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Counting, Probability, and Statistics
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Basic Probability Theory

We define a sample space as a list of all possible distinct outcomes of an experiment.
Suppose we label the result of the first outcome as x1, the second as x2, and so on up to xN if
there is an exhaustive total of N mutually exclusive outcomes. (For the moment, we are
supposing that the number of possible outcomes is finite and definite; later we will generalize to
continuous variables that have an infinite number of different outcomes.) By “exhaustive” and
“mutually exclusive” we mean that one and only one listed outcome occurs each time the
experiment is performed such that all possible outcomes are included in the sample space and
two outcomes cannot occur simultaneously. We label these results in general as xi where i runs
from 1 to N. For example, xi might represent the number of heads you get when you toss three
pennies simultaneously (in which case {x1 = 0 , x2 = 1 , x3 = 2 , x4 = 3}  would be an organized
way to list the sample space). These outcomes are in general not equally likely. We wish to work
out the probability pi that the result of the experiment is xi. What we mean by this is that if we
repeat the same experiment a very large number of times, the fraction of times that we get result
xi will approach pi ; it would become exactly pi in the limit that the experiment were repeated an
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infinite number of times. From this, we deduce the following operational definition of
probability. Suppose we conduct an experiment some large number of times, say n times. If the
number of times we obtained result i was ni, then pi = ni / n . (Strictly speaking, pi is only
approximately equal to ni / n . The equality is exact only in the limit as n→∞  which we cannot
of course achieve in practice.) Notice that

ni
i=1

N

∑ = n ⇒ pi
i=1

N

∑ = 1 . (1)

We call the set of values 
 
{p1, p2,…, pN }  the (finite) probability distribution and Eq. (1) is the

normalization condition.
For example, if we draw one playing card from an ordinary shuffled deck, the probability

that it will be the two of diamonds is 1/52. More generally, if all N outcomes of some experiment
are equally likely, then every outcome has the same probability 

 
p1 = p2 = = pN = 1 / N .

Clearly Eq. (1) is satisfied in this case.
Next suppose we toss a coin. If the coin is a fair toss (the coin is not “loaded” nor thrown in

some fashion that predisposes one face to preferentially land up, and rare events such as landing
on edge are excluded) then there is a probability of 1/2 of getting heads (h) and a probability of
1/2 of getting tails (t). If we now toss the coin a second time and list out the sample space for the
set of two tosses, we get {hh, ht, th, tt} where the first letter in any paired entry indicates the
result of the first toss and the second letter that of the second toss. Since each of these 4
outcomes is equally likely, each has a probability of 1/4. We notice that 1 / 4 = (1 / 2) × (1 / 2)
which we state in words as: The probability of any outcome for two coin tosses is the square of
the probability of any outcome for one coin toss. This equality is a special case of a general
principle. Suppose pA is the probability that some event A will occur, and pB if A is the probability
that some event B will occur if event A has already occurred. Then the probability that A occurs
followed by B is just the product of the two individual probabilities, pApB  if A . For example,
suppose there are 5 black balls and 10 white balls in a bag. We draw one out at random and then,
without replacing it, draw out a second ball. What is the probability that the first ball is white and
the second ball is black? The probability of drawing a white ball the first time is 10/15. The
probability of subsequently drawing a black ball is 5/14, because there are 14 balls left and 5 of
them are black if we drew a white ball out first. Thus the overall probability is
(10 /15) × (5 /14) = 5 / 21 . On the other hand, if we return the first ball to the bag before drawing
another ball, then the probability of getting a black ball on the second try is independent of what
color ball we got on the first try and we write pB  if A = pB . Thus the probability of getting first a
white ball and then a black ball is now (10 /15) × (5 /15) = 2 / 9 , which is a little smaller than
5/21.
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As an aside, the probabilities in this example assumed that we drew the balls out of the bag at
random. Needless to say, it is very difficult to decide when some event really is random. For
example, consider a purported “random number generator” that is supposed to randomly output
digits between 0 and 9. It outputs the following sequence: 162056966024058038150193511. Is
this sequence of digits random? In fact, it’s not; I simply copied it from the beginning of the 18th
line of the first 100,000 digits of π from the website
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html. Examples of this sort will
probably convince you that it’s extremely difficult to tell if some events are truly “random” or
not; in fact, the preceding sequence of digits is probably as good as true “randomness” for most
practical purposes. This is an interesting philosophical issue, but we do not have time to pursue it
further here. We will just assume that randomness is possible and that in practice events such as
flipping coins and drawing cards from a shuffled deck are close enough to random that we can
declare their outcomes to be equally likely. (The standard Copenhagen interpretation of quantum
mechanics presumes the concept of randomness when one considers Schrödinger’s cat, two-slit
interference, the Einstein-Podolsky-Rosen paradox, and similar ideas.)

Returning now to our example of coin flipping, each toss is independent of the others, and
hence the probability of getting any particular sequence for two subsequent tosses (such as ht) is
pApB = (1 / 2) × (1 / 2) = 1 / 4 . By a “sequence,” we mean that we distinguish the order of the two

coin tosses, so that ht and th are distinct results. Another way to get such a sequence would be to
toss two coins simultaneously (rather than flipping one coin twice in a row) provided we can
keep track of which coin is which. (For example, one coin might be a penny and the other a
dime. Or we might flip one coin with our left hand and the other with our right hand. One way or
another, we can label one coin as “A” and the other as “B” and always keep track of which is
which.) Clearly there is a one-to-one correspondence between sequences resulting from flipping
one coin n times and those resulting from flipping n distinguishable coins simultaneously.

On the other hand, if we cannot distinguish the n coins tossed simultaneously (or
equivalently, if we do not keep track of the order of the results when we flip one coin n times),
then the best we can do is count the number of heads and tails. For instance, suppose I have four
quarters, one of which is painted green, one blue, one red, and one yellow. I throw them up in the
air and catch them. An example of a sequence is: the green coin is heads, the blue is tails, the red
is tails, and the yellow is heads. But the count is 2 heads, regardless of whether I can distinguish
color or not.

Now suppose we are interested in determining the probability of getting a certain number of
heads when we toss a coin n times. For example, there are only three possible counts for two
coin tosses: x1 = 0  (zero heads which can only occur for sequence tt), x2 = 1  (one head which
occurs for either sequence th or ht), and x3 = 2  (two heads which only arises for sequence hh).
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The probability of any outcome is equal to the sum of the probabilities of the sequences
contributing to that particular outcome. Thus the probability of tossing a coin twice and getting
zero heads is p1 = 1 / 4 , that of getting one head is p2 = 1 / 4 +1 / 4 = 1 / 2 , and that of getting
two heads is p3 = 1 / 4 . Notice that the sum of the probabilities of all possible counts must equal
1, because that is the sum of the probabilities of all possible sequences by our normalization
condition in Eq. (1).

In general then to determine the probability of getting a certain count, we need to determine
the number of possible sequences that correspond to any given count. This is called the number
of combinations. For example, if I flip n coins, in how many different ways can I get r heads?
(We assume that 0 ≤ r ≤ n  if this question is to make sense.) We denote this number of
combinations by C(n,r) . Other common notations for this quantity are nCr  and (nr) . (Note that
fixing the value of r corresponds to getting exactly r heads and n − r  tails.) In order to calculate
this number, we first calculate a related value called the number of permutations of n objects
taken r at a a time. This is denoted as P(n,r)  or nPr . For example, suppose the objects are the
first six letters of the alphabet {A,B,C,D,E,F} and that I want to form all distinct three-letter
words (whether grammatical or not!) with no repeated characters, so that n = 6  and r = 3 . The
first letter can be any of the n choices, so there are n ways I can select it. Now for the selection of
the second character, only n −1  letters remain, so I have n −1  choices for it. Proceeding
similarly, I continue until I come to the selection of the final character, i.e., the rth letter in the
word, for which there are n − r +1 choices.

Exercise: By considering the preceding alphabetical example of n = 6  and r = 3 , enumerate
explicitly the number of ways you have of choosing each character in a word. In particular,
convince yourself that the number of ways of choosing the last character is equal to n − r +1 and
not to n − r .

We multiply together the number of ways of getting each character to get the total number of
permutations (for exactly the same reason that we multiplied pA and pB if A above to find the
probability of getting event A followed by event B), so that

 

P(n,r) = n(n −1)(n − 2)(n − r +1)

=
n(n −1)(n − 2)(1)
(n − r)(n − r −1)(1)

=
n!

(n − r)!
(2)

where in the second step I multiplied and divided by the product of the numbers from n − r
down to 1 in order, and in the last step I introduced the factorial notation.

Exercise: Suppose that you are restricted to the first 4 letters of the alphabet. List out all possible
2-letter words that do not repeat a letter. (Develop an organized system for listing them so that
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you do not miss any possibilities!) Check that the number of different permutations you came up
with agrees with the prediction of Eq. (2). In contrast, if you are allowed to repeat letters, how
many different possible 2-letter words are there and why?

Note in particular that the number of permutations of n objects, all n of which are taken, is
P(n,n) = n!  as you can see from Eq. (2) because we define 0! to be equal to 1.

Now suppose that we are only interested in forming groups of letters and do not care about
the order of the letters within each group. For instance, in our previous example of 3-letter
selections out of the first 6 letters of the alphabet, suppose that CAB and FAD count separately,
but BAD and DAB do not. Such groups are the combinations of 6 letters taken 3 at a time. We
can compute the number of combinations given the number of permutations by dividing the latter
by the number of permutations of the members of a group among themselves, so that

C(n,r) = P(n,r)
P(r,r)

=
n!

(n − r)!r!
. (3)

Exercise: Suppose I have four quarters, one of which is painted green, one blue, one red, and one
yellow. I throw them up in the air and catch them. An example of a sequence is: the green coin is
heads, the blue is tails, the red is tails, and the yellow is heads. The count in this case is 2 heads.
The total number of sequences of 4 coins that have a count of 2 heads is C(4,2) = 6 . Can you
spell out the other five possible sequences of our 4 coins that give 2 heads? Now suppose that I
specify that the first head I caught was the yellow one, the second head I caught was the green
one, and that the blue and red coins were tails. This is an example of a permutation of 2 heads
out of 4 coins. How many other possible permutations of 2 heads out of 4 coins are there?

An important application of Eq. (3) is to finding the binomial expansion of (x + y)n  where n
is a positive integer. For example, suppose we wish to find the coefficient (i.e., the numerical
prefactor) of xy2  in the expansion of (x + y)3 . We proceed as follows. Noting that

(x + y)3 = (x + y)(x + y)(x + y) , (4)

we can get xy2  in 3 possible ways: the x in the first parenthetical term can multiply a y from
each of the second and third parenthetical terms, or a y from the first parenthetical term can
multiply an x from the second and a y from the third parenthetical term, or finally a y from the
first and second parenthetical terms can multiply an x from the third parenthetical term.
Therefore the binomial coefficient of xy2  in the expansion of (x + y)3  is 3.

Exercise: Fully expand by hand the product in Eq. (4). Simplify your result and show that one
term in it is 3xy2 .
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Another way to express what we just said is that we need to select one x from each of three
parenthetical terms, for a total of C(3,1) = 3  combinations according to Eq. (3). Generalizing this
idea, we see that

(x + y)n = C(n,m)xn−mym
m=0

n

∑ . (5)

Exercise: Let n = 3  and fully expand the sum in Eq. (5), using Eq. (3) to calculate each of the
binomial coefficients C(n,m) . Show that your answer is identical with the fully expanded
product from the preceding exercise.

Equation (5) is such a useful result that it is helpful to have another way to remember it. We
can construct what is called Pascal’s triangle which is the following pyramidal structure of
integers,

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(6)

where the rows are to be indexed in order from top to bottom by n equaling 0, 1, 2, 3, and 4. We
can similarly extend the triangle indefinitely to rows 5, 6, 7, …. The entries in a given row n then
correspond to the binomial coefficients for values of m increasing in order from 0 up to n. For
example, row 3 (which is 1 3 3 1) tells us that

(x + y)3 = 1x3y0 + 3x2y1 + 3x1y2 +1x0y3 = x3 + 3x2y + 3xy2 + y3 . (7)

The triangle is constructed by requiring that any entry equal the sum of the two entries
immediately above it (with zeroes implicitly understood to exist to the left of the first 1 and to
the right of the last 1 in each row). This allows you to easily extend the triangle up to any row n
you need.

Exercise: Extend Pascal’s triangle up to n = 7 . (It is worth noting that the second entry in any
row is the row number n. That is, you need eight rows in all to reach n = 7 , because the top row
corresponds to n = 0 .) Use your result to write down (x + y)7  without having to actually
multiply (x + y)  by itself seven times (which would be a rather tedious process)!

Application to Statistical Mechanics

We will now consider three different ways of putting N balls into n boxes. In statistical
mechanics, the “balls” can represent molecules, electrons, photons, or other particles and the



C.E. Mungan  4/18/11 CPS-7 of 26

“boxes” correspond to particular states or regions of phase (position–momentum) space. For
example, we may be distributing electrons among the allowed energy levels of a (multi-electron)
atom. Or we may be determining the distribution of positions and velocities of gas molecules
within a chamber.

Let us first consider the case of classical, distinguishable particles. This would apply to an
ideal monatomic gas in which we picture atoms as miniature billard balls that obey the rules of
classical mechanics. That is, if we are given the initial positions and velocities of all N atoms, in
principle we can determine the trajectory of every particle and keep track of where it is at any
subsequent instant. In this sense, the particles are distinguishable and may as well be painted
different colors. We say that such particles obey Maxwell-Boltzmann (MB) statistics. Suppose we
chop phase space up into n discrete bins and wish to calculate the probability pMB of finding a
certain distribution of gas atoms among the bins, say N1 “balls” in the first “box,” N2 in the
second, and so on, subject to the restriction that

Ni
i=0

n

∑ = N . (8)

(Some boxes may be empty, while others may contain many balls.) We can determine this
probability by dividing the number of different arrangements of the balls that correspond to this
particular distribution by the total number of different possible arrangements of the balls. To see
how to calculate the first number, consider a specific example. Suppose we have 15 balls and 6
boxes and want to distribute them as {3,1,4,2,3,2} where this notation means we put 3 balls in
the first box, 1 in the second box, and so forth. The number of ways we can group the balls in
this way is the product

C(15,3)C(12,1)C(11,4)C(7,2)C(5, 3)C(2,2)

=
15!
3!12!

12!
1!11!

11!
4!7!

7!
2!5!

5!
3!2!

2!
2!0!

=
15!

3!1!4!2!3!2!
(9)

because we choose 3 out of the original 15 balls to put in the first box, then choose 1 out of the
remaining 12 balls to put in the second box, and so on. Equation (3) was used to obtain the
second step, which was then simplified to get the third step. Continuing, to calculate the total
number of different possible arrangements of the balls, we can put the first ball into any of the 6
boxes, and likewise for the second, third, …, and fifteenth balls. Thus the total number of
possible arrangements is

 6 × 6 ×× 6 = 615 . (10)

Generalizing the results in Eqs. (9) and (10) and ratioing them, we conclude that
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pMB =
N !n−N

Ni !
i=1

n

∏
(11)

where the notation in the denominator refers to the product of factorials 
 
N1!N2 !Nn !

analogous to what appears in the denominator of Eq. (9).
Next we consider the statistics of indistinguishable particles behaving according to the rules

of quantum mechanics. We must assume that the particles can move around and get mixed up; if
they are nailed down like the atoms in a solid crystal, then we can distinguish them by their
lattice site. Also the particles must be small enough that they behave quantum mechanically.
(More precisely, we can combine these two conditions and state that the de Broglie wavelengths
of the particles must overlap significantly during the period of observation. The degree of
overlap depends on temperature, which is why many quantum effects such as superconductivity
are only seen at low temperatures.) For example, we might be referring to the properties of the
electrons in a metal or of the phonons (lattice vibrational normal modes) in an insulator. It turns
out that the statistics of such particles depend on whether their spin is an integer or a half-integer
(specifically half of an odd integer—obviously half of an even integer is simply another integer).
Particles with integer spin (e.g., 4He nuclei which consist of 2 neutrons and 2 protons) are called
bosons and obey Bose-Einstein (BE) statistics; particles with half-integer spin (e.g., individual
electrons, protons, or neutrons which have spin S = 1

2 ) are called fermions and obey Fermi-Dirac
(FD) statistics. The key difference between fermions and bosons is that only the former obey the
Pauli Exclusion Principle. That is, two identical fermions cannot occupy the same quantum state
simultaneously. (For example, two electrons in an atom cannot have the same four quantum
numbers n, l, ml, and ms.) In terms of our model of balls and boxes, this means that we can put at
most one ball in each box. The balls and boxes are like people and chairs—each seat can either
be vacant (unoccupied) or occupied by one person. With this in mind, let us calculate the
probability given say 6 chairs and 4 people that the first 2 chairs will be unoccupied. Clearly we
are choosing to occupy 4 chairs out of 6 available, for a total of C(6, 4)  possible combinations.
Hence the probability of any one combination (in our case, that the first two chairs are vacant) is
1 /C(6, 4) = 1 /15 . More generally, if we have N balls and n boxes, the probability of any
particular distribution is

pFD =
N ! (n − N )!

n!
(12)

where we are assuming n ≥ N  if there is to be any allowable distribution at all.
Notice that Eq. (12) presupposes that every distinct combination (or what we might call a

distinguishable arrangement of the balls) is equally likely. Suppose that this remains true for
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bosons, for which we are allowed to put any number of balls we like into each box. (In
particular, at low enough temperatures all of the particles will “condense” into the ground state, a
phenomenon known as Bose-Einstein condensation which is responsible for such remarkable
properties as superfluidity.) Notice that this equiprobability of arrangements is not true for the
Maxwell-Boltzmann distribution. For example, suppose that N = 4  and n = 10 . Then according
to Eq. (11), the probability of finding 2 particles in each of the first two states is 6 times more
likely than the probability of finding all 4 particles in the first state.

Exercise: Suppose that N = 4  and n = 10 . If N1 = 4  and 
 
N2 = = N10 = 0 , show that

pMB = 0.01% . In contrast, recalculate the probability if N1 = N2 = 2  and 
 
N3 = = N10 = 0 .

We see that “bunched” Maxwell-Boltzmann distributions in which a few states are heavily
occupied are less likely than “uniform” distributions in which the particles are more evenly
spread across the available states. In contrast, for the Bose-Einstein distribution, we wish to
ensure that all (distinguishable) distributions are equally probable. (This means the balls and
boxes are like friends and dorm rooms, respectively, in which the people prefer to group together
than to be found alone.) To figure out how to do this, consider the following picture of 4 balls
arranged in 6 boxes.

 

The edges of the boxes are indicated by vertical lines, with adjacent boxes sharing a common
edge, and the balls by dots. Thus this particular distribution corresponds to N1 = 0 , N2 = 1,
N3 = 2 , N4 = 0 , N5 = 1, and N6 = 0 . We can obtain any other distinguishable arrangement by
pushing the common edges leftward or rightward across the balls, leaving the first and last
(outermost) edges fixed in place. Any such distribution corresponds to an arrangement of the 5
interior edges and the 4 balls, that is of 9 objects in all. Out of 9 possible positions, we need to
choose 5 positions for the edges and 4 positions for the dots. Thus there are C(9,5)  or
equivalently C(9, 4)  equally likely arrangements.

Exercise: Use Eq. (3) to prove that C(i, j) = C(i,i − j)  for any positive integers i and j such that
j < i . What does this tell you about the symmetry of Pascal’s triangle?

So in general, if we have N balls and n boxes, the probability of any particular distribution is

pBE =
1

C(N + n −1,N )
=
N ! (n −1)!
(n + N −1)!

(13)

which, unlike the Fermi-Dirac case in Eq. (12), is well-defined regardless of whether n is bigger
or smaller than N.



C.E. Mungan  4/18/11 CPS-10 of 26

Mean and Standard Deviation

The sample space for a finite probability distribution is the set of values xi where i is an index
running from 1 up to some finite value N. The probability of any particular value xi is pi. This
probability is clearly some function of xi, which we call the probability function f (xi ) . For
example, here is a graph of the probability function f (x)  where x is equal to the sum of the
numbers on two dice rolled randomly.

For example, f (9) = 4 / 36  because there are 4 distinct sequences of values of two rolls of a die

that add up to 9—namely {6,3}, {5,4}, {4,5}, and {3,6}—out of a total of 36 = 6 × 6  different
possible sequences of two rolls of a die in all.

Now suppose that x represents experimental measurements of the period of a pendulum and
that we have made some total number n of distinct measurements of it. If we obtained the value
xi in ni of the trials, then the average or mean value of x is defined to be equal to

x ≡
1
n

nixi
i
∑ . (14)

For example, suppose we used a stopwatch with one-tenth of a second accuracy and measured
the period to be 1.9 s once, 2.0 s in five trials, 2.1 s six times, and 2.2 s twice. Then the mean
value of the period is (1×1.9s + 5 × 2.0s + 6 × 2.1s + 2 × 2.2s) / (1+ 5 + 6 + 2) = 2.06s .

0 2 4 6 8 10 12 14
x

f(x)

1/36

2/36

3/36

4/36

5/36

6/36
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Recall from our previous discussion that the ratio ni / n  is an approximation to the value of
the probability pi if we make a large number of trials. Consequently Eq. (14) can be rewritten as

x ≅ xi
i
∑ pi = xi

i
∑ f (xi ) , (15)

and this result becomes exact in the limit that we make an infinite number of random trials.
Clearly we would report this as our “best” value of the measured quantity, the period of the
pendulum in our example. In quantum mechanics, this quantity is often called the expectation
value and written as x .

We also wish to report some measure of the spread in our measured values. One’s first
thought might be to calculate the discrepancy between any particular value xi and the mean value
x , and then average these discrepancies together. On second thought, however, it is not hard to
see that this “average discrepancy” is zero.

Exercise: Prove this assertion. That is, show that ni (xi − x )∑ = 0 . After you have finished the

mathematical proof, explain the result intuitively. How can it be that we take a bunch of nonzero
discrepancies and average them together to get zero?

To get a nonzero result, we can first square the discrepancies to ensure that they are all positive,
then average them together to get a nonzero result called the variance, and finally take its square
root to obtain a measure of the spread called the standard deviation,

Δx ≡
1
n

ni (xi − x )
2

i
∑ ≅ (xi − x )

2 f (xi )
i
∑ , (16)

where again the second approximation becomes exact in the limit that we make infinite
independent measurements. We can see from this definition that the standard deviation is equal
to the root-of-the-mean-of-the-squares (rms) of the discrepancies.

Exercise: Why couldn’t we just define the standard deviation to be equal to the variance?
Answer this by returning to the pendulum example above, computing the standard deviation of
the measured period T, and reporting your experimental result as T ± ΔT  in seconds. In contrast,
what units does the variance have?

Another common notation for the mean and standard deviation is µ and σ, respectively. Their
ratio σ / µ  is then a measure of the fractional or relative error, in contrast to σ which can be
called the absolute error.

So far our distributions have only taken on a discrete (finite) set of possible different values.
Let us now consider what happens if a random variable can adopt any value within some
continuous range. Note that the range can either be finite (e.g., the position of a cart along a 1-m
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track) or infinite (e.g., the location of a free electron in three-dimensional space) in size. In one
dimension, we can always choose a finite range to extend from 0 to L by appropriate choice of
the origin and direction of the x-axis, whereas an infinite range extends from –∞ to +∞. Keep in
mind however that a finite range can be considered to be a subset of an infinite range with
f (x) = 0  for all x < 0  or x > L .

To introduce the notion of the probability function f (x)  for a continuous distribution, let’s
start with the simple example of a cart moving along a horizontal frictionless track of length L
and elastically rebounding off springs at the two ends of the track. Based on the reasoning
developed in the first complete paragraph after Eq. (1), the probability of finding the cart at any
exact position x on the track is zero, because there are an infinite number of possible positions
between 0 and L, and 1 /∞ = 0 . Clearly it makes more sense to instead ask for the probability of
finding the cart within some small interval dx of positions centered on x. (For example, suppose
L = 1 m  and x = 50 cm . If we want to know or can measure the cart’s position to within ±1%,
that corresponds to a total interval of dx = 2 cm . What is the probability that the cart is located
between the 49 and 51 cm marks along the track?) Since the cart spends fraction dx / L  of its
time in the interval dx, the probability of finding it in that interval is dx / L .

Now let’s replot at the top of the next page the preceding graph of f (x)  for the probability of
achieving a particular sum when two dice are rolled, but this time include horizontal line
segments of length 1 centered on each dot. Observe that the area under a horizontal line segment
at any particular value of x is f (x) ⋅1 = f (x) . If we round x off to the nearest integer xi, we could
use this area as the probability of getting that particular sum of the dice. For example, the
probability of getting a value for x between 5.5 and 6.5 (i.e., of getting a sum of 6) is 5/36. We
can write 5/36 as the area under the histogram from 5.5 to 6.5,

p6 = f (x)dx
5.5

6.5

∫ . (17)

We now define the probability function f (x)  for a continuous distribution such that the area
f (x)dx  under a differential interval dx located at x is the probability of finding the result to be

between x − 1
2 dx  and x + 1

2 dx  (or more simply between x and x + dx ). In the example of the
cart above, we have f (x)dx = dx / L  and therefore f (x) = 1 / L  (provided that x is between 0 and
L). Note that the generalization of Eq. (1) for a continuous distribution becomes

f (x)dx
0

L

∫ = 1 (18a)

for a finite range, or more generally
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f (x)dx
−∞

∞

∫ = 1 (18b)

for an infinite range.

In the cart example, the probability function f (x)  was a constant (namely 1 / L ) over the
range of x. Now suppose we tilt the track so that the cart just reaches the top end (with zero
speed) and then turns around and slides back down. In that case, the probability of finding the
cart in an interval dx along the length of the track is proportional to the time spent in that
interval, f (x)dx ∝ dt = dx /υ  where υ is the speed of that cart at that point. Using conservation
of mechanical energy, one can show that υ = 2gsinθ (L − x)  where θ is the angle of the track.
Therefore f (x)dx ∝ dx / L − x  after dropping all constants such as g and θ. To turn the
proportionality into an equality, we need to normalize the right-hand side by dividing it by the
constant N equal to

N ≡
dx
L − x0

L

∫ = 2 L . (19)

This normalization procedure ensures that Eq. (18a) will be satisifed. We thus obtain the final
result f (x) = 1 2 L (L − x) . Note that although f (x)  becomes infinite at x = L , nevertheless

0 2 4 6 8 10 12 14
x

f(x)

1/36

2/36

3/36

4/36

5/36

6/36
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the area under f (x)  from 0 to L is finite!

Exercise: Derive the expression for υ given above. (Hint: Note that y = x sinθ  is the height of
the cart above the bottom end of the track.) Also, substitute the expression for f (x)  given above
into the left-hand side of Eq. (18a) and perform the integral to verify that it is equal to 1, thereby
demonstrating that it is properly normalized.

We can now generalize the definition of mean in Eq. (15) to a continuous distribution as

x = µ = x f (x)dx
−∞

∞

∫ , (20)

where it is understood for a finite range that f (x) = 0  for all x outside of the range. Similarly the
variance in Eq. (16) becomes

(Δx)2 = σ 2 = (x − µ)2 f (x)dx
−∞

∞

∫ . (21)

The mean is sometimes called the centroid or first moment of the normalized distribution
function f (x) , while the variance is called the second moment (about the mean). These two
quantities appear in special guises in mechanics and in electricity & magnetism. Consider the
linear mass density λ(x)  of a rod in units of kg/m. Then the center of mass of the rod is defined
as

xcm = xλ(x)dx
−∞

∞

∫ λ(x)dx
−∞

∞

∫ , (22)

which we can think of as an average value of position x along the rod weighted by the density of
the rod at that position. Notice that the denominator in Eq. (22) equals the total mass M (or
zeroth moment) of the rod and plays the same role as the normalization constant N in Eq. (19). If
we define a normalized mass density by f (x) = λ(x) /M , then Eq. (20) is equal to the center of
mass. Using the same normalized mass density in Eq. (21) gives the moment of inertia of the rod
about its center of mass. In similar fashion, if f (x)  is the linear charge density along a rod in
units of C/m, then we can relate Eqs. (20) and (21) to the electric dipole and quadrupole
moments.

Binomial, Gaussian, and Poisson Distributions

Suppose we repeat n independent trials of some process (such as rolling a die) and that there
are two possible outcomes of each trial: success with probability p, and failure with probability
q = 1− p . Then the probability of getting exactly x successes in the n trials is
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f (x) = C(n, x)pxqn−x (23)

and is called the binomial probability function (or distribution). This formula is the product of
C(n, x) , the number of combinations of x successes out of n trials, and pxqn−x , the probability
that any particular combination will consist of x successes and n − x  failures. Note that if we
sum Eq. (23) over all possible values of x we get

f (x)
x=0

n

∑ = C(n, x)pxqn−x
x=0

n

∑ = (p + q)n = 1. (24)

The second equality follows from the binomial expansion in Eq. (5), and the final equality
follows from the fact that q = 1− p  and is an expression of the normalization of f (x)  analogous
to Eq. (1).

If we make histogram plots of the binomial distribution for various values of n and p, one can
make a number of interesting observations about them. First, the area under the curve is always 1
because of Eq. (24). Second, f (x)  peaks at the most probable value x ≈ np  (as proven in
problem 9); this result is consistent with the operational definition of probability p ≈ x / n  (for
large n) discussed on the first page of this handout. For example, if p = 1 / 2  (such as if we are
flipping a coin n times and counting heads), then the most probable count is that we get 12 n
heads if n is even or 12 (n ±1)  heads if n is odd. For this value of p, the histogram is symmetric
about x = n / 2 . On the other hand, if p > 1 / 2  then the plot is asymmetric and peaks for large
values of x (and likewise it peaks at small values of x if p < 1 / 2 ). Third and finally, the mean
and standard deviation for the binomial distribution are µ = np  and σ = npq , respectively (as
proven in problem 10). Therefore the peak becomes wider (and correspondingly shorter in height
because the area under the curve is fixed at 1) as n increases for a given value of p. In particular,
if p = 1 / 2  then µ = n / 2  (which lies within 1 of the most probable value) and σ 2 = µ / 2 .

We can derive an approximation to the binomial distribution for the important special case
that the probability p of success is small and the number n of trials is large (i.e., p << 1  and
therefore µ << n ). Start by writing Eq. (23) as the product of five terms,

f (x) = 1
x!

n!
(n − x)!

px (1− p)n (1− p)−x . (25)

The second term is equal to 
 
n(n −1)(n − 2)(n − x +1) . Since p is small, we only get a

significant value for f (x)  when x is small compared to n and in this limit, the second term is
approximately  n × n × n× n = nx . Combining that result with the third term we get
(np)x = µ x . The fifth term is approximately equal to 1+ px ≈ 1  for small p and x. Finally,
substituting p = µ / n , the fourth term can be written in the limit of large n as
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lim
n→∞

1+ (−µ)
n

⎡
⎣⎢

⎤
⎦⎥
n
= e−µ . (26)

Exercise: The final result in Eq. (26) uses the fact that

lim
n→∞

1+ x
n

⎛
⎝⎜

⎞
⎠⎟
n
= ex .

To prove this relation, take the logarithm of the limit and interchange the order (which we can do
because the logarithm is a continuous function) to get

lim
n→∞

ln 1+ x
n

⎛
⎝⎜

⎞
⎠⎟
n
= lim
n→∞

ln 1+ x / n( )
1 / n

.

Next use l’Hôpital’s rule (make sure you differentiate with respect to n not x) to show that this
limit is equal to x. Taking the anti-logarithm now completes the proof.

Collecting together all of our results, we get

f (x) = µ x

x!
e−µ (27)

which is called the Poisson distribution. The mean of the distribution is µ, while the standard
deviation is npq → µ  since q = 1− p→ 1  for small p. Notice that the Poisson distribution is
therefore characterized by a single parameter (µ), unlike the binomial distribution which is
characterized by two (n and p).

Exercise: Verify that the Poisson distribution is normalized. That is, check that

f (x)
x=0

∞

∑ = 1 (28)

which is the generalization of Eq. (24) to a large number of trials, n→∞ .

The Poisson distribution is particularly useful in physics for describing the probability
px (t) = f (x)  of observing exactly x radioactive decays of a sample during a time interval t short

compared to the mean lifetime τ (or to the half-life t1/2 = τ ln2 ) where µ = t / τ  is the average
number of decays observed in the time interval t. For example, if we measure 1800 counts from a
source in 10 hours, then the average number of counts µ per minute is 3. Consequently the
probability of collecting x counts in a minute is 3x e−3 / x!  and so we would expect to observe 6
counts in about 5% out of 600 of the minute-long intervals for which the counting experiment
was performed. In this particular numerical example, µ is small (on the order of 1) and a plot of
the Poisson distribution results in an asymmetric peak (near 3) having a tail extending to large
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values of x. On the other hand, if µ is large (compared to 1) then the peak has a bell shape. This
observation suggests that we attempt to fit it with a continuous Gaussian distribution,

f (x) = 1
σ 2π

e−(x−µ)
2 /2σ 2 (29)

also called a normal distribution. Here µ is the mean (and thus the location of the peak since it is
symmetric), σ is the standard deviation (as proven in problem 11), and the numerical prefactor in
front of the exponential has been chosen to normalize the distribution in accordance with Eq.
(18b).

Exercise: Verify that the Gaussian distribution is normalized. To do so, substitute Eq. (29) into
(18b) and change variables from x to X ≡ (x − µ) /σ 2 ; call the result I. Next change the
dummy variable from X to Y to get I written in a different way. Now form the product of these
two integrals and pull both integral signs out front. Interpret dXdY  as the area element in a plane
and change to polar coordinates for which the area element is rdrdφ . Rewrite the integrand in
terms of r and φ rather than in terms of X and Y. Also change the limits of integration so that they
range over the entire plane in polar coordinates. You can now separately perform the radial and
angular integrals. The final answer should be 1.

In order to fit Eq. (29) to a Poisson distribution, we require σ = µ . The resulting Gaussian is
plotted as the solid curve in the following graph for the case of µ = 50 . For comparison, Eq. (27)
is plotted as the dots for the same value of µ.
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x
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We see from this figure that a Poisson (and therefore also a binomial) distribution are well
approximated by a Gaussian if both µ and n are large (compared to 1).
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In the above figure, we set σ = 50 ≈ 7.07  which is one measure of the width of the
Gaussian. There are several other physically useful measures of the width. One is the half-width-
at-half-maximum (HWHM) Δx , which is the x distance that you have to move away from µ in
order for the ordinate (i.e., the y coordinate) to fall to half of its value. At x = µ , Eq. (29) has the
peak value f (µ) = 1 /σ 2π . For example, f (µ) ≈ 0.056  in the preceding figure. We seek the
value of Δx  for which f (µ + Δx) = 1

2 f (µ) . Using Eq. (29) we find that the HWHM is

Δx = σ 2 ln2 . (30)

For example, Δx ≈ 8.32  for the above example. That is, f (x)  falls from its peak value of 0.056
to half of its peak value (0.028) when x is changed from the mean (50) to the sum of the mean
and HWHM (58.32). Note that the HWHM is a little larger than the standard deviation. If you
double the HWHM, you get the full-width-at-half-maximum (FWHM). Other measures of the
width for specialized applications (such as in optics) are the x distances you have to move away
from µ in order for the ordinate to fall to 1/e or 1/e2 of its peak value. Each of these definitions of
width is some numerical multiple of σ (because σ carries units of width) where the numerical
factor is usually near 1 in value. For example, in Eq. (30) the numerical multiple is 1.177.

Exercise: If x is in cm, what are the units of µ, of σ 2 , and of f (x)  in Eq. (29)?

Experimental Error Analysis

In science, the term error refers not to a mistake but to a difference (or deviation or
discrepancy) between a measured value and the “true” value. A synonym for error is uncertainty.
We can divide errors into two possible sources: systematic and random. Systematic errors arise
from miscalibrations in equipment and from the bias of the observers. For example, if a metal
ruler has been calibrated at room temperature but is then used outdoors in the winter, the ruler’s
length will thermally contract and the measured lengths will be slightly larger than they should
be. (Why are the measured values systematically larger instead of smaller than the actual
lengths?) Other examples are failure to correct for parallax (angle of observation) when using a
meter stick, failure to properly zero (or tare) a scale, and failure to account for human reaction
time when starting and stopping a stopwatch. It is the responsibililty of a careful experimenter to
consider and correct for systematic errors. In the preceding examples, the thermal contraction of
a ruler of known composition can be calculated, one’s eye can be moved to perpendicular
incidence when using a meter stick, a known weight can be used to test a scale’s accuracy, and a
longer time interval can be measured with a stopwatch to minimize the effects of reaction time.
In what follows, it is assumed that all systematic errors have been reduced to negligible levels.

The second category of uncertainties is random error which arises from inherent statistical
fluctations in the measured object, the measuring instrument, or the nature of the experiment
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itself. For example, if we measure the length of a box at different places along its width even
with a “perfect” ruler, there will be some variation due to slight manufacturing nonparallelism of
the sides and surface roughness. In addition, the ruler itself is imperfect and can only be read to
perhaps a quarter of the smallest divisions on it (millimeters say), leading to some intrinsic
uncertainty. As another example, if we repeatedly measure the period of a pendulum released
from a particular angle, we will find some range of values because of slight differences in how
the bob is released, in air drag, in the elasticity of the string, and the like. (Some of these effects
might be construed as systematic and could be reduced by enclosing the pendulum in a box to
reduce air currents, constructing a more reproducible bob release system, and so on.
Nevertheless, there will always remain some fluctuations in any experimental system. Consider
for instance the measurement of the half-life of a particular radioactive element.)

For a given experimental setup, the random error cannot be eliminated. Instead our goal is to
estimate how big it is likely to be, so that we can report that a measured value is within some
fractional or absolute amount of the true value. A subtle but important issue now arises. There is
no single true value—instead, the infinite set of all possible actual values (such as the length of a
box or the period of a pendulum) are distributed in some range according to what is called the
parent distribution having some particular shape, mean, standard deviation, and so forth. On the
other hand, what we measure are a finite number (say n) of experimental values that determine
what is called the sample distribution. Our best estimate of the parent mean if we measure xi in
trial i is

µ =
1
n

xi
i=1

n

∑ (31)

in agreement with Eq. (14). Two alternatives quantities that are often quoted in statistical
discussions are the median (the value of x such that there are an equal number of larger and
smaller measurements) and the mode (the most frequently measured value). Our best estimate of
the parent variance is

σ 2 = 1
n −1

(xi − µ)2
i=1

n

∑ . (32)

This formula is similar to Eq. (16) except that we have replaced n by n −1  in the denominator. A
rigorous mathematical derivation of this replacement is lengthy. It suffices for our purposes to
point out that n −1  represents the number of degrees of freedom remaining after we have used
up one to compute the mean from Eq. (31). In particular, if we made only one observation, there
would be no way to estimate the variance, in agreement with the fact that Eq. (32) then gives the
indefinite result 0/0 (whereas it would not if there were an n in the denominator). In any case, if
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we make a large number of measurements, then the difference between n and n −1  is small and
not worth a long analysis.

For completeness in case you encounter it elsewhere, one can also derive the standard
deviation in our estimate of the mean and prove that it is equal to σ n . This quantity is often
called the standard error. In other words, the actual parent mean is unlikely to differ from our
estimate µ by more than a few multiples of the standard error. As expected, our estimate
approaches the actual value in the limit of an increasing number n of measurements. Note
however that what we typically report in an experiment is not the standard error but instead our
estimate σ of the parent standard deviation, because we want to know how much variation there
can be in the x values. To put it another way, σ is the standard deviation of a single
measurement.

Next let’s take up the matter of error propagation. Suppose that we make measurements of
three quantities (x, y, z)  and wish to combine those into one overall formula f (x, y, z) . For
example, x might be length, y the width, and z the height of a box of volume f = xyz .
Specifically let (x, y, z)  be our best (i.e., mean) values of each measurement, as separately
computed using Eq. (31), and let’s denote the standard deviation in each calculated from Eq. (32)
as (dx,dy,dz) . Here we are using differential notation, assuming that the fractional error in each
(e.g., dx / x ) is small (i.e., no more than a few percent). If the errors are not small, then we
should instead denote them as (Δx,Δy,Δz)  and their treatment will be briefly discussed later.

Recall that a first-order Taylor expansion of f about the mean values (x, y, z)  is

df =
∂f
∂x
dx +

∂f
∂y
dy +

∂f
∂z
dz . (33)

In words, this equation states that the change in f is equal to the sum of the changes in f when
each independent variable is separately varied (with the other two variables held fixed, thereby
explaining the need for partial derivatives). Equation (33) enables us to compute the standard
deviation of the new quantity f; the only proviso is that we need to take the absolute value of
each term in Eq. (33) because errors must add. In principle it is the only error propagation
formula that we need. In practice, however, it is faster to perform computations by working out
Eq. (33) for various special cases:

Product Rule—If f = xyz  then Eq. (33) becomes

df = yzdx + xzdy + xydz ⇒
df
f
=
dx
x
+
dy
y
+
dz
z

. (34)

The final result says that we can find the fractional error in f by summing up the
fractional errors in the variables. This rule also holds for quotients. For example,
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if we measure the distance traveled by a cart x = 31.2 ±1.1 cm  in a time of
t = 3.45 ± 0.12 s , then our best estimate of the average speed of the cart is
υ = (31.2 cm) / (3.45 s) = 9.04 cm/s  with a percent error of
100(1.1 / 31.2 + 0.12 / 3.45) = 7.0% .

Power Rule—If we have a term like xn  in the formula for f, then it contributes a
fractional error of ndx / x . This result is consistent with the product rule when n
is an integer; for instance if n = 3  and we identify y and z with x then Eq. (34)
becomes df / f = 3dx / x . For example, the period of a pendulum is given by the
formula T = 2π L / g . Suppose we know the length of the string to within 1%
and the gravitational field to 0.1% (i.e. to within ±0.01 m/s2), then the percent
error in the period is 0.55%.

Sum Rule— If f = x + y + z  then Eq. (33) becomes

df = dx + dy + dz . (35)

This result states that the absolute error in f is the sum of the absolute errors in the
variables. The rule also holds for differences. For example, if we measure the
length and width of a rectangular tabletop to be 1.50 m ± 3.5%  and
1.10 m ± 2.5% , respectively, then its perimeter is 5.20 ± 0.09 m .

Note that these rules change if we are propagating standard errors rather than parent errors.
Specifically, one then needs to square each of the terms on the right-hand side of Eq. (33) if the
variables are uncorrelated, as is proven in statistics textbooks. (Taking squares also avoids the
issue of having to take absolute values of terms.)

Equation (33) becomes increasingly inaccurate as the fractional errors in the variables
increase. An alternative method of propagating errors is as follows. First compute f using the
mean values of the variables and call the result fave. Next choose the values of the variables
within their range of variation (for example between x − Δx  and x + Δx ) to find the value of f
(call it fdis) that maximizes the discrepancy between fdis and fave. We can then compute the error
in f as Δf = fmax − fdis .

Exercise: As an example, suppose that f (A,θ) = Acos(θ)  where A = 2.3 m ± 25%  and
θ = 0.86 rad ± 34% . Compute Δf  and compare it to df calculated from Eq. (33) remembering to
take the absolute value of each term. (By the way, recall that the derivative of cosθ  is equal to
− sinθ  only if θ is in radians!) The answers are Δf = 0.92 m  and df = 0.88 m , showing that
even for fairly sizeable percent errors, Eq. (33) works pretty well.
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TOOLS OF THE TRADETOOLS OF THE TRADE
Stirling’s Approximation

Many statistical formulae contain factorials in them. Examples in the present Handout are
Eqs. (3) and (27). Often we need to evaluate those factorials for large values of their argument.
For instance, if Eq. (13) is applied to a gas, we may have a mole of particles, corresponding to
Avogadro’s number (6.022 ×1023 ). Stirling’s approximation is a useful approximation to n!
when n is a large integer. It can be written as a product of terms,

n!= nne−nχ(n) . (36)

The third term is the divergent infinite series

 

χ(n) = 2πn 1+ 1
12n

+
1

288n2
+⎛

⎝⎜
⎞
⎠⎟ . (37)

However it is not hard to see that χ(n) nne−n → 0  as n→∞ .

Exercise: Prove this assertion as follows. Start by noting that χ(n) ≈ 2πn  in the limit of large
n. Next rewrite nne−n  as en(lnn−1) ≈ en lnn  in the same limit. Now complete the proof using
l’Hôpital’s rule.

Therefore if we take the logarithm of Eq. (36), we can drop the third term in comparison to the
other two terms giving an asymptotic expression for large n,

ln(n!) ≈ n lnn − n . (38)

Here is a quick derivation of Eq. (38),

ln(n!) = lnm
m=1

n

∑ ≈ ln xdx
1

n

∫ ≈ n lnn − n . (39)

(You should review this derivation carefully and make sure you understand each step in it.) As a
somewhat contrived example of the application of Stirling’s formula we can compute the
following limit,

lim
n→∞

(n!)1/n

n
=
(nne−n )1/n

n
=
1
e

. (40)

Note that χ1/n → 1  as n→∞ . For example try evaluating (2πn)1/2n  on a calculator for
n = 1000 . Therefore the final answer in this example is exact.
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Error Function

There are several slightly different definitions of this function. We will adopt the one that is
most useful for our purposes,

erf(z) ≡ 1
2π

e−t
2 /2dt

−z

z

∫ . (41)

The integrand can be recognized as a Gaussian expressed in terms of the dimensionless deviation
t ≡ (x − µ) /σ  and the prefactor of 1 / 2π  normalizes the Gaussian so that erf(∞) , which is the
complete area under the bell curve, is equal to 1. In contrast, erf(1)  represents the area within ±1
standard deviation of the peak, erf(2)  represents the area within ±2 standard deviations of the
peak, and so forth. These values are often used when “grading on a curve” for example. Here are
a few selected values of Eq. (41), as computed numerically:

z erf(z)
0 0
1 0.683
2 0.954
3 0.997

For example, the second entry tells us that the probability that a measurement will lie within one
standard deviation of the true value (i.e., the parent mean) is 68%. If you wish to increase your
confidence interval to near 100%, you can instead use an error range of ±3σ.
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Problems

1. Prove that pApB  if A = pBpA  if B , i.e., the probability that event A occurs followed by event B
is the same as the probability that the two events occur in the opposite order. Do not assume the
two events are independent. (The proof is trivial if they are!)

2. Prove that the probability that either or both of events A and B will occur is
pA + pB − pApB  if A . Now suppose that Alice and Bob are independently working on a problem
and that Alice has a 75% chance of solving it, while Bob only has a 50% probability. What is the
probability that at least one of them will solve it? (Answer: 87.5%.)

3. You are dealt two cards from a shuffled deck. What is the probability of getting two aces? If
you know that one is an ace, what is the probability that the other is an ace? If you know that one
is the ace of spades, what is the probability that the other is an ace? Each of these questions has a
different answer, clearly demonstrating that the more information you have, the more your odds
go up.

4. Show that in any random group of 23 people, the probability is greater than 50% that two of
them have the same birthday. (Do this by calculating the exact probability.)

5. If n >> N , show that pFD ≈ N !n−N ≈ pBE . Hint: Argue in each case that the inverse ratio of
the factorials involving n is approximately equal to the product of N numbers each of which is
approximately equal to n.

6. A game of chance involves throwing 3 balls into 5 cups numbered 1 through 5. Each cup can
only hold one ball. Any balls which do not initially land in an available cup roll around the tops
of the cups until they fall into an empty one. It costs $1 each time you play, but you win 10¢
times the sum of the numbers on the cups that your balls fall into. If you play the game 100
times, how much money would you expect to win or lose in all? (Answer: lose $10.)

7. Use the first equality in Eq. (16) to prove that (Δx)2 = x2 − x 2 . In words, this result says that
the variance in x equals the difference between the mean of the squares of x and the square of the

mean of x. In practice it is often easier to calculate the standard deviation using this relation
instead of Eq. (16). [Note that parentheses are required because the expression Δx2  is
ambiguous: it could mean either (Δx)2  or Δ(x2 ) . A similar ambiguity in principle is present in

the expression dx2 , but by convention it is defined to mean (dx)(dx) , because if d(x2 )  were
intended one would instead write 2xdx .] Be careful: Do not erroneously assume that
(a − b)2 = a2 − b2  in your proof!
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8. According to quantum mechanics, the probability of finding the electron in a volume element
dV is proportional to e−2r /adV  for the ground state of a hydrogen atom. Write dV in spherical
coordinates and integrate over the full ranges of the two angular variables. Now find the radial
electron density f (r)  by normalizing this probability function over the radial range. Also prove
that the most probable value of r is a (i.e., the value of r which maximizes f) and sketch f (r)  by
hand over its complete range from 0 to ∞. (Note: a is called the Bohr radius and is equal to
0.53 Å.)

9. We wish to prove that the most probable value of x for the binomial distribution is the
integer(s) nearest in value to np. To do so, let’s temporarily allow x to take on nonintegral values
and find x and x +1  which symmetrically bracket the peak of the binomial distribution in the
sense that f (x) = f (x +1).  Substitute Eq. (23) into both sides of this equality and use the fact
that q = 1− p  to solve for x. Then complete the proof appropriately.

10. (a) We want to prove that µ = np  for the binomial distribution. Start by substituting Eq. (23)
into Eq. (15) where you can drop the subscripts i and instead sum x from 0 up to n. Now
substitute y = x −1  and m = n −1, factor (m +1)p  out of the sum, and use the normalization
condition from Eq. (24) to complete the proof.
(b) Use similar tricks as in part (a) to prove that σ 2 = npq = np − np2 . Hint: First use the result
of problem 7 to simplify Eq. (16).

11. Substitute Eq. (29) into the integral on the right-hand side of Eq. (21) and perform the
integration to verify that it is equal to σ 2 , thereby proving that σ in Eq. (29) defines the standard
deviation. Hint: Define the integral

I ≡
1

σ 2π
e−a(x−µ)

2 /2σ 2dx
−∞

∞

∫ ,

change variables from x to X ≡ a(x − µ) /σ 2 , and then use normalization to show that
I = a−1/2 . Now use parameter calculus by differentiating I with respect to a, multiplying the
result by −2σ 2 , and then setting a equal to 1. (To complete the proof you need to do this twice,
once for I written as the above integral, and secondly when I is evaluated as a−1/2 . If you do not
understand this logic, consult the handouts on integration.)

12. Derive Eq. (30).

13. Derive the exponential rule for error propagation. That is if we are computing x in terms of
the variable t according to x(t) = Aet /τ  where A and τ are constants, then dx / x = dt / τ . (This
looks like the rule for products except that we have τ not t in the denominator on the right-hand
side.)
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14. Consider a set of n two-level spins (i.e., they can either be in the spin-up or spin-down state)
which are fixed at particular (distinguishable) lattice positions. Suppose that N of them are in the
up state (and the remaining n − N  of them in the down state). The number of ways that we can
choose N out of n is

Ω =
n!

(n − N )!N !

from Eq. (3) and in the present context is called the multiplicity. The Boltzmann entropy is
defined in terms of the multiplicity as S = k lnΩ  where k = 1.38 ×10−23  J/K  is called the
Boltzmann constant. Use Eq. (38) to prove that S is a maximum when half of the spins are in
each state.

15. Show that erf(x − ix) = (1− i) 2 /π C(x) + iS(x)[ ]  where

C(x) ≡ cos(u2 )du
0

x

∫ and S(x) ≡ sin(u2 )du
0

x

∫

are called the Fresnel integrals and are relevant to diffraction theory in optics. Hint: Make the
substitutions t = (1− i)u  and x = z / (1− i)  in Eq. (41).
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