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Definition of capacitance

If charge Q is moved from one conductor to another, an electric field develops

between them, resulting in a potential difference ∆V. If a small Q results in

a large ∆V we say the system has a small capacity for holding charge. If it

takes a large transfer of charge to get appreciable ∆V we say the system has a
large capacity for holding charge. This forms the basis for our definition of
capacitance C, defined as follows,

The unit of
capacitance is
Coulombs per Volt

The ratio we have defined as capacitance depends on geometry and, as we will 
explore later, the material between the two conductors. Capacitors are used to
store electrical energy and as filters in electrical circuits. They are especially 
useful in applications where electrical energy needs to be delivered quickly. 
Examples include flashbulbs and the new railgun technology where batteries
and generators cannot meet this demand.

Parallel Plate Capacitors: The first example is also one of the most practical as 
examples of it are found in nearly every piece of electrical equipment ever made!
Imagine two uncharged parallel conducting plates that are arranged with their large 
areas parallel and held a distance d apart as shown in the diagram. Charge Q is 

transferred from the bottom plate to the top resulting in a potential difference ∆V.  
Assuming d is very small compared to the dimentions of the plate allows us to assume 
a constant electric field between the plates and potential difference,

 ∆V = Ed

Now recall that the electric field on the
surface of a conductor is given by,

E = σσσσ/εo
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Writing Q = σA, we now have all the pieces to compute the capacitance.

As a numerical example let's calculate the plate area of a 1 Farad parallel plate 
capacitor with 1 mm plate separation.

Since 10.6 km equals 6.6 miles, you might conclude that 1 Farad capacitors 
cannot be made. This is not true as modern materials and clever designs have, 
just within the past several years, made 1 Farad capacitors small enough to 
swallow, though not recommended by this author.

Assuming square plates, how long is one side of this plate?

Spherical capacitor: While not as practically useful, this case is interesting and 
can be easily be computed.

Depicted in the diagram are two concentric
spherical shells. If positive charge, Q is 
moved from the inner sphere to the outer
sphere an E field and potential difference 
develops between them where,
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An interesting special case: Let rb go to infinity and then we are dealing with an 
isolated charged sphere with radius ra. In the expression above the 1/rb term 
goes to zero.  This leaves,

and can be interpreted as the capacitance of an isolated sphere. To get a 
numerical example let's again compute the size of a 1 Farad capacitor

The radius of the earth is only 6.4 x 106 m, so a 1 Farad sphere would be  
humongous and is not seen in captivity!

Capacitor combos.  Capacitors as circuit devices are often needed with values 
that are not manufactured.  It is usually possible to combine capacitors to get 
the required design.  Two important rules are devloped.

Capacitors in parallel are connected so that they have the same potential 
difference. If we imagine two capacitors connected in parallel, what's the 
equivalent capacitance of the pair?

If we close the switch S, charge flows out of 
the battery and stores in the two capacitors. 
Charge only flows a short time in this circuit 
because the gaps in the two capacitors 
prevent charge flow across them. The 
capacitors get full. 

If we imagined a black box with these two 
capacitors inside, we'd measure the 
capacitance of the box as the charge Q 

extracted from the battery divided by ∆Vab 
between the terminals of the box, which 

equals the battery emf, ε.

When charges get to the branch point A, in the drawing below, some go to C1

and some go to C2. From conservation of charge we can say,
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So the equivalent capacitance in the black 
box is simply the sum of the two capacitors 
in parallel.

Capacitors in series are connected so that they have the same charge. If we 
imagine two capacitors connected in series, what's the equivalent capacitance of 

the pair?  A charge q going clockwise around the circuit picks up energy qε going 
through the battery and loses energy qE1d1 through C1 and qE2d2 through C2. 
From conservation of energy,
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Note: Two capacitors in series have an equivalent resistance smaller than either of 
the constituent capacitors. Proof,

Since capacitance is always positive the quantity in parentheses above is always 
less than one. Therefore,

Same argument for

Capacitor network analysis.  Find the equivalent capacitance of the three 
capacitor network.

Let's find the charge and voltage on each cap. Rewrite the circuit as,

where Cs is the series equivalent of C1 and C2.
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Now find the charge and voltage on each capacitor in this example. 

Cs and C3 each have 10 V across them, so use the definition of capacitance 
to get the charge on each.

Now use the fact that caps in series have the same charge to find V1 and V2;

We didn't have to do the last calculation. Why?

Energy storage in capacitors.

To obtain the energy stored in a 
capacitor we will calculate the work 
required to move charge from one 
plate to another in a parallel plate 
capacitor.

Consider a small amount of charge dq, moved from the bottom plate in the depicted 
capacitor to the top plate. The bit of work required to do this is,

Now use the definition of capacitance to write,

and integrate to get the total work to charge the capacitor. This is the energy 
stored.
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Energy in electric fields. Using the result above and our expression for C in a 
parallel plate capacitor, we can make a statement about the energy contained in 
the electric field.

but (Ad) = volume between plates

which we define as energy density, uE

This is a pretty fundamental statement! It means this thing we made up to 
explain how one charge feels the force of another, the electric field, actually 
contains energy.  Who knew!?

Capacitors with Dielectrics

Now let's consider what happens when there is a dielectric (non-conducting) 
material separating capacitor electrodes.

We see that the original E field between the plates is reduced by the 
induced charges in the dielectric since Eo and Einduced point in opposite 

directions.  We use a dimensionless constant called the dielectric constant κ 
to relate the new E field to the original field Eo.
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Enet = Eo + Einduced



There is a table of dielectric constants in your book. Some values are,

What happens to capacitance when we place the dielectric between the plates? 
We'll resort to the definition,

Capacitance gets bigger by κ when a dielectric fills the region between
the plates. We make an effectively bigger capacitor.

What happens to energy stored in the capacitor when a dielectric is 
placed between the plates? Recall,
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and use the fact that Q doesn't change

So, the energy stored in the cap goes down.

where Uo is the energy in the capacitor without dielectric.  U is the 
energy in the capacitor after a dielectric is placed between the plates



Dipoles: We can interpret the above by looking on the microscopic scale at the
response of the dielectric material to the electric field in the space between plates. We defined 
a dipole in an earlier blurb as equal and opposite charges separated by some distance. An 
electric dipole moment p is a vector defined by p = qd where d is the displacement vector from 
negative to positive charge as represented in the following diagram. 

Now, suppose we put this dipole in a constant electric field and note the 
force on each of the changes.

We can see clearly that the net force is zero but the dipole will experience a net torque 
that tends to align the dipole with the electric field.  We see the torque about point O 

caused by the each charge is ½qEd sinθ, producing a net torque about O of, qEd sinθ. 

Since the rotation for the depicted dipole tends clockwise, the torque is into the page, 
which also happens to be the same direction as p x E. Comparing the result above for 
the magnitude of the torque on the dipole we see that it exactly matches the magnitude 
of this cross product. So, in general, we can write the torque on a dipole in vector form 

Potential energy of an electric dipole in an electric field. If we now rotate the electric dipole 
depicted above counterclockwise we can get the work invested back by releasing the
dipole and collecting the kinetic energy.  Thus, the energy invested corresponds to 
potential energy and we can write,



So U represents the potential energy of an electric dipole in an electric field where it 

is understood that U = 0 at θ = 90°.




