pulse length

Some explanation of the reverberation volume is in order. Physically, it is the volume of
water around the actual target that contains false targets like bubbles and fish. Few active sonars
transmit continuously, instead transmitting a pulse of known length. Even an explosive charge is
of a finite duration. This pulse expands out from the source in an approximately conically
shaped beam. The beam pattern function, b(0,9), studied in section 13 gives the exact shape of
the cone. Additionally, the sound must travel back to the array and we call the return beam
pattern, b’(0,0). When the outgoing and incoming beam patterns are integrated over all angles,
the result is the solid angle, 'V, of the cone. The units of solid angle are steradians and 47
steradians correspond to a solid angle covering all directions. The area intercepted by a solid
angle is:

Area = ¥r?

area b
1 unit square _ ;

=~ 1 steradian

radius
1 unit

\\\l‘ ’/,
As a check, note that for all directions, the area is 4TI:I‘2, the surface area of a sphere. To get a

volume of water, multiply this area by the thickness required by the pulse length.

) cT
thickness = ?
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An interesting artifact regarding volume

. ct
reverberation results because the range, r(t) = 5

Because of this, volume reverberation decreases

with time proportional to 20 log( !

Most commonly, the volume scattering
strength, Sy, will be determined from a graph
based on the source depth and the time of day
(night or day). An example from Principles of
Underwater Sound, by Urick, p. 258 is shown at

right.

We pointed out that reverberation volume
is related to the volume of ocean that is ensonified
by the active pulse and is based mostly on the
beam pattern function of both the receiver and the
transmitter (b and b"). The mathematics of
calculating this solid angle are very challenging.
As such, the value for the equivalent solid angle,
P, can be looked up in a table of values based on
the type and dimensions of the array as well as the
wavelength of the active pulse. An example table is given below for several type arrays.

200

¥

(=]

o
I

Depth, yd

600 -

Night

ssseess Day

1 I 1 L
-100 -90 -80 =70 -60

800

Volume -scattering strength, dB
fig. 8.13 Profiles of S, against depth showing vertical mi-
gration. Frequency 5 kHz. The column scattering strength
was —54.5 dB during the day and —50.5 dB at night.
(Ref. 26.)

ARRAY TYPE

Y(steradians)

®(radians)

Circular Plane of Diameter

D

2
0.60(ij
D

43

Horizontal Line of Length

L

=

=

Non-directional Point Array

4r

2

Caution: Remember to use a wavelength A and the dimension D or L in the same units!

Notice also in the equation for the reverberation level that the level depends on the source
level of the projector. The more sound energy that is put out in the water, the more sound energy
will be reflected back to the receiver. The result is that increasing SL will increase both the echo
level and the reverberation when reverberation limited. The transmission loss will be the same
for both the target and the false, reverberating targets. When reverberation limited, the active
sonar equation always results in a comparison between the target strength of the actual target and
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that of the false targets. If the difference exceeds the detection threshold, active sonar detection
is possible.

L, =SL—2TL+TS—RL > DT

Lgy =SL—2TL+TS—(SL-2TL+TS )>DT

false targets
TS—(S, +10logV)>DT
Surface Reverberation Level

Surface Reverberation is due to sound waves scattering back from the surface of the
ocean as well as the bottom of the ocean. We will concentrate on calculating the effect due to
reverberation from the surface but the student must understand that in very shallow water, severe
reverberation levels may exist due to the presence of so many surfaces for the sound to reflect
off. That is why the effectiveness of active sonar is severely restricted in shallow waters.

The equation for surface reverberation level is very similar in for to that for volume
reverberation:

RLg =SL—-40logr+S, +10logA
S¢ =10log s, = Surface Scattering Strength

cT )
A = — ®r = reverberation area

D= Jb(O, ¢)b’(0,¢)d¢ = equivalent beamwidth of arrays

based on type of arrays

The equivalent beamwidth is similar to the equivalent solid angle only the integration is
only over the horizontal angle, ¢. Instead of performing this integral, the beamwidth can be
looked up from the table above. Multiplying the beamwidth by a range to the target gives an
arclength near the target. Multipling by the factor ct/2 gives the appropriate area on the surface
around the target

The Surface Scattering Strength can be found from a graph such as the one below. Note
that grazing angle is used in this chart and that 90° is straight up and results in the highest surface
scattering strength as expected. Also note that as the wind increases, the sea surface becomes
rougher and allows for a more diffuse reflection back to the source and a higher surface
scattering strength. A lower wind speed results in a calmer surface and more specular reflection
away from the source. In this case the surface scattering strength is relatively low.
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fig. 8.18 Variation of sea-surface scattering strength at 60 kHz with
angle at different wind speeds in Dabob Bay, Puget Sound, Washing-
ton. (Ref. 38.)

Principles of Underwater Sound, Third Edition, Urick, 1983, p. 265

Surface Scattering Strength also depends on frequency, therefore you will have different graphs
for different frequencies.

We can also have surface reverberation from the ocean floor. Bottom reverberation is
very complex due to variations in composition, roughness and grazing angle. We can
approximate the reverberation however as:

RL, =SL-40logr+10logS(r)+BS,
Where:

cT T
S(r)=0—
@) 2 sin0

0 = Bottom Grazing Angle

BS, = Backscatter Strength for 1 m* of seafloor

Consequences of Reverberation

Reverberation acts like noise, but some differences from ambient noise:
- For a given transmission, the level of reverberation received decreases with time (although

more slowly than the target echo).

- Spectral characteristics of reverberation and signal (target echo) are nearly identical except
for the Doppler Effect (described in the next section). If the target is moving at sufficient
speed the reverberation and the target will reflect different frequencies since bubbles and fish
are moving at slow speeds.

Volume Backscattering Strength

Volume backscatter of a distribution of targets can be analyzed as the incoherent sum of
contributions from each target in an average m’ of water. For a given frequency, each

18-5



contribution will depend on the size and shape of each member (shape is not important if the
object is smaller than the signal wavelength) and of the composition of the material. If all
scatterers are similar, therefore backscatter cross section is expressed for a certain frequency as a
function of the dimension, a.

If we assume all targets are identical, therefore:

BS, =TS+10logN,

N, is the average number of targets per m’.

Fish Schools

Fish schools are variable in shape and size (usually a couple of meters vertically and tens
of meters horizontally). Fish schools are usually of one species, therefore similar size and shape
(and hence target strength). If we assume fish density,

Im

N . z% L is fish length
L

= TSy #20logL -25
= BScoor = TSpigy +1010g N,

BS¢nooL =—-25+20logL—10log I’
BSqcnooL = —25-10logL

As we can see the BS decreases as fish size increases. These models and assumptions
with the proportionality of backscatter strength and target strength form the basis of the echo
integration method to assess fish school population. The number of fish present in a given area
is estimated by the total energy backscattered to the source corrected for average target strength.

Deep Scattering Layer (DSL)

DSL is a thin layer of ocean (tens to thousands of meters) of ocean populated with
plankton and other small biologics. The DSL can be found in all oceans and its depth changes
with time of day. In the daytime, the layer stays at 200-600 m and at night this layer migrates to
approximately 100 m. The main acoustic effect is caused by resonance of fish swim bladders
(for frequencies in 1-20 kHz range). This frequency dependence changes with depth migration
due to pressure effects. At higher frequencies, >20 kHz, the dominant acoustic effect comes

from the scattering of plankton with an average BS ~ —70 dB/m’.
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Problems

1. A non-directional transducer has a source level of 200 dB and radiates 10 kHz pulses of 100
msec duration. The transducer is operating in a deep scattering layer at a depth of 800 ft at a
classified location somewhere between Hawaii and California. See the figure below for the
volume scattering strength. If the sound speed is 1528 m/s
a) Find the volume reverberation level for a target range of 5000 m and a day time
operation.
b) Repeat for a night time operation

Volume Scattering Strength
(Pacific Ocean - Classified Location)

500 / a
1000 /
—e—Da
1500 .y
—— Night
2000 T/
2500 r=e

3000 ‘ ‘
-110 -100 -90 -80 -70 -60

Volume Scattering Strength (dB)

Depth (feet)

2. A Transducer consisting of a horizontal line array of length 3.0 m radiates 1000 Watts of
acoustic power in the form of pulses. The carrier frequency is 50 kHz, the pulse duration is 20
msec and the sound speed in the ocean is 1528 m/s. It is known that the wind speed at the
surface is 8 knots. The radiated sound beam impinges on the surface with an average grazing
angle of 10°.

a) Use the Figure in your course equation sheet and find the surface scattering strength S, in dB.
b) Calculate the surface reverberation level at a distance of 500 m.
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3. Given the following data for an active sonar search under conditions known to be volume
reverberation limited. The sonar search is performed at night.

Plane Circular Transducer Array, Diameter = 1.2 m

Search frequency = 5 kHz

Pulse duration = 15 ms

Sound speed = 1528 m/s

Spherical spreading only, sound absorption can be neglected.
Target strength = 18 dB

Target is in a deep scattering layer at a depth of 200 yards
(use chart for S, in your course equation sheet)

Detection Threshold is 5 dB

a) Find the predicted maximum detection range.
b) Compute the volume reverberation level if the Source Level is 210 dB.

4. The SSN, USS Killerfish is using its active sonar to search for a target aircraft carrier. The
following information pertains to the tactical situation:

Wind speed = 10 knots
Sound speed = 1528 m/s
Transmission loss is only due to spherical spreading (TL =20 log r)
Sonar pulse length = 20 ms
Carrier frequency = 60 kHz
Effective two way beam width is calculated for a circular plane array
Diameter = 1.0 m
Acoustic Power = Electric power x efficiency = 1.0 kW
The sonar’s receiver is a cross correlation type
p(D) =50%
p(FA) =0.02%
Sonar receiver bandwidth = 100 Hz
Sonar beam grazing angle is 20° with respect to the horizontal
Aircraft carrier target strength = 15 dB

a) Compute the maximum detection range that the sub can detect the surface ship. Assume

the sonar is surface reverberation limited.
b) Compute the surface reverberation level at the maximum detection range.

18-8



5. A mine of average aspect lies on a sand bottom. It is desired to detect the mine at a slant
distance of 200 m by means of an active circular array located 100 m from the bottom. If a pulse

length of 10 msec is used,

= =)
~__ \1077 _USSC. Hun,’Vf_ —_

-

j 2
~
’
’
&
’ b
<%
©

; % e .
a) What horizontal effective beam width (¢, given in radians) will be required if the sonar is

bottom reverberation limited and the detection threshold is +2 dB?
b) What is the minimum diameter of the circular array needed to detect this mine?

Useful information:

Backscattering strength for 1 m” of sand bottom
0 a .

-10 /

)

Z-15 | -
3o /
-

_30 1 |
n an 60 90

Sound speed = 1528 m/s

TL=201logr

Sonar frequency = 20 kHz

The mine is a sphere with a radius = 0.60 m

Bottom backscattering strength for a sand bottom is given in the below figure.
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6. Given the following data:

Environment
c=1500 m/s
wind speed = 10 kts
Sonar
Circular plane array D = 1/3 m, f= 10 kHz, =5 msec
SL=217.5dB
DT=5.0dB
Beam Axis is steered to 30° above the horizon
Operating in a region where the sonar suite is surface reverberation limited
Target
TS=15dB

Use all data tables and graphs in this handout.

Compute the maximum range that the submarine could detect a surface ship.
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Lesson 18

Adapting Passive ldeas

Passive Case: Loy :SL—TL—(NL—D|)>DT
From our Sonar L» TL+TL'~2TL

2 ~_

Target Strength describes the fraction

Lg/n =SL—2TL+TS—(NL—DI)> DT

of energy reflecting back from the target

Reverberation Noise

Reflections from non-target objects
is greater that noise.

Reverberation limited

RL > NL-DI

L., =SL—2TL+TS—RL>DT

Reverberation

Fig 13-} Schematic disgram of wolums reverberatioa competing with the echoes scatteved off ths targe sub

Sources of Reverberation Backscatter

« Fish and smaller biological marine organisms
« Entrapped air bubbles
« Microthermal structure Volume
« Velocity microstructure Reverberation
« Variations in the characteristic impedance of
the medium (e.g. dust and dirt)
« Surface — air-water interface Surface
« Ocean bottom Reverberation

Solid Angle

dA = ds,ds, = rdo,rde, o
ds, / r
Since  ds=rdO s,
Similarly dA = r?dQ m
l
Solid Angle

Units are Steradians

There are 4x steradians in all directions

Developing a Volume Reverberation Equation —
Beam forming and Traveling to the Target

Isource = Isb(ev ¢)

source'o

Liureel2dQ = 1(r) r?dQ
r,=1yd

(1) = Lol 220

Spherical Spreading




Lesson 18

Developing a VVolume Reverberation
Equation — Scattering Strength

Iscattered = I(r)SvAV
2
Iscattered = ISb(erilzq))rostv
AV =r’ArdQ

Scattering Strength — fraction of energy backscattered

How thick is the VVolume?

AV = r2ArAQ

AV_rZC—;AQ

Developing a VVolume Reverberation
Equation — Scattering Strength

_Lb(0.9)r%

2 v

AV
AV = rZC—ZTAQ

_1b(0,9)7

rZ

serEAQ
2

Developing a VVolume Reverberation
Equation — Traveling Back to Receiver

Isb(6,¢) r2
=05
r

.‘—--‘ scattered

VrZEAQ
2

scatter o

rZdQ=1(r)r’dQ

[

| |(r) — sca:;r [

4
I(r)= 7|5b(?;¢) o 5,17 %AQ

Developing a VVolume Reverberation
Equation — Receiver Beam Pattern

4
I UT) L v
r 2

Recewed b (e ¢) scattered

( )15

receea = D' (6, ¢)

serEAQ
2

Reverberation Level - Volume

5 RLy, :1OI09M:10|09M

ref ref

IRecevv ,LL
va| 4{ Hbe¢ e¢dg}

lOIog[lRi eeeee ] lOIog[ Ej+10|og[ J+lolog( )+1olog{rzgﬂb e¢)b(e¢)dg}

-

RL, =SL +40log GJHO log(s,)+10log [VHSL—zTL +10log(s, ) +10log[V] ‘




Lesson 18

Take a deep breath
RL, =SL-2TL+10log(s, )+10log[V]

S, =10log (SV) Volume Scattering Strength (dB)

ZCTHb (0,0)b'(6,0)d2=yr* < 2

Vol

Equivalent two way beam width —
V= ”b (6.4)b'(6.4)dQ Equivalent solid angle of the
Vol sending and receiving array

Volume Scattering Strength

S, =10log(s,)

Diurnal Migration

P T T—"

Shrimp-like euphausids, squid and copepods
Fish (gas filled swim bladder) — freq differences a

Higher frequencies — zoo plankton, phytoplankton
fed on by small pelagic fish =
(siphonphones and cephlopods)

—

woal . " —

Collectively called the DSL e T

(Deep scattering layer) A s o st g v
v =348 B during the day and —30.3 4N = might
iRef. 26

Equivalent two way beam width

w=[[b(6,0)b(0,4)d>
Vol

ARRAY TYPE Y(steradians) d(radians)

Circular Plane of Diameter 2\ 2
0.60(4) 1.56(*)

D D =

Horizontal Line of Length 1 p
1.32[7] 1,32[7)

L L L

Non-directional Point Array 4n 2n

Caution: Remember to use a wavelength A and the dimension D or L in the same units!

Reverberation Noise

Reflections from non-target objects
is greater that noise.

Reverberation limited

RL > NL-DI

Fig. 111, Disgram wsed im deviving the peverberarion fevel for nolume

Ly, =SL—2TL+TS—RL >DT

Reverberation Level - Volume

| I

s [eS o 04100

Lt Vol

4
o

RL, =10log I’EI‘*‘”“ =SL-2TL+10log(s,)+10log[V]
ref

S, =10log (SV) Volume Scattering Strength (dB)

,rzﬂﬂb (6,6)b'(6,)dQ = yr

Vol

2 CT
2

Equivalent two way beam width —
Equivalent solid angle of the
sending and receiving array

v =[[b(6.0)b(6,0)d2

Vol

Volume Reverberation Case

Ly =SL—2TL+TS—RL >DT
RL, =SL-2TL+10log(s,)+10log[V]

Ly = 7(. 2)/L+Ts 7L—2)/L+10|og(sv)+10|og[v])>DT

L, =TS-10 I(T)g(sv)—lolog[\T/] >DT
,CT

V=yr
Ay

Graph
Equation Sheet e
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Volume Reverberation Example

« Given the following data for an active sonar search under
cgnrﬁiitions known to be volume limited. The search is held at
night.

— Transducer array ifs a circular plane with diameter = 4 feet
— Search Frequency is 5 kHz
— Pulse Duration is 15 ms
— Sound speed is 1670 m/s
— Spherical spreading only
— Target Strength = 18 dB
— Depth =100 fathoms
— Detection Threshold =5 dB
* Find the predicted maximum range
 Find the Reverberation Level if the Source Level is 210 dB

Volume Scattering Strength

S, =10log(s,)

Diurnal Migration

P T T—"

Shrimp-like euphausids, squid and copepods v
Fish (gas filled swim bladder) — freq differences a

Higher frequencies — zoo plankton, phytoplankton
fed on by small pelagic fish
(siphonphones and cephlopods)

i

asDmy

Collectively called the DSL we B e

Deep scattering layer P n:" "”:_M...:,f..
( P glay ) m_",“:‘“""?“ 0.8 ﬂ"‘«x

iRef. 26

Equivalent two way beam width

v=[[b(6.0)b'(6,4)d>
Vol
ARRAY TYPE Y(steradians) O(radians)
Circular Plane of Diameter p) 1
0. 60( ”] 1.56(*)
D D =
Horizontal Line of Length 1 p
1.32[7] 1,32[7)
L L L
Non-directional Point Array 4n 2n

Caution: Remember to use a wavelength A and the dimension D or L in the same units!

Reverberation Level - Surface

RL. =10 |Og Ireverb =10|Og ITot received
S

ref ref

ooy _ L [%Tue,w(w
ref Areg

RLg =SL+40log [%)ﬂolog(sA)ﬂOIog[A]%SL—ZTL +10log(s,)+10log[A]

A= lDrc—T Surface Scattering Strength
2
Equivalent beam width of the
= J' b(9,¢)b’(9,¢)d¢ sending an receiving array in radians

Area

Surface Scattermg Strength

Olog(s
» Varies With:

o T T T
g..o_r_!. ..._Biﬁnle |- — Wind Speed
g | vt 1030 wone — (surface
£l = | roughness)
§ / /r_’p | - Grazing
5 %,/ R ‘; Angle
/- Spe4ular| |l |
E'mf.‘ 10 20 ] 40 50 &0 0 &0 20 9
Gearing enge, deg

M.:llﬁ}»mmmndfm surface scaltering drength at 60 kHx with
angle at different w mnmasm:-' t Seund, W,
pulhory speeds uget Sound, Wasking-

Equivalent two way beam width

v = jjb(e,¢)b'(e,¢)d§z

Vol

ARRAY TYPE (steradians) ®(radians)
Circular Plane of Diameter % 2
0.60[7] mH
D D D
Horizontal Line of Length 2 2
1.32[—) 1. 32( ”]
L L
Non-directional Point Array 4n 2n

Caution: Remember to use a wavelength A and the dimension D or L in the same units!
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Surface Reverberation Case

L., =SL—2TL+TS—RL>DT
RLg=SL-2TL+10log(ss)+10log[A]

L =SL-27L+ TS (SL-2FL +1010(s, ) + 10l0g[ A]) > DT

Loy = TS—10I?g(sS)—1O log [?] >DT

CT
Graph A=0r—
/ 2

Equation Sheet

Surface Reverberation Example

« Environment

¢=1500 m/s
wind speed = 10 kts
Sonar
Circular plane array D = 1/3 m, f = 10 kHz, t=5 msec
SL=2175dB
DT=5.0dB
Beam Axis is steered to 30° above the horizon

Operating in a region where the sonar suite is surface
reverberation limited

« Target

TS=15dB

« Use all data tables and graphs in previous slides

Chqmpute the maximum range that the submarine could detect a surface
ship.

Misc. active sonar design ideas

Display — BTI — polar or cartesian
N N

- 3 T
) gh=S
bearing 2




Name:

Active Sonar Wrap-up Exercise

(Everyone should attempt to do the following problems and
we will go over them in class.)

1. You are on a new Seawolf class submarine with the sonar system and the environment
described below. Calculate the max range for detecting another submerged submarine given the
following for both the noise-limited and reverberation-limited cases:

Environmental Data
¢ = 1500 m/s,
Wind Speed = 6 kts
Shipping = heavy
Assume TL is only due to spherical spreading; neglect attenuation losses

Submarine’s Sonar Data:
Linear Array =3 m long
frequency = 10 kHz
bandwidth =5 Hz
pulse length = 10 ms
Maximum Input Electrical power to transducer 1200 W
Active Sonar system efficiency — 28%
DIr=16dB
DI =16dB
desired p(D) = 90%
desired p(FA) = 0.01%
assume ideal processor
NL3e|f =45 dB

Target Data (adversary):
TS=20dB
depth = 300 ft @ night
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2. Your ship uses active sonar in an attempt to locate a friendly 688-class submarine operating
near the surface 22,000 yds away. Given the following: transition range = 12,000 yds, « = 1.08
dB/kyd, SL =273 dB, NL =72 dB, DI =10 dB, RLo =63 dB, TS =14 dB and DT = 16 dB,
determine the following showing all calculations: (Note that attenuation is a consideration in

this problem.)
a) The strongest type of reverberation would most likely be:

volume reverberation /  surface reverberation

b) One-way total transmission loss (TL)?

¢) Signal-to-noise level (L) received?

d) Signal excess?

e) Can your ship successfully detect the 688 sub?
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Active Sonar Wrap Up Exercise

Problem #1

* You are on a new Seawolf class submarine with the sonar system and the
environment described below. Calculate the max range for detecting another
submerged submarine given the following for both the noise-limited and
reverberation-limited cases:

Detection Threshold

LA A AT A ]
C S A d=26

HoA d
DT =10log [—}

Environmental Data
- ¢=1500 mis,
~ Wind Speed = 6 kis
— Shipping = heavy
~  Assume TL s only due to spherical spreading; neglect attenuation losses

s 2TAf

Submarine's Sonar Data:
- Linear Array = 3 m long
~ frequency = 10 kHz

10, peonr

- bandwidth =5 Hz 26
~  pulse length = 10 ms DT =10log| ————————— | = 24.1dB}
— Maximum Input Electrical power to transducer 1200 W 2(0.010s)(5Hz)

Active Sonar system efficiency — 28%
DI, =16 dB
DI =16 dB

— desired p(D) = 90%

desired p(FA) = 0.01%

assume ideal processor

- Niself=45d8
¥ a7 ) 0 | 30|50,70| 10 | SR | BAW L
« Target Data (adversary): " & 4 a0 B0 04 U 099 N
- Ts=20dB B AFAL parcant

- depth =300 ft @ night

Volume Reverberation Case Volume Reverberation

—

Ly =SL—2TL+TS—RL>DT ]

RL, =SL—-2TL+10log(s, )+10log[V]
Ln =SL-27L+ TS—($L - 2L +10l0g(s,) +1010g[V]) > DT
L, = TS-10log(s, ) ~10log[V] > DT

Ly =20dB—(~76dB)-10log (V) > 24.1

,CT

V=yr®—]
A

10log (V) =71.9dB

Reverberation Volume Noise Limited Case

V:107'19:\|/rzci Lg/n =SL72TL+T87(NL7D|)> DT
2
_c_1500m/s 2 15m SL=171.5dB+10logP. +10logE + DI,
h= = Tosoor = 015m v :1.32&) :1.32(3—mj =0.066
SL=171.5dB+10log (lZOOW) +10log (.28)+16dB =212.8dB
o, (1500m/s)(0.015)
V=10"" =0.066r' ~——FH—~—+~ NL=NL,, ®NL,,,
r=5600m NL,, e =36+10l0g(5) = 42dB

NL = 4508 ® 42db =10log (10*° +10**) = 46.8dB




Active Sonar Wrap Up Exercise

Noise

—— 120

Sectrum tevel, uE e 1 B0

Finding the Range
Lgy =SL-2TL+TS—(NL-DI)>DT

212.8—40logr + 20—(46.8—16) =24.1

40logr=177.9

r=28000m

Problem #2

Your ship uses active sonar-in.an attempt to locate a friendly 688-class
submannerqperaung near the surface 22,000 yds away.
Given the following:
— transition range = 12,000 yds,
— =108 dB/kyd,
-~ SL=273dB,
— NL=72dB,
- DI=10dB,
- RL,=63dB,
- TS=14dB
— and DT =16 dB,
«+ determine the following showing all calculations: (Note that attenuation is a
consideration in this problem.)
— The strongest type of reverberation would most likely k be

« volume reverberation</ surface reverberation B
One-way total transmission I6ss (TE)?—————
Signal-to-noise level (LS/N) received?

Signal excess?

Can your ship successfully detect the 688 sub?

Transmission Loss

é] + a(rxlO’a)

TL=20logr, +10 Iog[

2208§J+1.08db/kyd(22kyd) ~108dB

TL =20log12000+10 Iog(

Noise/Reverb
NL-DI = 72dB _10dB — 62dB Neither is more significant
RL, =63dB Noise = 62dB ® 63dB = 65.5dB

Signal Excess

Lgy =SL—2TL+TS—NOISE > DT

L, =273-2(108) +14 - 65.5=5.5dB > 16dB

Not dedectable at 22000 yds

SE =L, —DT =5.5dB—16dB = —10.5dB




Names: Section:

Active Sonar Homework

All data given purely for test purposes and do not necessarily reflect reality.

You are on a deep submergence vehicle searching the ocean floor for a Russian torpedo that was
lost at sea. You have lost electrical power in your DSV and the Mother Ship is searching for you
with the active sonar described below to recover you before you run out of oxygen.

Environmental Data: Active Sonar Data:
Wind speed = 6 kts Circular plane/piston array radius=2.4 m
Shipping - Heavy 6 = 0.2 radians
Assume TL is only due to Operating frequency = 25 kHz
spherical spreading; neglect Bandwidth =5 Hz
attenuation losses Pulse length = 6 ms
During daytime NLser = 15 dB
P(FA) = 1%
DSV Data: P(D) = 75%
TS=+1.0dB (Assume ideal receiver)
Depth = 1500 feet, 2500 feet above Efficiency = 90%
ocean floor Pe=750 W

Beam axis can be steered from 30° above to
60° below the horizontal

1. What is the directivity index of the mother ship’s active sonar’s array?

2. What is the Detection Threshold?

3. What is the Volume Scattering Strength for this daytime rescue?

ASHW-1



4. What is the maximum detection range if the active sonar system is reverberation limited?

5. Find the projector source level of the Mother Ship’s active sonar?

6. What is the reverberation level if the Mother Ship is 8,000 yards from the DSV?
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7. What is the total Noise Level due to both ambient and self noise?

8. Is the Mother Ship’s active sonar reverberation or noise limited if range is 8,000 yards?

9. Calculate the surface reverberation level if the Mother Ship transmits such that grazing angle
with surface is 40° and range is 6,000 yds?
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Doppler Effect

The Doppler Effect is the change in the observed frequency of a source due to the
relative motion between the source and the receiver. The relative motion that affects the
observed frequency is only the motion in the Line-Of-Sight (LOS) between the source and the
receiver.

Relative motion of the receiver.

If a source is stationary, as the one below, it will emit sound waves that propagate out
from the source as shown below.
As the receiver moves
towards the source, it will detect
the sound coming from the source
but each successive sound wave
will be detected earlier than it
would have if the receiver were
stationary, due to the motion of

relative motion of
eceiver

LOS the receiver in the LOS. Thus the
V\ frequency that each successive
wavelength wave front would be detected

would be changed by this relative
motion where:

A, 1s the original wavelength of the source
Af is the change in the observed frequency

v, 1s the velocity of the reciever in the LOS

Since the original frequency of the source can be expressed in terms of the wavelength where

f, = % , the observed frequency becomes:
0

f'=f, + Af
fr= 4V
}\’0 }\’0

f,:fo(c+vrj
c

Note that this equation only works if the relative velocity of the receiver, v, is towards the
source. If the motion is away from the source, the relative velocity would be in the opposite
direction and the equation would become:
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Relative motion of the source

If the source is moving towards the receiver, the effect is slightly different. The spacing
between the successive wave fronts would be less as seen in the diagram below. This would be
expressed as:

v, is the relative velocity of the source

To calculate the observed frequency: 0
L c
(Ao +AL)
fr=f, ( ¢ ]
c—v
S e
motion of

Note that this is only when the source is moving towards the source

receiver. If the source is moving away, the equation would be
changed to:
c
t' =1,
c+v,

When combined with the previous result, the equation would be expressed as:

. C
f =f0(c$v j

Notice that this time, the plus/minus symbol is inverted because the sign on top is to be used for
relative motion of the source towards the receiver.
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Doppler Equation

By combining the previous results, we can derive one equation to use as the Doppler
Equation. This is usually expressed as:
, ctv
f'=1,| —=
cFv,

The student must be careful that the quantities for the velocity of the receiver, v, and the
velocity of the source, v, are only the magnitudes of the relative velocities in (or along) the
LOS. In other words, the component of the velocity of the source and the receiver, that are
perpendicular to the LOS do not change the received frequency. Secondly, the top sign in the
numerator and the denominator are the sign convention to be used when the relative velocities
are towards the other. If the source were moving towards the receiver, the sign to use in the
denominator would be the minus sign. If the source were moving away from the receiver, the
sign to use would be the plus sign.

Active Sonar Problem

One interesting Doppler problem is the active sonar problem. In this problem, one must
define a “source” and “receiver” for both the outgoing active pulse and the returning signal.

For the outgoing active pulse, the Doppler shifted frequency of the active pulse when it

hits the target would be:
+
£ =1, ( =V )
cFv,

For the return pulse, there would be a similar shift but now the “source” would be the target, the
“receiver” would be the ship sending out the original active pulse and the base frequency, f
would be the Doppler shifted frequency from above. If we redefine the velocity of the target as,
vi, and the velocity of the source of the active pulseas v, we get:

+
fn:ff(c:vs]
cFv,

Substituting in the equation from above for f and changing the subscripts for the appropriate

terms:
£ _f cEtv, |[ cEv,
=f,| — —
ctv, Jlctv,

Again, the velocities are only the magnitudes of the velocity in the LOS and one must take care
to pick the correct sign to use in front of each velocity.
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Problems:

1. A surface ship is traveling on a course of 045°T and is conducting an active sonar search.
The sonar frequency is 4 kHz. At the same time a submarine is located on a bearing of
060°T from the surface ship. The submarine is traveling due north (000°t at a speed of 10
kts. The surface ship is traveling at 15 kts. (Useful information: ¢=2950 kts)

a) What is the frequency that the submarine receives?

b) What is the frequency of the active return from the submarine?

c) If the submarine emits a strong tonal at 415 Hz, what is the frequency received at the
surface ship?

d) Assuming that there is a large school of shrimp near the submarine, what is the frequency
of the active return from the school of shrimp? (Assume that the shrimp are not moving.)

2. A US submarine is trailing a new Afghani diesel submarine to gain tonal intelligence on the
Afghani sub. Both subs were going 5 knots on course north when the Afghani sub turns due
west.

a) If the tonal the US sub was originally tracking was 250Hz, what is the received frequency
after the Afghani sub turns?

b) If the US sub goes active with a frequency of 18,000 Hz to get an exact range on the
Afghani sub, what is the frequency of the received return?

3. A sound source emits a sound frequency of 1000 Hz on a day when the speed of sound in air
is 340 m/s and there is no wind. What is the frequency you will receive if:
a) You move toward the source at 34 m/s?
b) You are stationary and the source moves towards you at 34 m/s?
c) Repeat part a) with a speed of 68 m/s instead of 34 m/s.
d) Repeat part b) with a speed of 68 m/s instead of 34 m/s.

4. Two submarines are moving as shown in the figure, where the speeds are in knots. The
speed of sound in knots is 2912 kts. Sub A is pinging on B with an active sonar frequency of
10 kHz.

A

= =

10 kt 30 kt

a) What frequency will Breceive from A’s sonar?
b) What is the frequency of the echo A receives from B?

5. Ship S is on course 045 T with speed 30 kts. Target T is on course 330 T with speed 10 kts.

S uses active sonar to ping on T with frequency 10 kHz. The speed of sound is 3000 kts.
When T is due east of S (as shown in the below sketch):

19-4



a) What frequency will T receive from S?
b) What will be the echo frequency that S receives back from T?
c) What is the frequency of the reverberation received by S?

. A phantom jet flying at an altitude of 5 km is directly behind and closing at a horizontal
range of 10 km from the carrier. The jet is tracking the ship with an active radar unit of

source frequency 400 MHz. The jet’s speed is 200 m/s parallel to the ground. The ship
cruises at 10 m/s. If the speed of light is 3 x 10® m/s,

5 km

10 km

a) Compute the radar frequency detected by the aircraft carrier.
b) Compute the echo frequency detected by the jet.
c) Compute the Doppler shift between the echo and source frequency.
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Lesson 19

Doppler Effect

[ ' ),

(a) At rest

Doppler Effect — 4 cases

« Source moving toward receiver
* Source moving away from receiver
* Receiver (observer) moving towards source

« Receiver (observer) moving away from
source.

Source moving case

Crest emitted
when source
was al point |
Crest emitted
when source
was at point 2

Soure o )- Ak W 3.} P
d,=gT
(a) (b)
AN=A-v,T
A
Away: c=— A =x7v5%=x(17%)
T

Receiver (observer) moving

case
Towards:
, C+V, \A
:_:hl.l / A /‘)_'\ i LSS
/ Away:

Source and receiver moving

l¢£ CF+ v
c

Vv
1+~
frf| —C :f{CiV'j

« Numerator — Receiver (observer)
— Toward +
— Away —
* Denominator — Source
— Toward —
— Away +

Doppler Example

« Intelligence tells you that a particular piece of
machinery in the engine room of a Soviet Victor IlI
submarine emits a frequency of 320 Hz. Your
sonar operator hears the machinery but reports
the frequency is 325 Hz. Assume you have
slowed to a negligible speed in order to better
hear the Russian.

— Is the VIII coming toward you or moving away from
you?

— Assuming the Victor is either moving directly toward or
away from you, what is his speed in m/s?
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Line of sight diagrams
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Example

« A ship moving north at 20 kts pings on a target (that
bears 030 and is) moving east at 10 kts. The source
frequency is 4000 Hz and the sound speed is 3000 kts.

— What is the frequency received by the target?
— What is the echo frequency received by the ship?

— What is the doppler shift of the echo received by the ship relative
to the ship’s source?

— What is the frequency heard by reverberation near the target

— What is the echo frequency received by the ship from
reverberation?

— What is the doppler shift of the echo received by the ship from
reverberation relative to the ships source?




