
Fourier Series: An Example of Characteristic Behaviors 

Concepts of primary interest: 

 Independent behavior 

 Completeness 

 Inner product, a gauge of common character/behavior 

 Orthogonality 

 Projection - projecting out a behavior coefficient 

 Fundamental frequency - relation to the period 

 Convergence 

 Rapid changes  greater high frequency content 

 Parseval's identity 

 Relating series with different periods 

 Power series expansions are good – why choose Fourier? 

 FS and the Vector Space of periodic functions 

Sample Calculations and Applications: 

 Anti-symmetric square wave 

 Anti-symmetric triangular wave 

 Oscillator with a periodic driving force 

 Summing series 

Tools of the trade: 

 The Unit Circle for evaluating trig functions 

 Converting sums to integrals 

Discovery Exercise: 

 Summing terms to match a specified function 

               Give f(x) = the sum of a few terms with integer … 

 

See problem 41 on page 79+   *************************** 

 Contact: tank@usna.edu 



The value co as defined in the section is equivalent to ½ ao as defined 

everywhere else in the known universe.  Note that this 'distinct' notation also 

leads to a change in the form of Parseval's equality.  The rule will be to replace 

co by ½ ao throughout to compare with other Fourier references. 

 

 Introduction to Fourier Series:  More haphazard history  It's just a story with 

no basis in fact used to introduce a topic. 

 

 Fourier studied the problem of the vibrating string fixed at both ends 

discovering that it has a set of characteristic vibration patterns in which the string 

oscillates in the shape of any multiple of half cycles of a sinusoid with an 

amplitude that oscillates sinusoidally in time at frequencies that are proportional to 

that multiple of half cycles (m = m o).  The result was so appealing that Fourier 

declared that these were the only shapes in which one could expect to find the 

string.  A musician objected immediately claiming that his violin string had a 

triangular shape when he plucked it.  Stung by the prospect of being proven wrong, 

Fourier boldly proposed that all shapes assumed by the violin string could be 

represented as a sum of his sinusoids.  Indeed any function can be represented as a 

sum of sinusoids with just a few restrictions.  The allowed sine and cosine 

functions are periodic, and each has zero average value.   If we restrict ourselves to 

periodic functions or functions defined over a finite interval which can be assumed 

to be extended periodically beyond that interval, and we toss in an additive 

constant to handle the average value, and it works. It works as long as the correct 

definition for working is adopted.   

 

Functions are also restricted in that they must be finite and continuous 
except for perhaps a finite number of finite discontinuities. Some more 
exotic behaviors can be tolerated, but here the behavior assumed is 
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finite, piecewise continuous and possessing only a finite number of 
discontinuities in a period. See the Dirichlet conditions presented later 
for a more precise statement of the requirements. 

 

In the time-frequency realm, Fourier's conjecture takes the form: Any function f(t) 

which is periodic in time with period T can be represented as a sum of a constant 

plus sinusoidal terms with frequencies  2m m T  .  The sinusoids are the sine 

and cosine.  The set of frequencies m ensures that each sinusoid completes an 

integer (m) number of cycles in the time T, the period of f(t).  The base frequency 

for the expansion is 0 1 2 T      which is called the fundamental frequency.  

This frequency is set by the period of the function, and it is the same for all 

functions with that period.  The frequency of every term in the expansion is an 

integer multiple (harmonic) of this fundamental frequency.  
 

To be periodic with period T, each sinusoid must complete an integer number of 
cycles in the time T. This condition sets the allowed frequencies to the multiples of the 
fundamental 2

T
 independent of any feature of the function other than its period. 

 

    0
1 1

( ) 1 cos sinm n m
n m

mf t c a t b t 
 

 

        where 2m m T   .      [FS.1]

Each term in the expansion represents a distinct behavior of a function with period 

T.  The first term  (1), a fancy way to write , is the average value of the 

function with the (1) indicating that it represents the constant behavior of the 

function.  The terms 

0c 0c

 cosma mt  represent the independent or distinct ways in which 

an even function of period T can wiggle, and the terms  sinm mb t  represent the 

independent or distinct ways in which an odd function of period T can wiggle.  It is 

crucial to recognize than each term represents an independent behavior.   

(The constant c0 is replaced by ½ a0 in most treatments of Fourier series.) 

  

Recall the Cartesian representation of a particle's displacement:  
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ˆˆ ˆr x i y j z     k


 

Each term in the representation of r
  is an independent contribution to the 

displacement.  No amount of ˆx i  can change the y or z coordinate of the particle.  

The statement of this independence or orthogonality is in the relations: 

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0; 0; 0; 1; 1; 1i j k i j k i i j j k k           ˆ  

The first three equations are orthogonality relations, and the last three 

normalization relations. A displacement in the x direction is exactly like itself and 

nothing like either of the other two possibilities.  These (dot) inner product 

relations provide the method to find the components of r
 . 

   ˆˆ ˆ ˆ ˆ
x

r i r i x i y j z k          
 

x  

One evaluates the inner product of the x-direction and r
  to find the x-component 

of . This process is called projection.  The orthogonality of the coordinate 

directions insures that the projected components are measures of independent 

(displacement) behaviors.  The choice of unity normalization (  

) for the three coordinate directions leads to the familiar result that: 

r


ˆ ˆk k

ˆ ˆ ˆ ˆ1; 1;i i j j   

1

     2 2 2
r x y       2

z  

There is a relation between the norm of the object represented and the sum of the 

squares of the expansion coefficients (components). This paragraph may seem a 

pointless now.  Review it after completing this chapter. It reveals the tip of a 

megacept.         Track the terms: inner product, projection, orthogonality. 

 Fourier representations work the same way.  Orthogonality is the statement that 

each term represents an independent wiggling of the function. The inner product 

takes the form of an integral.    

2

2

1( ) ( ) ( ) ( )
T

TTg t f t g t f t dt


    

The strange notation ( ) ( )g t f t  is chosen to represent a general inner product.  The 
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symbolic representation is chosen to be unfamiliar forcing you to regard it as a new 

process.  The integral is sometimes designated as the overlap of g(t) and f(t) over 

the interval.  Each of the terms: { 1;{0c  cosm ma t };{ sinp pb  t  }} is an independent 

wiggling or behavior that has zero overlap with any other member of the set. 

Therefore, the coefficient in the expansion for a member of the set 

{1;{  cos mt };{ }}  can be projected out by multiplying the sum by the 

member (behavior) associated with that coefficient and integrating over the range 

sin pt 

,2 2[ ]T T .  

 

Fuzzyspeak; not a definition: An inner product gauges degree to which one entity embodies the 

behavior of another entity of the same class.  To what degree do two vectors point in the same 

direction?  To what degree do g(t) and f(t) wiggle together ?  More about this choice for the inner 

product for wiggling functions is to be presented in a meandering mind section below.  
 

Projection is important as a concept and as a procedure.  

PROJECTION: A process to isolate a coefficient or behavior in an entity. Multiply the entity and the 

expansion that represents it by a behavior and execute the inner product operation.  Use orthogonality 

relations. To find the coefficient am for  cos mt  cos mt, multiply by  and compute the inner 

product with the function f(t) and with its Fourier expansion. 

 

Begin with 1.  Find out how much constant behavior is in the function. 

1 1
2

m m

a b
2 2 2 2

02 2 2

1 1 1 1(1) ( ) (1) (1) cos (1) sinm m

T T T T

m mT T T TT T T Tf t dt c dt t dt 
   

  t dt
 

 

          
 

The integrals of the sine and cosines are over an integral number of cycles; hence 

they vanish.  Wiggling like a sine or cosine for an integral number of cycles is 

nothing like being constant.  So: 

                               0

2

2

1 1( ) ( )
T T

T TT T tt dt f t dt
 

   
2

2
( )(1) fc f                  [FS.2] 
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The constant part of the function f(t) is just its average value over the interval 

,2 2[ ]T T . 

 

To identify the distinct wiggle contributions, the coefficients for each distinct 

wiggle behavior are projected out of the sum by invoking the following 

orthogonality relations: 

 

2

2

2

2

2

2

1

1

1

0sin cos

sin sin

cos cos

½

½

pm

pm

T

p mT

T

p mT

T

p mT

T

T

T

t t dt

t t dt

t t dt





 

 

 







     

     

     







 [FS.3] 

The first relation is trivial as the product of sine and cosine is an odd function.  The 

next two relations are proven below, and a second set of proofs is to be developed 

in a homework problem.  That is: proof by exhaustion follows. 

 

The coefficients for the independent wiggle modes become: 

2

2

2 cos ( )p

T

pTTa t f t d


    t ; 
2

2

2 sin ( )m

T

mTTb t f t d


    t for p, m  1      [FS.4] 

The factor of two appear because the average values of  2cos pt    and of 2sin pt    

are one half (while the average value of 1 is 1). 
 

Do not focus on the equations to compute the expansion coefficients. Focus on 

the orthogonality relations and the projection process to isolate the 

coefficients.  That is: use the orthogonality relations to essentially repeat the 

derivation of the equations above each time you use them.  It sounds extreme, 

but the reward is that you command a powerful technique that applies far 

beyond the sine and cosine series expansions. 

 

Exercise: Find the coefficient  by multiplying the series representation by pb
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sin pt  and integrating over the range ,2 2[ T T ].  Use the orthogonality relations. 

 

The proofs of the orthogonality relations above follow from the identities for 

products of sines and of cosines.  Recalling that   02m m T m    : 

0 0

1sin( )sin( ) cos( ) cos( )2
1sin sin cos ( ) cos ( )2p m

x y x y x y

t t p m t p m   

  

  t           

    

   
 

* Treat the cases p = m and  separately. Always start with p m .p m

p m :     
2 2

0 0
2 2

1 1 1sin sin cos ( ) cos ( )2

T T

p m
T T

t t dt p m t p m t dt
T T

   
 

                    

2

0 0

0 0 2

sin ( ) sin ( )1
0

2 ( ) ( )

T

T

p m t p m t
if p m

T p m p m

 
 





        
  

 
  

 
  

The sines are periodic with period T so sin[(p - m) o
T/2] = sin[- (p - m) o

T/2].  

Note that the result above is ill defined for p = m. This divergence requires that the 

p = m case be treated separately. 

p = m :     
2 2

0
2 2

1 1 1sin sin cos 0 cos (2 )2

T T

m m
T T

t t dt m t
T T

  
 

dt                  

2

0

0 2

sin (2 )1 1
2 (2 ) 2

T

T

m t
t i

T m








    
  

   f p m  

as     sin 2 sin 02 2m
T Tm T m              

    for all integers m is. Hence: sin

   
2

2
sin sin1 1

2
T

p mT pmt t dtT   


     

Exercise:  Examine:
2

0 0

0 0 2

sin ( ) sin ( )1
0

2 ( ) ( )

T

T

p m t p m t

T p m p m

 
 





        
  

 
 

 
. What is the 

problem that arises for the p = m case? What is cos[(p -  m)t) in the p = m case?
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Exercise:  Use the change of variable u = 0t and the trigonometric identity:

0 0

1cos( )cos( ) cos( ) cos( )2
1cos cos cos ( ) cos ( )2p m

x y x y x y

t t p m t p m   

  

  t           

    

   
 

to show that:      2

2
cos cos1 1

2
T

p mT pmt t dtT   


       . 

 

Exercise:  Repeat the proof that:     
2

2
sin sin1 1

2
T

p mT pmt t dtT   


     using the 

change of variable u = 0t. 

 

 

The Orthogonality Relations for the Fourier Expansion Set 
 

Orthogonality relations are crucial to the application of Fourier series methods. 

They are used in 70% of all Fourier problems and applications. Highlight your every 

application of these relations. Try to prepare a prose summary of the manner in which the relations 

were used to solve each problem.   The Fourier expansion set has members 

{1;{…,cos mt   ,…};{…,sin pt 
  ,…}}. 

This set of functions is mutually orthogonal [with a typical member Fi(t)] which 

means that the inner product of any two distinct members of the set vanishes: 

   
2

*

2

01
T

i j
jT

for i j
F t F t dt

N for i jT 


    

     General Orthogonality Relations 

The inner product is zero unless the two functions are the same in which case the 

result is a non-zero value. This equation is shorthand for the following relations:                          

[FS.5] 

           
2 2 2

2 2 2

1 1 1
1 sin 0; sin cos 0; 1 cos 0

T T T

m p m

T T T

t dt t t dt t dt
T T T

  
  

    m
   
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           
2 2 2

2 2 2

1 1

2 2

1 1 1
1 1 1; sin sin ; cos cos

T T T

p m p m

T T T

pm pmdt t t dt t t dt
T T T

    
  

      

The relations state that a member of the Fourier expansion set wiggles like itself 

and not at all like any other member of the set over the domain [- ½ T, ½ T]. 

The Kronecker delta ij is a shorthand for 0 if i  j and 1 if i = j. 

 

Inner Products and the Meandering Mind: (This section is not strictly required 

to understand the topic of expansions and othogonality, but the ideas presented 

may provide the key to a more global appreciation of the topic.)  

The goal is to motivate the definition of the inner product as: 

                                   
2

2

1
( ) ( ) ( ) ( )

T

T

g t f t g t f t dt
T 

                        [FS.6] 

Backtracking to 3D vectors, x x y y zA B A B A B A B   


z


 which becomes more positive 

for each component pair that points in the same direction (has the same sign).  As 

vectors point, this inner (dot) product grows for common pointing (behavior).  The 

inner product gauges the common behavior of two entities of the same class.  How 

can this concept be generalized to the inner product of two functions?   
 

Start with a simple case and work up to the real problem. A function assumes a 

value at each point in the interval. To begin, represent the function by its values at 

N evenly spaced values of its argument. Let     2 2m
T T Tt mN    N  for m = 

{1,2,…,N} which selects the midpoints of the N equal width bins covering the 

range [- ½ T, ½ T].   The functions g(t) and f(t) are each represented by N values. 

   1 2 1 2( ) ( ), ( ),..., ( ) ; ( ) ( ), ( ),..., ( )N Ng t g t g t g t f t f t f t f t   

Following the expression for the dot product of two displacement vectors, the inner 

product of the two functions proposed is: 
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1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )N N m m
m

g t f t g t f t g t f t g t f t g t f t      

The sum of the products of the corresponding values at positions behaviors.  Not 

a bad start, but to get a better picture, the limit  is desired which requires 

division by N to keep the expression finite.  

N 

    1 1 2 2
1 1( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )N N m m

m

g t f t g t f t g t f t g t f t g t f tN N      

The integral of a function is the limit of the sum of terms of that function times an 

infinitesimal step of the integration variable.  A step from one bin to the next is 

Tt N   so multiplication and division by T is in order. (See Converting Sums to 

Integrals in the Tools of the Trade section. Our function to integrate is the product 

of f(t) and g(t).) 

         1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m m m m
m m

Tg t f t g t f t g t f t t g t f t dtT N T T      

This prescription is almost great!  The inner product of something with itself 

should always be positive.  Something should positively behave like itself.  To 

ensure this feature, a final tweak is made to the definition. 
 

2

2

1( ) ( ) [ ( )] ( )
T

TTg t f t g t f t dt


         [FS.7] 

 

The * represents complex conjugation.  This definition is correct for real valued 

functions and for complex valued ones.  Correct is a slippery concept.  Many 

definitions of the inner product can be correct as long as each properly gauges the 

common behavior of the functions.  For example, the scale factor is arbitrary.  As 

long as the rule is consistently applied, the definition could be modified to be  

   /2

/2

*1
2 ( ) ( )

T

TT g t f t dt
  or even just  

/2 *

/2
( ) ( )

T

T
g t f t dt



 .  Be alert to changes in 

notation and normalizations as you review different references. 
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The goal has been to motivate the choice of the overlap integral as the definition of 

the inner product.  If you have been paying attention, you should not be buying it!  

The inner product is about gauging common behavior. The behaviors under 

discussion are being constant (having an average value) and wiggling periodically 

which are represented by the Fourier coefficients     0 , ..., ,... , ..., ,...m pc a b  which 

would naturally lead to the inner product definition (which is similar to the sum of 

the products of the corresponding components): 

   * * *
0 0

1 1
2 2( ) ( ) gm gpg

*1
f fm fp

m p
Tg f g t f t dt c c a a b b                   [FS.8] 

The factors of one-half are an annoying penalty for choosing the expansion set 

{1;{  cos mt };{ }} with the uneven mean square value  (normalization).  sin pt 

   2 221 1; cos ; sin½ ½m mt t           

Other than that, life is wonderful! The two definitions agree.  It takes a little 

perspiration to establish the equality, but they do agree. The name of some long-

dead mathematician should be tied to this equality.  Failing to find a clearly 

culpable individual, Parseval is to be given credit for the result. The integral 

definition of the inner product is in the coordinate representation in which the 

behavior of a function is to take on a value at a point.  The equivalent expression 

just above is in the Fourier or frequency-space representation in which the set 

of wiggle mode behaviors provides a basis for representing functions.  As long as 

the functions f(t) and g(t) are periodic with period T, these modes provide a 

complete set of the possible behaviors for well-behaved functions with period T. 

In either of the representations, the inner product gauges the degree to which the 

functions share behavior.  The coordinate and frequency representations both 

provide complete descriptions of the problem.  An engineer studying string 

clearances in the design of a violin might choose the coordinate space 
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representation for the violin string.  A musician playing the instrument might be 

more directly interested in the tone and might choose the frequency representation. 
 

Parseval’s Equality Notation:  in other references expect: 

  ½

½

* * *
0 0

1 1

1 1 1 1
4 2 2( ) ( )

T

T gm gpg
*

f fm fp
m p

Tg f g t f t dt a a a a b b


 

 
     

Recall the average value of the function co is to be replaced by ½ ao to agree 

with the notation more commonly used. 

           
½ ½

0 0 ½ ½

1 1½ (1) ( ) ( ) ( )
T T

T TT Tc a f t dt f t dt f t
 

                          [FS.9] 

 

Sample Calculations: Fourier series for square and triangular waves 
 

Example 1:  Square waves come in several forms.  As an example, an odd square 

wave with period T stepping from -1 to +1 is presented. 

t

f(t)

1

-1

-T/2 +T/2 T-T

 

The square wave f(t) has a period of T and is extended beyond the base period to 

display the discontinuities at each multiple of T/2. The function is represented as: 

                                    
0 2

02

1
( )

1

Tt

T t

for
f t

for

   
  




                       [FS.10] 

Clearly, the function is odd and has zero average value.  The Fourier series only 

includes terms with the behaviors intrinsic to the function.  Only the sine terms 
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match the zero average value and odd function behaviors.  Evaluating the integrals 

to find c0 and the {… ap…} yields zero contributions. The expansion has the form: 

           0
1 1 1

( ) 1 cos sin sinm m m m m
m m m

mf t c a t b t b t  
  

  

             [FS.11] 

Using the symmetry, the expression for bP reduces to:  

 

2 20

2 2 0

2

0

2

2 2sin ( ) sin ( 1) sin ( 1)

4 sin ( )

T T

p p p p
T T

T

p T

b t f t dt t dt t dt
T T

b p t f t dt
T



  
 

 
             

  

   



  




 

Invoking standard practice, the change of variable  2u p T t  is elected which 

yields dt = T/(2p) du. [The standard choice is the argument of the most complicated 

function in the integrand. In this case, either  2u p T t  or 2v T t  is a 

good choice. In all cases, a dimensionless variable should be chosen.] 

 
0

0

4
sin cos( ) cos( )

2 2 1
2

p

p

p
b u du u

T

T
p p p

 
p

  
     

                 
     

   

Cosine of even multiples of  is one; of odd multiples minus one.  Hence: 

FOURIER SERIES FOR THE ANTI-SYMMETRIC SQUARE WAVE: 

4

0
p

for p oddpb

for p even


 
   


    or     
0

4 1 2
( ) sin 2 1

2 1m

t
f t m

m T


 

    
 

   



 

The inverse p dependence means that the coefficients vanish only slowly in the 

high frequency (large p) limit.  High frequencies (fast wiggles) are necessary to 

reproduce the very rapid changes at the discontinuities.  The factor (2 m + 1) is a 

standard representation for the odd integers. 
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Exercise: Sketch the sines on a plot of the square wave. Use the sketches to 

explain the absence of the even p terms and the 1/p dependence of the coefficients 

for the odd p terms. 

 

Plotting the first three terms:  

Plot[(4/Pi)*(Sin[x]+Sin[3x]/3+Sin[5 x]/5),{x,-1.4 

Pi,1.4 Pi}, PlotStyle->Thickness[0.01]] 

 

The square wave is evident with only the first three terms. The few term expansion 

does is not a good representation in the region around the discontinuity, but that is 

expected.  A discontinuity is a rapid change that can only be represented by rapidly 

changing functions, high-frequency sinusoids.  At the discontinuity, the series 

sums to zero, the average of the limits of the function as the discontinuity is 

approached from smaller values of the argument and from larger values.  

Examining the first nine terms of the expansion does not alter these observations. 

The inclusion of the higher frequencies reproduces the jump more faithfully.   One 

potentially disturbing point is noted. While the miss region near the discontinuity is 

shrinking in extent, the magnitude of the overshoot just before it is not. It remains 

at about 9% of the discontinuity for sums of any finite number of terms.  This 

behavior is the Gibbs Overshoot Phenomenon (after the American physicist J.W. 

Gibbs who studied the problem after Albert Michelson brought it to his attention).  
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The overshoot is discussed further when convergence properties are covered in a 

later section.  

Plot with first nine non-zero terms (mmax = 17): 

Plot[(4/Pi) * ( Sin[x] + Sin[3x]/3 + Sin[5 x]/5 + Sin[7 x]/7 + Sin[9 x]/9 +  

        Sin[11 x]/11 +Sin[13 x]/13+Sin[15 x]/15+Sin[17 x]/17), {x,-1.2  Pi,1.2 Pi}] 

 

plot through m  = 17 

 

Plot[(4/Pi) * Sum[ Sin[m x]/m, {m,1,41,2}],{x,-1.4 Pi,1.4 Pi}, = 

PlotStyle-> Thickness[0.005]] 

 

 plot through m  = 41 

Why were the coefficients of even index integer terms zero?  Draw a few pictures.  

Draw one period of the square wave; add a sketch of  sin 2p T    for p = 1.  
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Sketch the product of the functions.  Repeat using successive values of p.  For p 

even, sin 2p T  is odd about the points -T/4 and T/4 while the square wave is 

even about those points which leads to zero overlap or inner product.  Being even 

or odd about a value of the argument is a distinct characteristic behavior.  
 

Functions lacking distinct even or odd behavior can be expressed as a sum of an even function 

and an odd function.  Choosing even and odd about x = a: 

       ( ) ( ) ( ) ( )
( )

2 2 even odd

f a x a f a x a f a x a f a x a
f x f

         
   f  

 

Example 2:  The second example chosen is a triangular wave.   This function is 

smoother than the square wave as it has no discontinuities.  It does have periodic 

discontinuities in its first derivative.  Be alert; note the differences associated with 

expanding a smoother function. 

t

f(t)

1

-1

+T/2 T-T +3T/4+T/4-T/4-T/2-3T/4

-2

2

 

base period: - T//2 < t <  T//2 

                         

42 4 2
4( ) 4

42 2 4

t T Tfor tT
t T Tf t for tT

t T Tfor tT

  


  

     


4



                        [FS.12] 

Once again, the function is odd with average value zero. 
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1 1

2( ) sin sinm m m
m m

tf t b t b m
T


 

 

 
    

 
    where 

   
       

2

2

4

2

4 2

4 4

2

2 2

2
sin ( ) 4sin 2 2

4 4sin 2 sin 2 2

T

p p

T

T

T

T T

T T

T

T T

b t f t dt
T

tp T t dtT

t tp T t dt p T t dT T

 

 









       

      

  

  



t

 

The integrations necessary to compute the Fourier coefficients are not 

extraordinarily difficult, but the process does become tedious.  The tools required 

to complete the problem are integration by parts and perseverance. 
 

Integration by parts is based on the identity for the differential of a 

product:    which can be applied to ( )d uv u dv v du 

 ) sin[ ]n nu u n u 1( cos[ ] cos[ ]nd u u u    or 1sin[ ] ( cos[ ]) cos[ ]n n nu u d u u n u  u   .  

This result provides the tool to compute the integrals. 

 
4 2

4
2

1

sin 2 sin2

p
T

n n

pT

n
Tt p T t dt u u dup




  


          

   

                           
22 1

2
2

1

cos cos2

pp
n n

p
p

n
T u u n u u dp



 






u

 
                 

     

For our case of interest: 

 
4 2

4
2

2

sin 2 sin2

p
T

pT

Tt p T t dt u u dup




  

          
   

     

       

2 22

2
2

2

2 2

cos cos2

cos sin sin2

pp

p
p

p p p

T u u u dup

T pp






  










 
        

     


2

 

 

1
2 2

/2

2 ( 1)
2

1

p

p

for p oddT
p

p for p




 
  


 
  
  

 
  even
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A miracle occurs, and the answer appears.  Some of the steps toward that miracle 

include recognizing that the triangle wave is symmetric about t = 
T
/4. The 

functions 2sin m t
T






 share this property if m is odd, but not if m is even.  The 

Fourier expansion of the anti-symmetric triangular wave under study contains only 

sine terms with frequencies that are odd multiples of the fundamental. 

Exercise: Sketch the functions 2sin m t
T
 

  
 form m = 1, 2, 3 and 4 on a sketch of the 

triangular wave for the region 0 < t < T/2.  For which m values is the integral of the 

product of the sine and triangular wave non-zero for the range: 0< t< T/2? 

 

 
2 4

2 0

2 2sin ( ) 4 sin ( )
T T

p p p
T

b t f t dt t f t dt for p odd
T T

 


   
       

 
4 4

2
0 0

2 4 324 sin sin
T T

p p p p
t pb t dt t t dt where

T T T
2
T
    

         

2 2

2 2 2 2 0
0

8 8sin cos sin
p p

p
2p tb u u du u u u where u
Tp p

  
 

           

 
( 1)

2
2 2
8 1 ; 0

p

p pb for p odd b for p even
p

 
 
 


           [FS.13] 

 

Exercise: Complete the detailed evaluation of the bp suggested in the four lines 

above this exercise. 
 

FOURIER SERIES FOR THE ANTI-SYMMETRIC TRIANGULAR WAVE: 
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 
 

 

2 2 2

2 2
0

2 2 2
....

8 1 1( ) sin sin sin
3 5

18 2sin 2 1
2 1

m

m

t t
m m m

T T T
f t

tm
Tm

  









                   

t


 
 
 




 




             [FS.14]  

Again, only the odd index terms appear.  As before, for p even,  sin 2p T    is 

odd about the points -T/4 and T/4 while the triangular wave is even about those 

points which leads to zero overlap or inner product.  For large m, the expansion 

coefficients vanish as 2
1

m
 which is rather more rapid than the 1

m
for the square 

wave expansion coefficients.  High frequencies are necessary to follow rapid 

variations.  The triangular wave is smoother (less jerky) than is the square wave 

thus it has less high frequency (fast-wiggle) behavior than does the square wave.  

Conjecture:  If a function f(t) is continuous and has continuous derivatives  

through pth order, then its Fourier expansion coefficients will vanish no faster 

than  1
1

pm   for large m.  The smoother the function is, the less prominent the  

very high frequency contributions are. See problem 41. 

 

Plot[(8/Pi^2) * ( Sin[x] - Sin[3x]/3^2 + Sin[5 x]/5^2 ),{x,-1.4 Pi,1.4 Pi}] 
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The first three expansion terms provide a fairly faithful rendition of the triangular 

wave.  It wobbles a little, but it is not too shabby.  There are no discontinuities so 

the series appears to smoothly approach the desired function.  In particular, no 

overshoot phenomenon is evident.  As a more complete comparison, the nine-term 

representation is displayed below.  It is just plain great.  One can point at the 

corners being rounded, but that is to be expected. A 17 0 wave corners 34 times in 

the period of f(t). A corner is therefore expected to make its bend in a fraction 1/34 

of the period.  A plot with expanded detail and dimensionless period 2 verifies 

this expectation qualitatively.  The bend is expected to require about 2/34 or one-

fourth of the 4/17 range plotted.  The important observation is that, as the number 

of terms increases, the regions in which the sum is a poor representation of the 

function shrink and the magnitude of the error in these regions also shrinks.  

Contrast this with the Gibbs phenomenon at discontinuities. 



Plot[(8/Pi^2) * ( Sin[x] - Sin[3x]/3^2 + Sin[5 x]/5^2 -Sin[7 x]/7^2 + Sin[9 

x]/9^2 - Sin[11 x]/11^2 +Sin[13 x]/13^2-Sin[15 x]/15^2+Sin[17 

x]/17^2),{x,-1.2  Pi,1.2 Pi}] 

 

Plot through m = 17. 
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Plot[{ 2 x/Pi + UnitStep[ x -Pi/2 ]  (2 - 4 x /Pi), 

(8/Pi^2)*(Sin[x]-Sin[3x]/3^2+Sin[5 x]/5^2-Sin[7 

x]/7^2+Sin[9 x]/9^2-Sin[11 x]/11^2+Sin[13 x]/13^2-

Sin[15 x]/15^2+Sin[17 x]/17^2)},{x,Pi/2-

2*Pi/17,Pi/2+2*Pi/17}, PlotStyle -> Thickness[0.005]] 

 

Plot through m = 17, Corner Detail 

 

Plot through m = 201, Corner Detail 

Exercise:  Give the Fourier coefficients for a triangular wave similar to the one 

above, but with amplitude A rather than one. 

 

Exercise:  Give the Fourier coefficients for a function that is the sum of the unit 

amplitude square wave plus the unit amplitude triangular wave discussed above.  

How fast do the Fourier coefficients vanish for large m?  Why is this dependence 
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expected? 

 
 

Dirichlet Conditions:Under what conditions can a function be represented well by 

its Fourier series?  The following is a statement of sufficient conditions. 

 

If f(t) is a periodic function of period T, and if between -T/2 and T/2 ,the function is 

single-valued, has a finite number of finite discontinuities, has a finite number of 

maxima and minima, and if 
2

2

2

( )
T

T

f t d

 t  is finite then the Fourier series as defined 

above converges to f(t) at all points where f(t) is continuous, and, at discontinuities, 

the series converges to the average of the left and right limiting values of the 

function as it approaches the discontinuity; it converges to the mean value at a 

discontinuity. 

 

 

Convergence and Parseval Relations 

 Several convergence properties of Fourier series have already been noted.  If 

the function has a discontinuity at t = tjump, the series converges to the average of 

the limits of the function as t approaches tjump from smaller and from larger values.   

 To discuss the overall convergence of the series for f(t), the sequence of  partial 

sums is considered where sn(t) is the sum of the  2 n + 1 lowest frequency terms of 

the series. It includes the constant term and all the sine and cosine term with 

frequencies up to no.  A proper partial sum includes all the terms in the Fourier 

series with frequencies up to a maximum no and no terms with frequency higher 

than that value. Never use an improper partial sum. (A later section on the Gibbs 

phenomenon demonstrates the importance of using partial sums that consistently 

include all terms up to a set maximum frequency.) 
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            0
1 1

( ) 1 cos sin
n n

n mf fm fm
m m

ms t c a t b
 

t                        [FS.15] 

If the series converges uniformly to the function f(t), then for any given  there 

exists an N such that | f(t) – sN(t)| <  for all t  [-½ T, ½ T ].  That is, if and only if 

life is great, the sequence of partial sums converges uniformly to f(t) in the interval 

[-½ T, ½ T ].  If a series converges uniformly, then there is always an N term (finite 

sum) that represents the infinite series to any accuracy desired.  Working in terms 

of the finite sum, interchanging the order of operations of summing series and 

integrating (or differentiating) is clearly allowed.  That would be great, but uniform 

convergence just does not happen in all cases. At a discontinuity, the series 

converges to the average of the left and right limits of the function, and, in the 

Gibbs overshoot region, the series diverges from the value of the function by 

8.95% of the magnitude of the discontinuity for any large, but finite sum of terms. 

 Fourier partial sum sequences do converge in the mean. For every  there 

exists an N such that 
/2 2

/2
( ) ( )

T

NT
f t s t dt 


   where the limits are just those for any 

complete period of f(t).  This can be rewritten as: 

                                   
/2 2

/2
0( ) ( )

T

T
N

N dtf t s tLim 


  
 

                         [FS.16]

For periodic functions f(t) with 'not too many' discontinuities and that are square 

integrable [ the integral 
/2

/2

2
( )

T

T
f t dt

   is defined and finite ], the corresponding 

Fourier series converges in the mean to f(t). 

 The convergence of the sequence of partial sums to a discontinuous function 

f(t) is weak. Consider the Gibbs 9% overshoot at discontinuities (of the 

discontinuity).  For the Nth partial sum, the region in which the sum differs from 

the function by an amount of order 9% of the discontinuity has the approximate 

extent of T/2 N.  Even for large N, there are tiny regions in which the partial sum 

1/21/2010 USNA Physics Handout Series.Tank:  Fourier Series FS-23 



misrepresents the function by a finite amount.   

A Fourier series expansion converges weakly to a discontinuous function. 
 

Replace the function with its Fourier series: Parseval and beyond 
 

 Once you have the Fourier series for a function, that series can be used in the 

place of the function.  That is: the Fourier series is a robust representation of the 

function. Use the orthogonality relations to consider
/ 2 2

/ 2
( )

T

T
f t dt

 . 

The summation indices are dummy labels. They may be relabeled at will. At 

minimum, rename the labels in a product to ensure that the labels are distinct. 

Represent f(t)* and  f(t) using distinct summation index labels throughout. 

 

 

*
2 2

2

0
1 1

2 2

0
1 1

( ) cos sin

* cos sin

T T

f fm m fq q
m qT T

f fp p fr r
p r

f t dt c a t b t

c a t b t d

 

 

 

  

 

 

 
     

 

 
  t    

 

  

 
 

 
2

0 0 0
1 1 1

2

* * cos sin * cos ...

T

f f f fp p fq q fm m
p m qT

c c c a t b t a t d  
  

  

 
          

 
  t  

nine terms in the complete integrand!   Use orthogonality. 

Finally 
2 2 22

0
1 1

2

1 1
2 2( )

T

f fm
m mT

f t dt T c a b
 

 

2

fm

 
 
 

     

where the factors of one half are an annoying consequence of the choice of 

expansion set functions (or basis functions): {1;{  cos mt };{ }} which 

have uneven square integrals.  This relation is Parseval's Equality: 

sin pt 

2
2 22

0
1 1

2

1 1
2 2

( )

T

f fm
m mT

f t dt T c a b
 

 

2

fm

 
    

   

Equally as cool and proven using the same techniques, the inner product relation 

can be re-expressed: 
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 
/2

* * *
0 0

/2

1 1
2 2

1 ( ) ( )
T

gm gpg
*

f fm fp
m pT

g t f t dt c c a a b bT


                 [FS.17] 

The coordinate and the Fourier representations for the inner product agree at least 

as long as our functions are well-behaved.  Compare these relations with the 

expressions 
2

x x y y z zA A A A A A A A A    
 

 and x x y y zA B A B A B A B    z

 
. 

 

Notation:  in other references expect: 

* *
0 0

1 1 1
4 2 2gm gpg

*
f fm fp

m p
g f a a a a b b     

Recall the average value of the function  is to be replaced by 0c 0
1

2
a  

to agree with notations commonly used. 

 

Fourier series provide a robust representation of the function: 

Operations can be executed on the Fourier series for a function as well as on the 

function itself.   Examples: differentiation and integration.  Properly, the 

techniques are guaranteed valid only if the series converge uniformly. 

Start with the anti-symmetric triangular wave: 

 
 

 22
0

18 2
( ) sin 2 1

2 1

m

m

t
f t m

Tm








     
  

Compute the series for the derivative of f(t) by differentiating the series term by 

term.   Sketch the derivative.  The series represents a symmetric square wave.  

Compare the frequency content with that of the anti-symmetric square wave. 

 
 

 2
0

18 2
cos 2 1

2 1

m

m

df t
m

dt T Tm

 






        
2

      
  

Exercise:  Compare the frequency content of the symmetric square wave that 

results from the term-by-term differentiation of the anti-symmetric triangular wave 
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with the frequency content of the anti-symmetric square wave. 

 

Next, f(t) is to be integrated.  Sketch the integral of triangular wave f(t). 

 
 

 

 
     

22
00 0

32
0

18 2 '
( ) ( ') ' sin 2 1 '

2 1

18 2
1 cos 2 122 1

mt t

m

m

m

t
g t f t dt m dt

Tm

tT m
Tm















 
  

  
    


  




 



 

 

 

 

Exercise:  Sketch the integral of the triangular wave.  Note that the coefficients of 

its Fourier series vanish as m-3 for large m.  This dependence suggests that the 

function has a continuous first derivative.  Does your sketch support this 

conclusion? 

 

Relating Fourier series derived for different periods 

Given a Fourier series for a periodic function f(t) with period T1, the Fourier series 

for 1

2
( ) ( )T

Tg t f t , a function with the same 'shape' that has been argument stretched 

to have a period of T2 can been generated by scaling the independent variable in the 

original series. The independent variable in the original series can be scaled in the 

same manner to yield the Fourier series for g(t).  [1 = 2/T1]

0 1
1 1

( ) cos sinm m
m m

1f t c a m t b m t 
 

 
           

   1 1

2 20 1
1 1

( ) cos sinT T
m mT T

m m
g t c a m t b m t 

 

 
1

   
     

    
 

 The function g(t) has the a period of T2 , and the same  amplitude as f(t).         

 

Many references assume a period of 2. The result is a series of the form: 

0
1 1

( ) cos sinm m
m m

f x c a m x b m
 

 
x                     period 2
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The series for the same shape and a period of T is generated by replacing x by 1

2

T
T t  

or 2
T t . Mathematica assumes a range -½ to ½ or an initial period of T1 = 1. In a 

Mathematica generated series, replace the independent variable by 1

2

T
T t   t

T .

 

Exercise: Given a periodic function f(t) with period T1, show that 1

2
( ) ( )T

Tg t f t  is a 

periodic function with a period of T2. 

 

Physical Application: The Damped Driven Oscillator 
 

Mechanical systems usually have an inertial element that 'resists acceleration' 

corresponding to second time derivative in the displacement equation ensuring a 

2
1
  dependence of the amplitude response to an excitation in the high frequency 

limit.  This dependence means that the series for the response converges more 

rapidly than that for the excitation and that high frequency weirdness is usually not 

a practical issue. 
 

The steady-state response of the oscillator to a sinusoidal driving force is assumed 

to be known.  See, for example, the differential equations portion of this handout 

set.  A condensed derivation follows.  The damped driven mechanical oscillator 

obeys the differential equation 
2

2
( )

d x dx
m b k x F

dt dt
   t  which is rewritten as 

2
2
02

2
d x dx

( )x f t
dt dt

     where =b/2m , 0
2 = k/m and f(t) = F(t)/m. 

MEGACEPT: A linear system responds at the frequency at which it is driven.  

If the system is driven at a single (pure) frequency, its steady-state response is 

at that same pure frequency with at most a phase shift. The relative amplitude 
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of the response can depend on frequency.  The single pure frequency functions 

are sin( ),cos(( ), i tt t e    .  Linear systems obey the superposition principle so 

the response to any periodic function can be found by decomposing the 

driving function into its Fourier (pure frequency) components, computing the 

response to each component and then summing the responses to find the 

response to the full periodic driving function.      NOTE:  The transient 

behavior of a linear system has a frequency character determined by the 

parameters of the system, not those of the driving force.  The steady-state 

solution is the long-time behavior after the transients have decayed. The 

transient behavior satisfies the homogeneous equation. 

 

Consider a single frequency driving function: 0( ) cos( )f t f t .  The response is at 

the same frequency, but with a phase shift: 0( ) ( ) cos( )x t R f t     . The sign in 

expression: (t is chosen to be negative as the response lags behind the drive 

or cause. The manipulations are more compact if the clock for t is reset by +/. 

This yields 0( ) cos( )f t f t    and 0( ) ( ) cos( )x t R f t    which states that the drive 

leads the response by  which is the same as saying that the response lags the drive 

by . Substituting these expressions into the differential equation: 

USE: cos( ) cos( )cos( ) sin( )sin( )t t t         

 2 2
0 0 0( ) cos( ) 2 sin( ) cos( ) cos( )cos( ) sin( )sin( )R f t t t f t t                  

The functions sin(t) and cos(t) are linearly independent so the coefficients of 

each must match on the two sides of the equation. 

2 2
0cos( ) : ( ) cos( )t R            and      sin( ) : ( ) 2 sin( )t R        

After applying the two most powerful trigonometric identities [  

and 

2 2sin ( ) cos ( ) 1  

sin( )
cos( )tan( ) 

  ], it follows that: 
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   
21 22 2

0( ) ( ) 2R D    
              and      1

2 2
0

2
tan


 

  
 
 




 

The steady-state response to a driving function 0( ) cos( )f t f t  is: 

   
10

2 2
0

0 2 22 2
0

2( ) ( ) cos( ) cos tan
2

fx t R f t t


 
   

  

  
    

   
 

 

Note that the result above supports the conjecture that a linear system driven by a 

pure frequency responds at that same frequency.  The amplitude of the response 

does depend on that frequency. Transients associated with 'turn-on' or start-up' 

require that additional frequencies be added to the representation of f(t).  Invoking 

superposition for linear systems, the response for an arbitrary periodic driving 

force,  0
1 1

( ) 1 cos sinm m m m
m m

f t c a t b t 
 

 
          , 

is:                     [Recall that:  f(t) = m
-1

 F(t).] 

 

       
0
2 2 22 22 2 2 21 10

0 0

1
2 2
0

cos sin
( )

2 2

2
tan

m m m m m m

m m
m m m

m
m

m

a t a tc
x t

m

  
      

 
 

 

 



      

 
 
 

 
  

   




 


               [FS.18] 

It looks hopeless. The result is nonetheless very useful, particularly when the 

system has a sharp resonance that selects from all the possible m only a few near 

the natural frequency o with the response to frequencies further from resonance 

being negligible by comparison. 
 

Why expand in a Fourier series rather than in (say) a Taylor’s series?  Series 

expansions come in many varieties, and one must choose the type that best suits 

the problem.  The method of Frobenius revealed the awesome power of Taylor’s 

series expansions. The individual expansion base functions (.. xn ..) are simpler 
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than sines and cosines.  Why would you ever bother?  For many important 

problems that you study, there exists a set of characteristic solutions, solutions that 

just fit the problem. You can recognize their appearance once you know that the 

German for characteristic is eigenschaft and that the functions are eigen-functions.  

For linear response problems such as the oscillator studied above, the system 

responds at the frequency at which it is driven.  A pure frequency drive leads to a 

response at that same pure frequency.  Obviously one wants a series that represents 

the driving input in terms of its pure frequency components.  Each pure frequency 

component can be analyzed independently with no mixing with components at 

other frequencies.  The pure single frequency functions are sin(t), cos(t), eit 

and e-it
.   These functions are the bases for Fourier expansions.  Fourier expansions 

are a leading choice for most linear problems for this reason.   A second strong 

indicator is that the function is periodic (or can be extended as a periodic) function.  

The functions sin(t), cos(t), eit and e-it are periodic and hence share a strong 

characteristic behavior with the function of interest.  Expansions in terms of basis 

functions that share behaviors with the function to be expanded are more natural. 


German: Eigenshaft   nature, virtue, feature, quality, property, attribute, 

character, characteristic, characteristic quality 


Other Fourier Series:  The Sine, Cosine and Complex Exponential series 
 

Consider any function defined from 0 to S.  That function can be extended as an 

even or odd function to the interval -S to S and beyond by assuming that the 

function is periodic with period 2 S.  If the anti-symmetric extension is adopted, 

the Fourier series will only have sine terms. 


1

( ) sinm m
m

f t b t




    where   
0

2 2
4

sin ( )
2

S

m Sp t f t dt
S

b    
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If the even extension is adopted, the function may be represented as  

0
1

( ) cosm
m

mf t c a t




    where 0

0

1
( )

S

f t dt
S

c    and   
0

2 2
4

cos ( )
2

S

m m S t f t dt
S

a    

The penalty for using the odd extension is that the extended function will have 

additional discontinuities at t = 0 and at t = -S and + S unless f(t) vanishes at these 

points.  The even extension does not introduce additional discontinuities.  Recall 

that discontinuities ensure that the coefficients vanish no faster than 1
m  for large 

m. 

S-S t

even extension

odd extension

f(t)

 

Exercise: Consider the function f(t) that consists of two slope-matched parabolic 

sections. Consider expanding the function as defined over the interval 0 < t < 2 as 

an even or odd function to complete the definition over the period –2 < t< 2. 

Would a sine of cosine series converge more rapidly?  Assuming that the 

coefficients would decrease as m- n for large m predict the value of n for a sine 

series expansion and for a cosine series expansion. 

 

2 2

2 2

1 ( 1) 2 0 2
( )

1 ( 1) 2 2 0

t t t for t
f t

t t t for t

      
 

       
 

[FS.19]  
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Euler's identity and tons of perspiration can be used to develop the complex 

Fourier series with the result that one just uses the same set of frequencies for the 

,2 2
T T



  interval.  2( ) expm

m

f t d i m T





t 

  
    A typical coefficient cp is 

projected out of the sum by first multiplying both sides by  2exp i p tT
 

  
  

     
/ 2 / 2

/ 2 / 2

2 2exp ( ) exp exp
T T

m p
mT T

i p t f t dt d i p t i m t dt T dT T
 



 

       
       2

T
   

or    
/2

/2

21 exp ( )
T

p
T

d i p tT T




 
  

  f t dt . 

NOTE: To project out the coefficient of a complex-valued function i te  , the series is 

pre-multiplied by the complex conjugate of that function,  *i te i te  .  The same 

procedure was followed for the real functions.  In the real case, *  just did not 

matter.  The procedure follows from the form of the inner product.   The complex 

conjugate of g(t) is required. 

   
/2

/2

*1( ) ( ) ( ) ( )
T

T
Tg t f t g t f t dt



   

 

Exercise:  Show that: 

                             
/2

/2

2 21 exp exp
T

pm
T

i p t i m t dtT T T
  



   
      
                  [FS.20] 

 

Complex representations are not necessary to describe classical physics.  Certain 

computational economies result from adopting complex notation, but care must be 

taken to avoid interpreting or including the imaginary parts of the results.  Few 

problems arise as long as only linear operations are involved.  Non-linear 

operations however mix the real and imaginary (the physical and not-physical) 
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parts.  Evil lurks in the shadows with the imaginary part.  [Quantum Mechanics 

requires complex values to represent the physics.] 

 

Offbeat Applications: Summing Series 

Sum 1:  The square wave example yielded the representation: 

 
1

1 04 1 2 2( ) 2 1
2 1 1 02

sin
m

Tfor tt
f t m

Tm T for t








                   
  

Examining  
1

4
1 1 1

...
3 5 7

4 1 4
( ) 1 2 1 1

2 1 2
sin

m

Tf m
m


 





           


      
 

 provides 

the sum of the inverses of the odd integers with alternating signs.  

                                        
0

1

2 1 4

m

m m








                           [FS.21] 

 

Sum 2:  The triangular wave example  

 
 

 22
0

42 4 2
18 2 4( ) 2 1 4 42 1

42 2 4

sin
m

m

x T Tfor tT
t x T Tf t m for tTTm

x T Tfor tT








  
        
     




   

The trick is to find a value of the argument that allows the sines to be easily 

evaluated.  Choose t = T/4 and use f(T/4) = 1.  

 
 

   
 2 22 2

0 0

1 18 8
( ) 1 2 14 22 1 2 1

sin
m

m m

Tf m
m m


 

 

 

        
   

                                        
2

2

0

1

2 1 8m m





 
   

                                [FS.22] 

 

Additional sums can be extracted from completed Fourier series by invoking 

Parseval's equalities and the identity for inner products of functions. 
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2
2 2

0
1 1

2

2 1 1
2 2

( )

T

f fm
m mT

T c a bf t dt
 

 

2

fm

 
    

   

 
/2

* * *
0 0

/2

1 1
2 2

1 ( ) ( )
T

gm gpg
*

f fm fp
m pT

g t f t dt c c a a a aT


        

 

Sum 3:  The square wave and Parseval's equality. 

 
1

1 04 1 2 2( ) sin 2 1
2 1 1 02

m

Tfor tt
f t m

Tm T for t








                   
  

  2

22
2 2 22

0
1 1 1

2

161 1 1
2 2 2

1
( )

2 1

T

f fm fm
m m mT

f t dt T T c a b T
m

  

  

                  
    

It follows that:                     
2

2

0

1

2 1 8m m





 
   

  

Before you cry foul, think about it.  It would have been much worse if the two 

approaches were in conflict! 
 

 

Exercise:  Relating sums of odd and even index terms for inverse powers. 

 
2

2

2
0

1 1

2 1 8m n oddm n





 
    

      and ….   
 22 2

1 1 1

22n even all m all mn mm

 

    2

1  

2 2 2 2 2 2

1 1 1 1 1 1 5

2 4all n n even n even n odd n odn n oddn n n n n
          2

1

n
 

Give the values of 
2

1

all n n   and 
2

1

n even n  where all n means all positive integers. 

 

Exercise:  Use the Fourier series for the unit amplitude triangular wave and 

Parseval's equality to develop the sum of an infinite series.  

 

Recall the term-by-term integration of series.  The example was the triangular 
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wave f(t). Sketch f(t) and its integral. 

 
 

 

 
     

22
00 0

32
0

18 2 '
( ) ( ') ' sin 2 1 '

2 1

18 2
1 cos 2 122 1

mt t

m

m

m

t
g t f t dt m dt

Tm

tT m
Tm















 
  

  
    


  




 



 

 

 

Note that the average value of g(t) is: 

 
 3 3

0

14( )
2 1

m

m
g t

m









  

 

Spatial Fourier series 
 

Most of this handout has been directed at temporal Fourier series.  The relations 

are to be restated for spatial series. In the space-spatial frequency realm, Fourier's 

conjecture takes the form: Any function f(x) which is periodic with period L can be 

represented as a sum of a constant plus sinusoidal terms with spatial frequencies 

2m m L   .  The sinusoids are the sine and cosine.  The set of frequencies m 

ensure that each sinusoid completes an integer m cycles in the distance L, the 

period of f(x) The base frequency for the expansion is  0 1 2 L     which is 

called the fundamental spatial (angular) frequency.  This frequency is 

determined by the period of the function to be expanded alone. The frequency of 

every term in the expansion is an integer multiple (or harmonic) of this 

fundamental frequency. 

 0
1 1

( ) 1 cos sinm m m m
m m

f x c a x b 
 

 
x              where  2m m L  .

Each term in the expansion represents a distinct behavior of a function with period 

L.  The periodicity restricts the function to this set of behaviors.  The first term 

 (1), a fancy way to write , is the average value of the function with the (1) 0c 0c
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indicating that it represents the constant behavior of the function.  The terms 

cosm ma x 

x

 represent the independent or distinct ways in which an even function 

of period L can wiggle, and the terms sinm mb     represent the independent or 

distinct ways in which an odd function of  period L can wiggle.  It is crucial to 

recognize than each term represents an independent behavior. 

 

Begin with 1.  Find out how much constant behavior is in the function. 

   
2 2 2 2

0
1 12 2 2 2

1 1 1
1 ( ) 1 1sin

L L L L

m m
m mL L L L

1
1cosm mf x dx c dx a x dx b x dx

L L L
 

 

   

      L 

 

The integrals of the sine and cosines are over an integral number of cycles - hence 

they vanish.  Wiggling like a sine or cosine for an integral number of cycles is 

nothing like being constant.  So: 

                   
2 2

0

2 2

1 1
1 ( ) ( ) ( )

L L

L L

c f x dx f x dx f
L L 

   x                  [FS.23] 

The constant part of the function is just its average value over the interval 

,2 2
L L


 .  Periodic implies all single intervals of length L give the same result. 

The coefficients for the independent wiggle modes become: 
2

2

2
cos ( )

L

p p

L

a x f x d
L




    x and 
2

2

2
sin ( )

L

p p

L

b x f
L




    x dx 1for     [FS.24] p

The factor of two arises because the average value of  2cos px    and of 2sin px    

is just one half (while the average value of 1 is 1 !). 

 

Spatial Fourier series have the same Parseval, inner product and convergence 

properties as do the temporal series. 

 

An ALTERNATIVE NOTATION replaces m by  km when the Fourier series is for 
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function of a spatial variable.  The terms spatial frequency and wave number are 

used for km.  It is common to expand functions dependent on several spatial 

dimensions in which cases the collection of spatial frequencies forms a vector.  

Hence the final term for  is wave vector where the number of subscripts 

matches the dimensions of the function's argument.

mnk


 

Beyond periodic functions: THE FOURIER TRANSFORM 
 

The generalization of Fourier series to forms appropriate for more general 

functions defined from - to + is not as painful as it first appears. The process is 

presented here even though it lies beyond the goals for this section. The process 

illustrates the transition from a sum to an integral, an important thing to 

understand. The functions to be expanded are restricted to piecewise continuous 

square integrable functions. (Less restrictive developments may be found 

elsewhere.)

The complex form of the Fourier series is the starting point. 

                       2( ) expm
m

f x d i m L
 x





 
  

                         [FS.25] 

A typical coefficient dp is projected out of the sum by first multiplying both sides 

by  2exp i p xL



 


, the complex conjugate of  2exp i p xL

 
  

, the function dp 

multiplies. 

     
/ 2 / 2

/ 2 / 2

2 2exp ( ) exp exp
L L

m p
mL L

i p x f x dx d i p x i m x dx L dL L
 



 

              2
L

   

or    
/ 2

/ 2

21 exp ( )
L

p

L

d i p xL L




  
  f x dx

L

. 

The trick is to define 2 /k m  in  2( ) expm
m

f x d i m L






x 
   to yield 
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       2 2( ) exp exp2 2m m
m m

L Lf x d i m x d i kx kL L
 

 
 

 

      
     

where k = 2/L, the change in k as the index m increments by one from term to 

term in the sum. In the limit , k becomes an infinitesimal, k becomes a 

'continuous' rather than a discrete variable [ ], and the sum of a great 

many small contributions becomes an integral. 

L 

( )md d k

   1 1( ) ( ) ( )2 2
ikx ikxf x d k L e dk g k 

 

 

         e dk  

where from the equation for the dp 
/2

/2

( ) ( ) ( )
L

ikx

L

d k L e f x dx g k



   

The function g(k) is the Fourier transform of f(x) which is the amplitude to find 

wiggling at the spatial frequency k in the function f(x).  The Fourier transform of 

f(x) is to be represented as ( )f k . Sadly, there is no universal treaty covering, the 

Fourier transform, and factors of 2 are shuttled from place to place in different 

treatments.  Some hold that the balanced definition is the only true definition:

 1 1( ) ( ) ( ) ( )
2 2

ikx ikxf x f k e dk f k f x
 

 


 

               e dx

k

          [FS.26] 

The twiddle applied to the function symbol denotes the Fourier transform of that 

function, and the argument becomes the Fourier conjugate variable. ;t x   

 

In truth the inverse of 2 must appear, but it can be split up in any fashion. 

   1
1 1( ) ( ) ( ) ( )2 2

S S
ikx ikxf x f k e dk f k f x 

 


 

      
    e dx  

The common choices are S = 0, S = 1 and S = ½. 
 

The Fourier transform has a rich list of properties.  Suffice it to say that analogs of 

the convergence properties, inner products and Parseval relations found for the 
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Fourier series exist and much more. The current goal is only to show that the 

restriction to periodic functions can be relaxed.   
 

Fourier methods are extremely mysterious on first encounter.  Pay the price.  The 

rewards for mastering Fourier methods are enormous and cool. In the time domain, 

the Fourier transform identifies the frequency content of a function of time.  

Modern SONAR and passive acoustic monitoring systems depend on examining 

the received signal transformed into frequency space.  Many systems are identified 

by their tonals, distinct frequency combinations in their acoustic emissions.  In 

quantum mechanics, the spatial Fourier transform of the wave function reveals its 

plane wave or momentum content. In optics, the spatial Fourier transform of EM 

field amplitude in the plane of an aperture predicts the Fraunhofer diffraction 

pattern of that aperture. Scaling up to radar wavelengths, the spatial Fourier 

transform of an antenna predicts the far-field radiation pattern of that antenna. A 

result that also applies to hydrophone arrays in acoustics. There are problems that 

defy solution in the time domain that yield results freely when transformed to the 

(Fourier) frequency domain.  

 

Fourier Series and the Vector Space of functions with period T 

REVIEW: Displacement Model for a Vector Space  
 As an introduction, we will review the properties of the collection of all 
possible displacements  of a particle in our familiar model, a flat 
(Euclidean) infinite three-dimensional universe. 

ir


 

Rules for the Addition of Displacements 
A1. Closure: the sum of two disp acem ther displacement. l ents is ano

3r1 2r r     
 

A2. Additions can be regrouped without changing the resultant 
displacement. 

   1 2 3 1 2r r r r r           
3r


  

A3. The order of additions can be changed without  changing the sum. 
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 1 2 2r r r 1r       

ir

 
A4. There is a displacement that does not change the position of the particle.  

0ir   
 

  for all ir


. 
A5. For any displacement ir


, there is another ir  that has the opposite 

action on a particle's position. 
 for all  ir


 ,     0ii rr   


. 

 

Rules for the Multiplication of Displacements by Scalars 
M1.  If    is an allowed displacement, then ir


ic r  is also an allowed 

displacement. 
M2. The scalar multiple of a sum of displacements is the same as the sum of 
the same multiple of the individual displacements. 

    , an allowed displacement  1 2 1c r r c r c r       
2



i


M3. A sum of scalars times a displacement is the sum of the individual 
scalars times that displacement. 

    , an allowed displacement   i ic d r c r d r      

M4. The scalar multiplication of displacements is associative. 
        i i ic dc d r r r     

. 

M5. One times any displacement i  that lacement. s  same disp
r1 i i ir r     

. 
 

Displacements have other features such as a scalar inner (dot) product that 
yields a measure of the component of one displacement along the direction 
of another. The inner product of a displacement with itself is always 
positive. Thus the inner product can be used to assign lengths to all the 
displacements in the space (to set a metric for the space). [ i i ir r r     

|] 

Further, we can find a set of three displacements  1 2 3, ,b b b
  

 such that all the 

allowed displacements can be represented as a sum of multiples of the 
members of this set, a linear combination. That is: all 

  for some scalars 1 1 2 2 3 3ir c b c b c b   
  

 1 2, ,c c 3c .  This set of 

displacements  1 2 3, ,b b b
  

is a basis for our three dimensional universe.  An 

enormous simplification follows if the basis set  1 2 3, ,b b b
  

 is chosen to be 

orthogonal and unity normalized.  For example: the familiar set  ˆˆ ˆ, ,i j k  is 

orthogonal  ˆ ˆˆ ˆ ˆi j j k k    ˆ 0i   in the sense that each represents a unit 

displacement that is completely independent of the other two. The set is also 
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unity normalized as: .  The components of a vector can be 
found by projection using the inner product. 

ˆ ˆˆ ˆ ˆ ˆ 1i i j j k k     

 x yx y
i r c    

1 2 1

    ˆˆ ˆ; ; zc r r j r c r k         
z

r


 

The inner product of two displacements can be expressed in terms of their 
components. 

2 1 2 1 2x y y zc c c c x z

m

r r c c   

 
1 1

cosm m
m m

 

The Fourier Series basis set is orthogonal, but it is not unity normalized. 
 

The Fourier vector space of periodic functions 
 

Every well-behaved function of period T can be expanded in a series of the form 

  0( ) 1 sinmf t c ba t t   
 

 

     where 2m m T   .    [FS.27] 

The sum of two functions of period T is another function of period T is also a 

function of period T is also a function of period T.  Any scalar multiple of a 

function of period T is also a function of period T.  That is: the addition closure 

condition A1 and the multiplication closure condition M1 for vector spaces are 

met.  Subject to the Dirichlet conditions, the Fourier expansion set 

                 {1;{cos mt   pt};{sin }} where  2m m T                  [FS.28]   

provides a complete basis for the expansion.  Complete means that basis includes 

all behaviors necessary to accurately represent (converge in the mean to) all 

reasonable functions with period T.  Orthogonal means that each member of the 

basis set has a vanishing inner product with any other member of the set. Each 

member of the set represents an independent behavior that is not shared with any 

other member of the set.  The expansion coefficients (components with respect to 

the chosen basis) can then be found by using the inner product to project out a 

behavior.  Choose the cos pt    behavior.  Multiply the series by    and 

use the orthogonality relations. ( ! Omit the complex conjugation for real 

functions.) 

*
cos pt  
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/2 /2

0
/2 /2

/2 /2

1 1/2 /2

cos ( ) cos

cos cos cos sin

T T

p p
T T

T T

m p m m p m
m mT T

t f t dt t c dt

a t t dt b t

 

   

 

 

  

      

    t dt        



 

 

   

 

Each function in the basis behaves like itself and not at all like any other so only 

the cos times cos integral with m = p survives. 

 
/ 2 / 2

1 1/ 2 / 2

cos ( ) cos cos
2 2

T T

p m p m m
m mT T

m
T T

t f t dt a t t dt a a  
 

  

           p   

The familiar result follows: 
/2

/2

2
cos ( )

T

p p
T

a t
T




    f t dt  

All operations on the function can be defined in terms of actions on the Fourier 

components (coefficients) of the functions. The series for the sum of two functions 

(with period T) is the series with components that are the sum of the corresponding 

components in the series for the individual functions. The scalar multiple of a 

function has Fourier components that are that same scalar multiple of the Fourier 

components of the original function.  The inner product of two functions can be 

expressed in terms of their Fourier components using Parseval's equality. Given: 

 0
1 1

( ) 1 cos sinm mf fm fm
m m

f t c a t b  t
 

 
         



 

                      0
1 1

( ) 1 cos singm m gm mg
m m

g t c a t b t
 

 
                    [FS.29] 

 
/2

* * *
0 0

/2

1 1
2 2

1 ( ) ( )
T

gm gpg
*

f fm fp
m pT

g f g t f t dt c c a a b bT


        

The annoying factors of 1/2 appear because the Fourier basis set is not unity 

normalized.  Recall that the average value of 2cos pt    or of  is one half 

(while the average value of 1 is 1 !).  Forgive Fourier; he did not realize that he 

was defining a basis for a vector space. 

2sin pt 
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Dimension is another issue.  The dimension of a vector space is the smallest 

number of vectors that span the space - can be formed in a sums representing every 

vector in the space.  For the Fourier series space that number is infinite. It is not 

very infinite however; it is a mere countable infinity. An infinite set is countable, if 

every element can be placed into a one-to-one correspondence with the counting 

numbers, the positive integers. One such correspondence is: 

 0 1 1; cos 2 ; sin 2m mf fm fmc a t m b t 1m            

In a similar fashion, the number of bound states for a hydrogen atom is countable.  

Don't sweat it!  Several mathematicians assure me that a countable infinity is 

hardly more than a finite number in the sense that it causes no problems beyond the 

headache currently throbbing between your temples. 
 

Tools of the Trade: 
 

Evaluating Trig Functions using the Unit Circle: 
 

The evaluation of Fourier coefficients often involves specifying values for 

expressions of the form:  sin[ ]om  where o p
  .  The answers can literally be read 

off the unit circle.  The unit circle is a circle of radius one centered on the origin of 

the x-y plane.  The coordinates of each point on the circle are therefore (cos, sin) 

where  is the angle measured CCW from the x-axis. 
 

x

y

1


(cos,sin)

 

x

y

(1,0)

(0,1)

(0,-1)

45º
(-1,0)

(.707,.707)(-.707,.707)

(-.707,-.707) (.707,-.707)
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  Unit Circle for SIN and COS;     .707 is a shorthand for 1
2  

0 ;
sin[ ]

0 ; 2

2

1

for m even m p
m

for m odd m p









 
                1 ;

cos[ ] 1
1 ; 2

m 2

1

for m even m p
m

for m odd m p







  

  
 

 

0 4 0,4,8,12,...

1 4 1 1,5,9,...
sin[ ]

0 4 2 2,6,10,...2

1 4 3 3,7,11,...

for m p

for m p
m

for m p

for m p


 

            
   

 

1 4 0,4,8,12,...

0 4 1 1,5,9,...
cos[ ]

1 4 2 2,6,10,...2

0 4 3 3,7,11,...

for m p

for m p
m

for m p

for m p


 

             
   

 

 

1 2

1 2

1 2

1 2

0 8

8 1

1 8

8 3
sin[ ]

0 84

8 5

1 8

8 7

for m p

for m p

for m p

for m p
m

for m p

for m p

for m p

for m p








  
 

  







 
 

 


 

 
  

 

2

4

6

               

1 2

1 2

1 2

1 2

1 8

8 1

0 8

8 3
cos[ ]

1 84

8 5

0 8

8 7

for m p

for m p

for m p 2

4

6

for m p
m

for m p

for m p

for m p

for m p








  
 

  







 
 

 


  

 
 

 

 

 

Exercise:  Use the methods above to evaluate  1 sin( )2
m

m
  and 

  1 1 cos( )2
m

m
   where m is an integer.  See problem 16. 

 

Dimensions in integrals and of functions: Integrals represent dimensioned values 

in science and engineering while functions and integral are considered 

dimensionless (pure numbers) in mathematics. Consider the function sinm mb t   . 

The sine function returns a pure number so the coefficient bm must have the 

dimensions of the result. Similarly, the arguments of mathematical functions must 

be dimensionless. For example mt is the product of  that has the units rad/s and t 

which has the units s. The overall units of radians are not a problem as a radian is 
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the ratio of an arc length measured along a circle to its radius.  That is a radian is 

itself dimensionless (= m /m).  

 

Recall the triangular wave example:   

t

f(t)

1

-1

+T/2 T-T +3T/4+T/4-T/4-T/2-3T/4

-2

2

 

The function f(t) has a maximum value of 1. That is f(t) is dimensionless. A 

coefficient bp has the representation. 

   4

4

2 4sin 2
T

TT
tp T t dT


   t  

Pull all the dimensioned quantities out of the integral. Choose 2u p T t . Here T 

is the period and t is the time so u is dimensionless.  

The recommended choice for the change of variable is the argument of the most 

complicated function in the integrand. Above, the argument of the sine function 

was chosen. There are some variants of this rule as a form 
2( )0

2
x x

ae
     requires 

2
0

2
2 ( )x x

au  . 

 

          
4 4

4 4

2 2 24sin 2 sin 2 4 2 2
2

T T

T TT T

pt tp T t dt p T t p T T p dtT Tp

  
 

  
          

  
  

        
4 2

4 2

2 2 44sin 2 sin 2
2

T p

T pT T
tp T t dt u u T p duT p




 

 

  
      

  
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     
4 2

2 2
4 2

2 24sin 2 sin
T p

T pT p
tp T t dt u u duT






 

 
    
 





 

In the final form the quantity inside the first set of braces is to include all the 

dimensioned quantities and the integral in the second set of braces is to be 

dimensionless, a pure number. In this example 
2 2

2

p

 
 
 

 happens to be 

dimensionless; the first brace in other problems will carry the dimensions 

appropriate for the problem. 
 

Converting Sums to Integrals 
 

It is said that an integral is a sum of little pieces, but some precision is required 

before the statement becomes useful.  Beginning with a function f(t) and a 

sequence of values for t = {t1,t2,t3, ….,tN},  the sum 
1

( )
i N

i
i

f t



  does not represent the 

integral ( )
t

t
f t dt




  even if a great many closely spaced values of t are used.  Nothing 

has been included in the sum to represent dt.  One requires 
1

( )
i N

i
i

if t t




   where 

   12 it   1
1

i it t  

i

 is the interval between sequential values of t values at ti. For 

well-behaved cases, the expression 
1

( )
i N

i
i

f t t



  approaches the Riemann sum 

definition of an integral as the t-axis is chopped up more and more finely. As 

illustrated below, in the limit t goes to zero, the sum 
1

i N

i

( )i if t t




  approaches the 

area under the curve between t< and t>.  That is: it represents ( )
t

t
f t d




 t  provided 

the sequence of sums converges, and life is good.  The theory of integration is not 

the topic of this passage.  The goal is simply to remind you that the t must be 

factored out of each term that is being summed in order to identify the integrand. 
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f(t)

t

t1 t2 ti tN

t

t< t>

f(t1)
f(ti)

f(tN)

t

tk

f(tk)

area =  f(tk) t

 

For the discussion of the inner product, the function h(t) = f(t) g(t) was considered 

at N equally spaced points between –T/2 and +T/2. This leads to the sum  

where the points 

1

( )
m N

m
m

h t





     2 2m
T T T

N
t    

N
m  have equal spacing Tt N  .  As the 

number of terms gets large, the sum must be divided by N to keep the result finite 

leading to 
1

1( )
m N

m
m

N
h t




  .  The rule for converting sums to integral requires that 

Tt N   be explicitly factored from each term in the sum.  Thus 

       
1 1 1

1 1 1( ) ( ) ( )][ ] [
m N m N m N

m m
m m m

T
N T N T

h t h t h t t
  

  
  m      which becomes 

   /2 /2

/2 /2
1 1( ) ( ) ( )

T T

T TT T
h t dt g t f t dt

 

 
        as N gets large and t small.

 

Converting alternating term sums:  
0

1

2 1 4

m

m m








 = 0.7853982 

Summing through m = 7:  7

0

1
0.7542680

2 1

m

m m




  
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The goal is to estimate  
8

1

2 1

m

m m






 by converting the sum to an integral.  

Converting a sum to an integral is sure fail unless the change in the value of terms 

is small compared to the absolute value of the terms from one term to the next.  

The conversion may fail anyway, but unless this condition is met, it’s hopeless.  

The series above is an alternating (sign) term series. The magnitude of the change 

in value of the sum from term to term is twice the magnitude of the terms.   A trick 

is needed.  Combine positive and negative terms in pairs.  It is a trick; think about 

the sums below to verify that they are equal. 

 
2

8 4 4

1 1 1 2

2 1 4 1 4 3 16 16 3

m

m m

  

  

      
        

  
     

 

The last sum has the advantage that it is a sum of positive terms that vanish more 

rapidly than do the alternating terms in the original series. It has better convergence 

properties.  

To convert to an integral,  must be factored from each term, but takes on every 

integer value greater than 4, the starting point.  We conclude that  = 1. 

2 2 2
4 4 4

2 2 2 1 19
ln .0278064

16 16 3 16 16 3 16 16 3 4 17
d

 

 

                        
  
 

 
     

 

 7

2
0 4

1 2
0.7821

2 1 16 16 3

m

m

d
m








    
 

    With patience one can do better. 

 

Exercise: Show that: 
4 3

1
2

4 1
4

2 1 1
16 16 3 4 1 4 3

N

N N N

dud d
  





 
  

  
      

    u .  Use 

the result to evaluate the integral above.  

 

Bounding the sum: Suitable choices of the integration limits can provide both 
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upper and lower bounds for the sum. A careful sketch shows that for a monotone 

decreasing function F(n), 
1

( ) ( ) ( )
N N

m N

F x dx F n F x dx
 


   . 

 

N+1N

F(N)

F(X)

 

The area of the shaded region is F(N), 

and F(x) as drawn is a monotone 

decreasing function. It follows that: 

  
1

1
( ) ( ) ( )

N N

N N
F x dx F N F x dx




  

Exercise: Argue that for a monotone 

decreasing function, 

1
( ) ( ) ( )

N N
m N

F x dx F n F x dx
 




    

     7 7

2 2
0 0 04 3

1 1 12 2

2 1 16 16 3 2 1 2 1 16 16 3

m m m

m m m

d d
m m m

 

  

  
   

          
   

 

or equivalently      0.7821 <  
0

1

2 1

m

m m






  < 0.7900. These results are consistent with 

a sum of /4 ≈ 0.7854. A current estimate might be chosen to be: 

 7

2
0 3.5

1 2 1 17
0.7542680 ln 0.7855587

2 1 16 16 3 4 15

m

m

d
m





                
  

 
 

It seems that splitting the difference is reasonable so long as one remembers the 

bounds on the proven range. 

 

Summing Series and Special Tricks: 

Sine and cosine series can be rich sources of Fourier coefficients to use in 

evaluating sums either by evaluating the series for a particular argument or by 

employing a Parseval relation for the square of a function of the product of a pair 

of functions.  Use the convergence properties as a guide. Consider a function like: 
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f(x) =  x ( - x) for the interval [0, ]. Evaluated as a cosine series, it has a a 

discontinuity in the first derivative when extended so the coefficients vanish no 

faster than m indicating the powers in the sums that can be directly evaluated and 

that m-4 sums can be found using a Parseval relation.  If the function is evaluated as 

a sine series, its anti-symmetric extension has a continuous derivative so the 

coefficients might vanish like m-3 so that m-3 and m-6 sums can be evaluated.  
 

The Riemann zeta is particularly important (p) = 
1

p

n

n





 . As many Fourier series 

consist of only even or odd index coefficients, it is helpful to note that: 

0 1

2p p

n even n

n
 

  

  
  pn                   

0 1

(1 2 )p p p

n odd n

n n
 

  

  
   

 

Translating a Function: Fourier series for a function with an offset translation 
 

How can a representation for a symmetric square s(t) wave be built using a 

representation of an anti-symmetric square wave a(t)? A reliable procedure for 

translating the argument is required. To begin, prepare a figure. 

s(t’)a(t)

t’

t

t’T/4

t

 

t = t' +T/4     and    a(t)  s(t')  s(t') = a(t' + T/4) 



a(t) =  
0

4 1 2
sin 2 1

2 1m

t
m

m T








  
    


 


                   anti-symmetric square wave 
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s(t') = a(t' + T/4) =    
0

42 '4 1
sin 2 1

2 1m

Tt
m

m T








        
      symmetric square wave 

s(t') =  
0

4 1 2 'sin 2 1
2 1m

tm m
m T

 







  
   
  




  

  

The sine changes sign for each shift of , and sin[ + 

/2] = cos[]. 

   2 '
2 1sin t

m m
T
  


 
  

   =     2 '
1 cos 2 1

m t
m

T
 

  
   

 

s(t') =
   

0

14

2 1

2 '
cos 2 1

m

m

m

t
m

T




          
 or simply 

s(t) =
   

0

14

2 1

2
cos 2 1

m

m

m

t
m

T




          
 . 

The Fourier series for the symmetric square wave has been deduced from the series 

for the anti-symmetric square wave by carefully applying an argument translation. 

 

Vector Analog of Inner Product Concepts: 
 

The inner product of two 3D vectors is to be defined as: cos ABA B A B  
 

. 

It is assumed that the following properties are known: 

The inner product of two vectors returns a scalar value. 

i.)  where c is a scalar multiplier.   A c B c A B  
   


ii.)   A B C A B A C     

    

iii.) A B B A  
   

  for all A


 and B


. 

iv.)  0; 0 0A A A A iffi A    
    

 

FS1.  Establish the orthogonality of the basis set    1 2 3
ˆˆ ˆˆ ˆ ˆ, , , ,e e e i j k .  

  ˆ ˆ 1 1 cos(0) 1i i          2
ˆ ˆ 1 1 cos( ) 0i j            2

ˆˆ 1 1 cos( ) 0i k     
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and so on until we have   ˆ ˆ 1 1 cos( )i j ij ije e     . 

 

FS2. The claim is that all of our vectors can be adequately represented as linear 

combinations of the basis expansion set    1 2 3
ˆˆ ˆˆ ˆ ˆ, , , ,e e e i j k . 

3

1

ˆi i
i

A A


 e


  and  
3

1

ˆj j
j

B B e


 


 

If the expansions are robust, they can be used in place of the vectors. 

Note the use of distinct dummy summation indices. 

 
3 3 3 3

1 1 1 1

ˆ ˆ ˆi i j j i j i j
i j i j

A B A e B e A B e e
   

        
   
   

 
ˆ

e

 

 
3 3 3

1 1 1
i j i i

i j i
ijA B A B A B

  

    
 

 

Summing over j, the Kronecker delta picks out the one term with j = i. 

Hence we have developed a second representation of the inner product that is 

expressed in terms of the expansion coefficients. 
3

1

cos AB i i x x y y z z
i

A B AB A B A B A B A B


     
 

 

 

FS3.  Suppose that a vector has two expansions in terms of the set. 
3 3

/

1 1

ˆ ˆi i i i
i i

A A e A
 

  


 

Show that the coefficients must be equal term by term. Take the inner product on 

both sides with an independent expansion set member. 
3 3 3 3

/ /

1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆj i i i j i j m m m j
i i m m

e A e A e e e A e A e e
   

          ˆm

A

 

3 3
/ /

1 1
i ji m jm j j

i m

A A A 
 

     

In the sum over i, the Kronecker delta picks out the one term with i = j. The 
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analogous collapse occurs for the sum over m. The conclusion is that the expansion 

coefficients must be equal term by term so that the expansion in terms of an 

orthogonal expansion set is unique. 

 

FS4.  For a vector f gH c F c G 
 

, one finds the expansion coefficients using the 

canonical prescription.   

     ˆ ˆˆˆˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

j f g g jf jjj
j f j g j

j j j j j j j jj j

e c F c G c e Gc e Fe He H
H c

e e e e e e e ee e

  
      

   
F c G

  
 

The expansion coefficients are the same linear combination as are the vectors 

coefficient by coefficient.  for j = 1, 2, 3. j f j gH c F c G  j

Compare 
ˆˆ

ˆ ˆ ˆ ˆ
jj

j
j j j j

e He H
H

e e e e


 




 with: 

2

2
2

2
2

2

1
cos ( )

cos ( ) 2
cos ( )

1cos cos
cos cos

T

p T
p T

f p pT
Tp p

p p

T

t f t dt
t f t T

a t
Tt t

t t dt
T





   







                       





f t dt  

Discovery Exercises:    

ALERT! Mathematica and Maple templates are included just after the discovery exercises. 

 

D1.) The goal is to represent 4 sin3 (x) as a sum of sine functions.  

f(x) = 4 sin3 (x)  = a1 sinx + a2 sin(2x) + a3 sin(3x) +a4 sin(4x) 

where the coefficients ai are integers in the range –5 to 5.  

 

Method 1: Plot 4 sin3 (x) for the range - to . Set the ai = {1,0,0,0} and plot  

g(x) = 4 sin3 (x)  - [a1 sinx + a2 sin(2x) + a3 sin(3x) +a4 sin(4x)]

Adjust the ai until g(x) = 0. 
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Method 2: Plot | g (x)|2 for the range - to . Set the ai = {1,0,0,0} and then adjust 

the a1 to minimize the area under the curve for | g (x)|2. After finding the best value 

for a1, move on to a2. Is method 2 more or less efficient than method 1? 

 

 

Method 3: The functions sin(n x ) represent the independent ways that an anti-

symmetric function of period 2 can wiggle. Plot the functions pairs f(x) and sin(n 

x)  over the interval - to . Estimate the degree to which the functions in each pair 

vary together over the interval. Compute the integrals  1 sin( ) ( )n x f x dx



  for n = 

1, 2, 3 and 4. These integrals are proportional the inner product of sin(n x) and f(x) 

and gauge the amount of sin(n x) behavior in f(x). 

 

D2.) The goal is to represent 8 cos4 (x) – 8 cos3 (x) - 3 as a sum of sine functions.  

f(x) = 8 cos4 (x) – 8 cos3 (x) - 3 =a0 + a1 cos(x) + a2 cos (2x) + a3 cos (3x) +a4 cos 

(4x) 

where the coefficients ai are integers in the range –9 to 9.  

 

Method 1: Plot f(x) for the range - to . Set the ai = {1,0,0,0,0} and plot  

g(x) =8 cos4 (x) – 8 cos3 (x) - 3 – [a0  + a1 cos(x) + a2 cos (2x) + a3 cos (3x) +a4 cos 

(4x) ]

Adjust the ai until g(x) = 0. 

 

Method 2: Plot | g (x)|2 for the range - to . Set the ai = {1,0,0,0,0}  and then 

adjust the a1 to minimize the area under the curve for | g (x)|2. After finding the best 

value for a0, move on to a1. Is method 2 more or less efficient than method 1? 
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Method 3: The functions cos(n x ) represent the independent ways that a symmetric 

function of period 2 can wiggle. Plot the functions pairs f(x) and cos(n x)  over the 

interval - to . Estimate the degree to which the functions in each pair vary 

together over the interval. Compute the integrals  1 cos( ) ( )n x f x dx



  for n = 1, 2, 

3 and 4. These integrals are proportional the inner product of cos(n x) and f(x) and 

gauge the amount of cos(n x) behavior in f(x). The correct method to compute an 

is: 
cos( ) ( )

cos( ) cos( )
n

n x f x dx
a

n x n x dx












 


. For which n might this equation yield a different result 

than  1 cos( ) ( )n x f x dx



 ? 

 

 

Mathematica Templates for D1 and D2:   Mathematica is case sensitive. 

 

 

Mathematica 5.2 Syntax                  ` is to the left of the 1 key 

<<Calculus`FourierTransform`              loads the Fourier package                          

Mathematica 6 Syntax 

Fourier transform library is preloaded 

<<FourierSeries`     New load command needed to load the 

Fourier series library 

FourierTrigSeries[f(x),x,terms] 

   generates <terms> terms of the Fourier series for f(x) with period 2. 

UnitStep[x]                                                  = 0 for x < 0; = 1 for x > 1 
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Plot[4 (Sin[x])^3, {x,-Pi,Pi}, PlotRange -> {-4,4}, PlotStyle ->RGBColor[1,0,0]] 

 

a0=1; a1=1; a2=0; a3 = 0; a4 = 0          *execute this line whenever the a’s are changed    

                                                                                                                  ENTER of SHIFT-RETURN executes a line 

 

Plot[4 (Sin[x])^3 - (a1 * Sin[x] + a2 * Sin[2 x] + a3 Sin[3 x] + a4 Sin[4 x]), 

   {x,-Pi,Pi}, PlotRange -> {-4,4}, PlotStyle ->RGBColor[1,0,0]] 

 

Plot[(4 (Sin[x])^3 - 

         (a1 * Sin[x] + a2 * Sin[2 x] + a3 Sin[3 x] + a4 Sin[4 x]))^2, 

   {x,-Pi,Pi}, PlotRange -> {-4,4}, PlotStyle ->RGBColor[1,0,0]] 

 

Plot[{4 (Sin[x])^3 , Sin[3 x] }, {x,-Pi,Pi}, PlotRange -> {-4,4},  

  PlotStyle ->{RGBColor[1,0,0],RGBColor[0,0,1]}] 
Note that the function to be plotted has been replaced by a list of two functions 

 

(1/Pi) * Integrate[ Sin[ 3 x] *(4 (Sin[x])^3  ),{x,-Pi,Pi}] 

 

Cos[x]    is  the cosine   function 

A space or an * represent  multiplication 

Plot[4 (Sin[x])^3, {x,-Pi,Pi}, PlotRange -> {-4,4}, PlotStyle ->RGBColor[1,0,0]] 

[ … ] use square brackets to enclose function arguments 

( … ) use parentheses to group terms 

{ … } use braces to enclose a list       Pi = 

Plot[ function[x], { abscissaVariable, lower, upper},  optional properties] 

PlotRange -> {ymin,ymax}     set the vertical or ordinate range 

PlotStyle -> RGBColor[red, green, blue]        sets the plot line color 

Integrate[ Sin[ 3 x] *(4 (Sin[x])^3  ),{x,-Pi,Pi}] 
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Integrate [ function[x], { integrationVariable, lower, upper}] 

 

Maple Sample Code: 

> a0:=1; a1:=0; a2:=0; a3:=0; a4:=0; 

 

> f:=(x)-> 4*(sin(x))^3- (a1*sin(x)+a2*sin(2*x)+a3*sin(3*x)+a4*sin(4*x)); 

 

> with(plots):plot(f(x),x=-Pi..Pi); 

 

> with(plots):plot({4*(sin(x))^3, sin(1 * x)},x=-Pi..Pi); 

 

>  (1/Pi)* int(sin(x)*f(x),x=-Pi..Pi); 

 

 

Warm Up Problems: 

 

FSWUP1. PROJECTION (A MOST WONDERFUL PROCESS): Consider a 

vector represented as 1 1 2 2 ...i i i in nV a B a B a B     in terms of the basis set  

{ …, |Bi  , …, … }. Further, assume that the basis set is mutually orthogonal.  

Bj|Bi Bj|Bi ij. The coefficient aik represents the amplitude of the |Bk  behavior 

in the vector |Vi .  

a.) Use the inner product to develop a general expression for aik in terms of the 

ratio of inner products for vectors expanded in an orthogonal basis.  

b.) Use the inner product projection procedure to project out the component Ay in 

the expression ˆˆ ˆ
x y zA A i A j A k  


 and where the inner product is are standard dot 
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product to find an expression for Ay. Compare with an application of the general 

procedure given an orthogonal basis. 
ˆ

ˆ ˆ
ik i

ik y
k k

j AB V
a A

B B j j
  



 

c.) Consider a function, 0
1 1

( ) cos sinmf fm fn
m n

nf t c a t b t 
 

 
          . Use the inner 

product to project out the coefficient afk in this expansion. Some of the 

orthogonality relations for the Fourier trig basis set are:
2 2

2 2

2

2

1
2

1
2

1 1sin cos 0; sin sin ;

1 cos cos

pm

pm

T T

p m p m
T T

T

p m
T

t t dt t t dt
T T

t t dt
T





   

 

 



            

     

 



 


 

and the inner product is 
2

2

1
( ) ( )

T

T

f g f t g t d
T





    t . Show that the process develops 

the standard expression:  
2

2

2 cos ( )
T

p p
T

a t f
T




 
   t dt  

 

 

Problems: 

1.) A geometric proof of the identity cos() = cos() cos() + sin() sin() 

was presented in the trigonometry handout. Replace  by - to develop the 

corresponding identity for cos(+). Use the identities for cos(-) and cos(+) 

to find expressions for cos() cos() and sin() sin() in terms of cos(-) and 

cos(+). Use the results to establish the (a) center and (b) rightmost of the 

following orthogonality relations. [ m = m (2/T)]

     
2 2 2

2 2 2

1 1
2 2

1 1 1
sin cos 0; sin sin ; cos cos

pm pm

T T T

p m p m p m

T T T

t t dt t t dt t t dt
T T T

      
  

              
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Pay special attention to the factors p – m and p + m. Which can be zero? Treat the 

cases p = m  and p m separately.
The leftmost relation is easily established using a symmetry argument. (c) Do so. 

(d)  Prove one more of the orthogonality relations for the Fourier expansion set: 

{1;{…,  cos mt ,…};{…,sin pt   ,…}}. 

It will involve 1 and either a sine or a cosine. If you feel that you have suffered to 

complete this problem, you have earned the right to use the orthogonality relations 

freely in the future. Note that a minimum of four evaluations is required. 

Conclusion: Given the inner product: 
2

2

1 ( ) ( )
T

T

f g f t g t
T 

  dt , the set of 

functions {1;{…,cos mt  ,…};{…,sin pt 
  ,…}} is mutually orthogonal if 

the frequencies are m =  m 2/T. The constant 1 has a norm squared of 1 while all 

others have a norm squared of ½. 

 

2.) Consider two functions of period T represented by their Fourier series: 

    0
1 1

( ) 1 cos sin f fm m fn n
m n

f t c a t b t 
 

 

     

   0
1 1

( ) 1 cos sing gk k gp
k p

g t c a t b t 
 

 
p        

Show that the two expressions for the inner product of periodic functions are 

equivalent.  Beware! The sum indices m and n have been used twice.  Change to 

four distinct index symbols before substituting into the integral. As sine and cosine 

are real functions,        0

* * * *( ) 1 cos sing gm m gng t c a t b t
1 1m n

m 
 

 

    .  

 
/ 2

* * * *
0 0

/ 2

1 1
2 2

1 ( ) ( )
T

gm gpg f fm fp
m pT

g f g t f t dt c c a a b bT


        
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Recall that: .  Hint:  Use the orthogonality relations. SPECIAL NOTE: The 

summation indices are dummy labels. They may be relabeled at will. At minimum, rename 

the labels in a product to ensure that the labels are distinct. Begin by rewriting the 

representations of f(t) and  g(t) using distinct summation index labels throughout. 

1
m m

m

A 




  A

t

 

 

3.) The equation below is to be valid. 

      0 0
1 1 1 1

cos sin cos sinf fm m fn n g gk k g
m n k

c a t b t c a t b  
   

   

         




1

m

 

Show that this equality requires that: 

0 0; 1;f g fm gm fn gnc c a a for all m b b for all n     

Each term in a Fourier series represents an independent behavior.  Two such series 

can only be equal if they are equal term by term. 

 

4.)  Consider the functions f(t) and g(t) with their corresponding Fourier 

representations: 

     0
1 1

( ) 1 cos sinf fm m fm
m m

f t c a t b t 
 

 

     

   0
1 1

( ) 1 cos sing gk k gp
k p

g t c a t b t 
 

 
p        

What is the Fourier representation for the function h(t) = A f(t) + B g(t) where A 

and B are constants? Begin with the standard relations for the an’s as an example: 
2

2

2
cos ( )

T

fp p

T

a t f t dt
T




    ; 
2

2

2
cos ( )

T

gp p

T

a t g t dt
T




    ; 
2

2

2
cos ( )

T

hp p

T

a t h
T




    t dt  

Substitute h(t) = A f(t) + B g(t). Conclude that Fourier series add component-wise 

or coefficient-wise in a fashion similar to vector addition. 

 

5.) Consider the case of a function f(t) with period 2 to be expanded over the 
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6.) Back to the violin string running from 0 to L.  Fourier series can also be used 

to represent functions of spatial coordinates.  The function f(x) is to be periodic 

with period 2 L. (The string shape function is to be extended as a function that is 

anti-symmetric about x = 0.) What are the allowed spatial frequencies km for the 

Fourier series of f(x)?  Give the expressions to calculate co, {…am…} and {…bn…}. 

Which are certainly zero?   0
1 1

( ) cos sinm m n n
m n

f x c a k x b k x
 

 

     

 

7.)  Consider the (INVERTED) symmetric unit amplitude triangular wave. 

t

f(t) 1

-1

+T/2 T-T +3T/4+T/4-T/4-T/2-3T/4

 

41 0 2( )
41 02

t Tfor tTf t
t Tfor tT

     
     

 

Find the Fourier series for f(t).  Sketch the anti-symmetric triangular wave, one of 

the example functions treated above, and this symmetric triangular wave on the 

same plot.  Compare the frequency content of the two triangular waves.  Scale the 

new wave to have amplitude T/4. That is define g(t) = (T/4) f(t).  Give the Fourier 

series for g(t).  Prepare a sketch of dg/dt.   What is the slope of g(t) at t = T/4 ?   

Differentiate the Fourier series for g(t) term by term.  Comment on the form of the 

series after differentiation. 
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8.) Slope-matched parabolic sections.  Consider the function of period 4 defined 

over the interval [-2,2] by the equations: 

  
2 2

2 2

1 ( 1) 2 0 2
( )

1 ( 1) 2 2 0

t t t for t
f t

t t t for t

      
 

       

  

-2 -1.5 -1 -0.5

-1

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

  

Compute df
dt .  Is df

dt  continuous at x = 0?  Compute 
2

2
d f

dt
.  Is the second 

derivative continuous at x = 0?  Compute the Fourier series for f(t). How fast do the 

coefficients vanish with respect to m for large m?  Note: The function is odd about 

zero so only sines appear. The function is even about T/4 so only sine terms that are 

odd multiples of the fundamental are to be included. 

      
4 1

2
2 1 2 1

0 0

2
4 sin ( ) 2 sin 2 1 2

T

m mb t f t dt m t t t dt
T

             

Sketch the function and a few sines with even and odd multiples of the 

fundamental frequency. Argue that only the odd multiple sine waves will 

contribute.       ANSWER:  3
32pb p   for p odd; = 0 for p even. 

 

8 extension 1.) Continue problem 8. Differentiate the series term by term.  

Differentiate the series again term by term.  Compare the result to series for the 

unit amplitude triangle and square waves. What amplitude do you expect for the 

first and second derivative of the matched parabola function defined in problem 8? 

The derivative of a function of an odd (even) function is an even (odd) function. 

How is this fact embodied in the results of differentiating the series expansion term 

by term?  
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8 extension 2.) Continue problem 8. The sum of the terms for m greater than M is 

bounded by   2

3 2.064132
M

M
m dm



   . Argue that the series converges 

uniformly to the function 2 x - x2 on the interval [0,2]. 

 

9.) Integrate the series for the unit amplitude anti-symmetric square wave term by 

term.  Choose the lower limit as ti = -T/4. Each integral term should be of the form:  

.  Sketch the expected result.  What is the average value of the 

function represented by the integrated series?  Why was the lower limit chosen to 

be ti = -T/4?  Compare with problem 7.  Note that t' is a dummy label for the 

integration variable. Comment.  (For a detailed discussion of dummy labels in integrals see 

the Differential Equations section where the solution of DEs by integration is treated.) 

 0/ 4
sin ' '

t

p T
b p t

 dt

 

10.) Use the series representations for the anti-symmetric square wave and 

triangular wave and the (Parseval) relation for the inner product to compute an 

infinite sum involving the cubes of the inverses of the odd integers. [See #2.] 

 

11.) Develop the Parseval and Parseval Inner Product relations for the Fourier 

series using complex exponential basis functions. 

 

12.)  This problem illustrates an issue related to convergence.  Sketch the anti-

symmetric square wave.  Sketch the derivative of the square wave.  Differentiate 

the series representation for the square wave term by term,  Does that series 

converge?  The series for the square wave does not converge uniformly.  Discuss 

the specific behavior of the convergence of the series representation of the square 

wave that fails to meet the standard for uniform convergence. 
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13.)  The solution to the driven damped oscillator for a single cosine driving term 

was found to be 

   
10

2 2
0

0 2 22 2
0

2( ) ( ) cos( ) cos( tan )
2

fx t R f t t


 
   

  

  
  

   
 

 

for a driving force F(t) = m fo cos[t].  A standard notation defines the Q or 

quality factor of the oscillator as oQ m b .  Show that the equation for x(t) can be 

expressed as: 

 

    

 
 

1

22
2 2

2 11
( ) cos tan

1

o o

o

o o

F k

Q

Q

x t t
 

 
   

 
  
  
          

 

 

 

 

 

14.  Assume that an oscillator has k = 105 k/m ; Q = 100;  o = 120  s-1. The driving 

force is a 20 Hz triangular wave with amplitude 10 N: (See prob. 13) 

 

     1 1
2 2 2

80 1 1
sin 40 sin 120 sin 200 ....

3 5
( ) N

s t s t s tF t   


      
 1   

Give the expression for x(t) complete through the 100 Hz term.  Make an insightful 

comment about the frequency of the dominant term in the response of the 

oscillator. 

 

15.)  The second example chosen was an anti-symmetric triangular wave.  Noting 

that the function is odd about t = 0 and even about t = T/4, only the coefficients of 

the odd m sine terms are non-zero.  Argue that these may be computed as  

 
4

0

8 4
sin

T

m m

t
b t

T T
    

  dt for m odd. Compute the integrals to find bm for m odd. 

Collect everything and present the Fourier series for f(t) defined just below. 
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t

f(t)

1

-1

+T/2 T-T +3T/4+T/4-T/4-T/2-3T/4

-2

2

 

42 4 2
4( ) 4 4

42 2 4

t T Tfor tT
t T Tf t for tT

t T Tfor tT

  

  

     



  

Find the Fourier series for f(x), which has a period of 2.  

0 0

( ) 1 0 2

0 2

for x

f x for x

for x




 

   
 


 

  

After you compute the series, compare your result with the partial solution given 

below.  Use the unit circle tool to evaluate trig functions for arguments that are a 

multiple of ½ .

1 1 cos( ) cos(3 ) cos(5 ) 1 sin( ) sin(3 ) sin(5 )
( ) ... ...

4 1 3 5 1 3 5

2 sin(2 ) sin(6 ) sin(10 )
...

2 6 10

x x x x x x
f x

x x x

 



            
  

     
 



 

In the final form, the contents of each set of parentheses above should be replaced 

by an infinite sum with an index that assumes integer values. According to the 

rules for partial sums, the function might be better represented as:
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1 1 cos( ) cos(3 ) cos(5 )
( ) ...

4 1 3 5

1 sin( ) sin(3 ) sin(5 ) 2 sin(2 ) sin(6 )
... ...

1 3 5 2 6

x x x
f x

x x x x x



 

      
 

         
  

 




What was the change? What requirement or standard is met by the second form 

that the first fails to meet by the change? 

 

17.)  To what value does the Fourier series found in problem 16 converge for x =  

?  Show that this leads to the result:  
0

1

2 1 4

m

m m








   To what value does the 

series converge for x = /2 ?  Show that this leads to the same sum!  What sum can 

be computed using Parseval's relation and the series?



18.)  A function is said to be periodic with period T if f(t) = f(t + T) for all t. 

For a period function f(t) with period T, show that f(-T/2) = f(+T/2) and that  

f(t) = f(t + 2 T) for all t. 

 

19.)  Operations can be executed on the Fourier series for a function as well as on 

the function itself.   Examples: differentiation and integration.  Properly, the 

techniques are guaranteed valid only if the series converge uniformly.  This 

'requirement' is to be ignored.  Start with the anti-symmetric triangular wave: 

 
 

 22
0

18 2
( ) sin 2 1

2 1

m

m

t
f t m

Tm








     
  

Compute the series for the derivative of f(t) by differentiating the series term by 

term.   Sketch the derivative.  The series represents a symmetric square wave with 

amplitude 4/T.  Compare the frequency content with that of the anti-symmetric 

square wave. 
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result:   
 

 2
0

18 2
cos 2 1

2 1

m

m

df t
m

dt T Tm

 






        
2

      
  

Factor out the amplitude. Compare this result directly with the anti-symmetric 

square wave shifted by T/4. 

 
   

   

0

0

4
4 4 1 2

sin 2 1
2 1

4 4 1 2
sin 2 1

2 1 2

m

m

Tm t
T Tm

t
m

T m T




 










                  

                



 

 

To finish use: 

 

       

2
sin 2 1

2

2 2
cos 2 1 sin 2 1 sin 2 1 cos 2 1

2 2

t
m

T

t t
m m m m

T T

 

  

        
                     

  

 

 

20.) Operations can be executed on the Fourier series for a function as well as on 

the function itself. Examples: differentiation and integration.  Properly, the 

techniques are guaranteed valid only if the series converge uniformly.  This 

'requirement' is to be ignored.  Start with the anti-symmetric triangular wave: 

 
 

 22
0

18 2
( ) sin 2 1

2 1

m

m

t
f t m

Tm








     
  

Next, f(t) is to be integrated.  Sketch the integral of triangular wave f(t). 

 
 

 

 
     

22
00 0

32
0

18 2 '
( ) ( ') ' sin 2 1 '

2 1

18 2
1 cos 2 122 1

mt t

m

m

m

t
g t f t dt m dt

Tm

tT m
Tm















      

          

 


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Note that the coefficients of its Fourier series vanish as m-3 for large m.  This 

dependence suggests that the function has a continuous first derivative.  Does your 

sketch support this conclusion? Compare your result with problem 8 for the slope 

matched parabolas.  Note that (see problem 10):  
 

3

3
0

1

322 1

m

m m









 . The series for 

the integrated function has a non-zero constant term. What does that tell you? How 

does the function for problem 8 differ? 

 

21.) Consider the function f(t) that consists of two slope-matched parabolic 

sections. Consider expanding the function as defined over the interval 0 < t < 2 as 

an even or odd function to complete the definition over the period –2 < t< 2. 

Would a sine of cosine series converge more rapidly?  Assuming that the 

coefficients would decrease as m- n for large m predict the value of n for a sine 

series expansion and for a cosine series expansion. 

2 2

2 2

1 ( 1) 2 0 2
( )

1 ( 1) 2 2 0

t t t for t
f t

t t t for t

      
 

       
 

  

-2 -1.5 -1 -0.5

-1

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

  

 

22. The Euler identity provides representations of the sine and cosine in terms of 

complex exponentials. 

sin( )
2

imx imxe e
mx

i


     and     cos( )

2

iox ipxe e
px


  

Use these relations to transform the orthogonality integral for the sines and cosines 

to integrals of complex exponentials to establish: 
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     
2 2 2

2 2 2

1 1
2 2

1 1 1
sin cos 0; sin sin ; cos cos

pm pm

T T T

p m p m p m

T T T

t t dt t t dt t t dt
T T T

      
  

              

It is easiest to treat the p≠m cases and the p=m cases separately. If you feel that 

you have suffered to complete this problem, you have earned the right to use the 

orthogonality relations freely in the future.  Hints: After substituting the complex 

exponentials, one needs calculate integrals of the form 0

2

2

1
T

T

i te d
T




  t where 0 T

2  . 

Compute the integral for  a non-zero integer. Do not forget the representation of 

sine in terms of the complex exponentials as you do this. Also, read the Tools of 

the Trade section of this handout. Give expression for  in terms of m and n. 

Suppose that  is zero; what is true about m and n? Set  to zero and evaluate the 

integrand and then integrate. 







 

23.) The Euler identity provides representations of the sine and cosine in terms of 

complex exponentials. 

sin( )
2

i ie e

i

 




     and     cos( )
2

i ie e 




  

Use these to establish the identity: cos() = cos() cos() + sin() sin() 

Give the corresponding identity for cos(+). Solve the identities for cos(-) and 

cos(+) to find expressions for cos() cos() and sin() sin() as sums of terms 

linear in trigonometric functions.

 

24.) Find the cosine series that represents f(x) =  x – x2 over the interval [0,].  

a.) As the function is expanded in a cosine series, its full period is 2 and its 

extension across zero must be even. Sketch f(x) for -2 < x < 2. 
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b.) At what order derivative does the function have its first discontinuity? The 

coefficients are therefore expected to vanish no faster than what inverse power of 

the coefficient index? 

c.) Give the equations used to compute the expansion coefficients c0 and ak for a 

general k. Be sure that you adjusted the standard Fourier series relations to account 

for the range of integration and the restriction to a cosine series. Compute them. 

d.) Show that f(x) = 2/4 – (x - /2)
2. 

d.) Note that f(x) is even about /2. What does this tell you about ak for k odd?

?Answer:  f(x) = 2/2 – cos(2x) – 1/4 cos(4x) – 1/9 cos(6x) – 1/16 cos(8x) - … 

25.) Slope-matched parabolic sections.  Consider the function of period 4 defined 

over the interval [-2,2] by the equations: 

  
2 2

2 2

1 ( 1) 2 0 2
( )

1 ( 1) 2 2 0

t t t for t
f t

t t t for t

      
 

       

  

-2 -1.5 -1 -0.5

-1

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

  

It has a Fourier expansion   3 3
0

32
( ) sin 2 1

(2 1)m

f t
m







m t    . Consider the case 

t = 1. To what value should the series converge. Use     sin 2 1 1
m

m 


 
  

    and 

this result to find the sum   
3

0

1

(2 1)m

m

m






 .   

 

26.) Start with the Fourier series for the anti-symmetric square wave. 
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t

f(t)

1

-1

-T/2 +T/2 T-T

 

The square wave f(t) has a period of T and is extended beyond the base period to 

display the discontinuities at each multiple of T/2.  The function is represented as: 

                                    
1 0 2( )
1 02

Tfor t
f t

Tfor t

   


   

                       [FS.30] 

FOURIER SERIES FOR THE ANTI-SYMMETRIC SQUARE WAVE: 

4

0
p

for p oddpb

for p even


 
   


    or     
0

4 1 2
( ) sin 2 1

2 1m

t
f t m

m T


 

    
 

   



 

a.) Sketch 
/ 4

( )
t

T
f t dt

 . It should be a triangular wave ranging between -T/4 and T/4. 

b.) Compute  
/ 4

0

4 1 2
sin 2 1

2 1

t

T
m

t
m d

m T









     t    
 .   

c.) Multiply your result by -4/T. Use part a.) to sketch the result. 

d.) Shift the result. Replace t by t - T/4. Sketch the outcome expected. 

*******  change the wording ! ******** 

e.) Give the expressions for cos( - m ) for m = 4 n, 4 n +1, 4 n + 2 and 4 n + 3 

where n is an integer. 

f.) Express the result of part d.) using sines rather than cosines. 

g.) Compare the result to the Fourier series for the unit amplitude anti-symmetric 

triangular wave. 

 

27.) Slope-matched parabolic sections.  Consider the function of period 4 defined 
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over the interval [-2,2] by the equations: 

  
2 2

2 2

1 ( 1) 2 0 2
( )

1 ( 1) 2 2 0

t t t for t
f t

t t t for t

      
 

       

  

-2 -1.5 -1 -0.5

-1

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

  

It has a Fourier expansion   3 3
0

32
( ) sin 2 1

(2 1)m

f t
m







m t    . Use Parseval's 

relation to compute the sum 
6

0

1

(2 1)m m



  .  Use the extended Parseval's relation 

(Equation [FS.17]) and Fourier series calculated in this handout to compute the 

sums 
4

0

1

(2 1)m m



   and 
5

0

( 1)

(2 1)m

m

m






 .   Before you use a pre-calculated series for a 

particular function, modify the function to make explicit that its period has been set 

to T = 4 to match the period of the slope-matched parabolas. Parseval’s equality is 

for functions with the same period; that period, of course, can be T for both.                       

Answers: 6/960; 4/96; 55/1536. 
 

28.) Develop the Fourier series for:   2( )f x x x      assuming that the 

function is extended periodically with period 2. Use the result to compute 

 
1

1

2
1

m

m

m








 .        Answer:        2x x
2

1

cos( )
13 4

m

m m x

m
  



     ; 12
 

 

29.) Consider the Reimann zeta 
1

1
( )

p
nn

p






 and the sum 
 1

1
( )

2p
nE n

p





 . Show 

that  1
2( ) ( ) 1 ( )nn E n n     . What is (n) - 2 E(n)? Use the result of the problem 

above to compute (2).                  Answer: 6
 
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30.) Consider the function:  f(x) =  x ( - x) for the interval [0, ]. Expand it in a 

cosine series and in a sine series. Check the extended functions for discontinuities 

and predict the fall-off in the magnitudes of the coefficients in the large index 

limit. 
 

31.) Use the previous two problems to show that: 

 

2

1
2

1

n n



 
             

 

1 2

1
2

( 1)

12

n

n n





              
 

1 3

1
3

( 1)

322 1

n

n n








  



32.) Use the previous three problems to show that: 

 

4

1
4

1

90n n





                         
 

6

1
6

1

945n n





  

Take the time to repeat the derivation of Parseval equalities to ensure that you 

use the correct normalization factors. 
 

33.) Explain why one cannot use a combination of the sine and cosine series for  

f(x) =  x ( - x) found above to examine sum of terms like n-5. 
 

34.) Blackbody Radiation: The following integral rises in the study of blackbody 

radiation. 

3 13

0 0

2 33 3

0 0 1

1
1

1 ...

q q
q

q q q q

n

q dq q dqe e
e

q dqe e e e q dq e

   

     



 
 

 
 

  


     

 

  nq
 

Show that this integral is equal to 4

1

6!
n

n





 . This sum can be evaluated using 

Parseval’s equality. Choose the Fourier cosine series for x (x - ) for 0 < x < . 

1

2
26

cos(2 )(
m

mx
m

x x 



     
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Show that 4 4

0
1 1

36 90( (½)
m m

x x dx m m
  

 
 

 

 
           leading to 

3

0 151q

q dq

e
 


 .

 

35.) Square waves come in several forms.  Consider an odd square wave with 

period T stepping from 0 to +1. It is a square wave with a 50% duty cycle. 

 

The square wave f(t) has a period of T and is extended beyond the base period to 

display the discontinuities at each multiple of T/2.  The function is represented as: 

1 0 2( )
0 02

Tfor t
f t

Tfor t

    
  

  

Next. consider an odd square wave with period T stepping from 0 to +1. It is a 

square wave with a 25% duty cycle. 

 

The square wave g(t) has a period of T and is extended beyond the base period to 

display the discontinuities.  The function is represented as: 
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1 0 4( )
30 04

Tfor t
g t

Tfor t






  


  
  

Compare the fundamental frequency for the expansion of f(t) and the allowed 

spectrum of frequencies in the Fourier expansion of f(t) with those for the 

expansion of g(t). 
 

36.) Consider the set of all complex-valued functions that are periodic with period 

T and that have a finite square integral. . The sum of two 

functions is: 

/ 2 2

/ 2
| ( ) | finite

T

T
f t dt



Sum[f(t), g(t)] = f(t) + g(t) 

The scalar multiple of a function is: 

ScalarMult[d, f(t)] = d f(t)  

 For complex valued functions, complex numbers are the appropriate scalar field. 

(If the set is restricted to real-valued functions, then the real numbers should be 

chosen.) Show that the set defined with the prescribed operations is a vector space. 
 

37.)  A definition for the inner product of two functions that are periodic with 

period T  and finite square integral has been proposed. 

   
/ 2

*

/2

1 ( ) ( )
T

T

g f g t f t dtT


   

a.) What type of value does this operation return? 

b.) Verify that the operation satisfies the axioms required of an inner product for 

the set of functions prescribed in the previous problem. 
 

38.) Consider the set of all complex-valued functions that can be formed as linear 

combinations of the functions { 1, { .. , cos[mot], … }, { … , sin[not], … }} 
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where o = 2/T  and m = mo subject the restriction * below is a vector space with 

the operations on the representative members g(t) and f(t): 

     0
1 1

( ) 1 cos sinf fm m fm
m m

mf t c a t b t 
 

 

     

    0
1 1

( ) 1 cos sing gm m gm
m m

g t c a t b tm 
 

 

    

Sum[f(t), g(t)] =            0 0
1 1

1 cosf g fm gm m fn gn m
m n

c c a a t b b tsin 
 

 

       

The scalar multiple of a function is: 

ScalarMult[d, f(t)] =           0
1 1

1 cosf fm m fn
m n

d c d a t d b tsin n 
 

 

    

Retriction *:  
2 22

0
1 1

1 1
2 2 is finitef fm fm

m m

c a b
 

 

   . 

Show that the set defined with the prescribed operations is a vector space. The 

scalars can be the real numbers or the complex numbers. 
 

39.)  A definition for the inner product of the vectors in the previous problem has 

been proposed. 

 * *
0 0

1 1

1 1
2 2( )| ( ) 1 s*

g f gm fm
m n

g t f t c c a a b b
 

 

    gn fn  

a.) What type of value does this operation return? 

b.) Verify that the operation satisfies the axioms required of an inner product for 

the set of functions prescribed in the previous problem. 
 

40.) One period of a function is given below along with its Fourier series. 
 

 

 

 

10 1 2
1 1( ) 1 2 2
10 12

for t

f t for t

for t

   

  


 

  

1 2 cos( ) cos(3 ) cos(5 )
( ) ...

2 1 3 5

t t t
f t

  

      
 
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a.)  What is the period of the function? 

b.) What are the allowed frequencies m in the expansion of a function with 

this period? 

c.) Sketch the function for – 2 < t< + 2. 

d.) To what value does the Fourier series converge at t = - /2? 
e.) To what value does the Fourier series converge at t = +1? 
f.) The Fourier coefficient am for this function is computed as: 

 
2

1/ 2

1/ 2
2

2
cos ( ) cos [1]

T

p p p

T

a t f t dt t
T

 





         dt

dt




 

Start with  and show the steps to find ap for all p>0 and 

hence generate (and display) the series for f(t) written  in a summation form. 

1/ 2

1/ 2
cos [1]pt




  

h.) What property of the function f(t) is represented by the constant co = ½ ?  
 

41.) Slope-matched parabolic sections and beyond.  Consider the function of 

period 4 defined over the interval [-2,2] by the equations: 

   
1 1

1 1

(2 ) 0 2
( )

(2 ) 2 0

t t for t
f t

t t for t

  
 

  

  

-2 -1.5 -1 -0.5

-1

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

  

This function and its first derivative are continuous. However, 
2

2
d f

dt
 is 

discontinuous. It has maximum and minimum values of +1 and -1. 

 

Consider the function: 
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1

(2 ) 0 2
( )

( 1) (2 ) 2 0

n n

n n n n

t t for t
g t

t t for t

   
 

    
 

 

Figure for n = 6. 

-2 -1 1 2

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

 

a.) Show that this function and its first n derivatives are continuous and that 
1

1

n
n

n
d g

dt



  is discontinuous. Confirm that gn(t) has maximum and minimum values 

of +1 and -1. 

b.) It is expected that the Fourier expansion coefficients will vanish no faster than 
1/m N for large m. What is N? 

c.) In the standard Fourier expansion series, which coefficients are sure to vanish? 

Explain. 

d.) Compute the Fourier series for g2(t). 

      
4 1

2 1 2 1

0 0

2
4 sin ( ) 2 sin 2 1 (2 )

T
n n

m mb t f t dt m t t t dt
T

             

   ANSWER:  3
32pb p   for p odd; = 0 for p even. 

termsFS  21; FourierTrigSeries
 x2             1 2  x 2  UnitStep x x2 1 2  x 2  x2 1 2  x 2 , x, termsFS  


12  2 Sin2  x

2 5

4  3 2 Sin6  x

162 5


12  25 2 Sin10  x
6250 5 

12  49 2 Sin14  x
33614 5 

4  27 2 Sin18  x
39366 5 

12  121 2 Sin22  x
322102 5 

12  169 2 Sin26  x
742586 5 

4  75 2 Sin30  x
506250 5 

12  289 2 Sin34  x
2839714 5


12  361 2 Sin38  x

4952198 5

4  147 2 Sin42  x

2722734 5  

The coefficients for the terms beginning with 12 in the numerator are of the form: 
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2 2

5

(12 )

2

m

m

 . Note that these terms approach zero as m-3  for large m. This is 

consistent with the statement that the coefficients vanish no faster than m-[n+1] 

where the nth derivative has the first one that is discontinuous. 
 

42.) A standard trigonometric Fourier series for a function f(x) with period L has 

the form:     0 0
1 1

( ) 1 cos sinm m
m m

0f x c a mk x b mk x
 

 

        where ko = 2/L. 

a.) Show that this can be cast in the form: 

0 0(0)
0

1

( ) ½( ) ½( )imk x imk x imk xi
m m m m m

m m

f x c e a ib e a ib e e
 



 

       0



 

This result justifies the form of the complex Fourier series, . 0imk x
m

m

e





 

b.) Show that 0 0
/ 21

/ 2
( ) ( )

L imk x ink x
mnL

L e e dx  


 . 

c.) Pre-multiply  by 0( ) imk x
m

m

f x e




  0( ipk xe )  and use the orthogonality relation 

developed in part b to project out the coefficient p.
 

43.)                            

1sin( )sin( ) cos( ) cos( )2
1cos( )cos( ) cos( ) cos( )2

1sin( )cos( ) sin( ) sin( )2

x y x y x y

x y x y x y

x y x y x y

  

  

  

   

   

   

 

Give the Maclaurin series for sin(x) and cos(x) correct to order x2. Use these 

expansions to verify the three trig identities for products of sines and cosines to 

second order for small arguments. 
 

44.) Show that the series for the anti-symmetric triangle wave converges uniformly 

to the triangle wave by showing that the choice of N > 1/4 is adequate to ensure 
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that | f(t) – sN(t)| <  for all t  [-½ T, ½ T ]. Assume that | f(t) – s(t)|  0 for all t  

[-½ T, ½ T ]. 

t

f(t)

1

-1

+T/2 T-T +3T/4+T/4-T/4-T/2-3T/4

-2

2

 

base period: - T//2 < t <  T//2 

                         

42 4 2
4( ) 4

42 2 4

t T Tfor tT
t T Tf t for tT

t T Tfor tT

  


  

     


4



            

 
 

 2 2
0

18 2( ) sin 2 1
2 1

m

m

tf t m
Tm








 
 
 


 


  

 

45.) Consider the discontinuous sawtooth  f(t) = ½t in the  base period [-, ]. 

Show that the series representation is:
1( 1)

1

( ) sin( )
n

n
n

f t







 nt . What series sum can 

be computed by examining f(½)? Identify the series and compute the sum that 

follows from the Parseval relation for this series. 

Note that sin( ) cos( )mt mt dt mt dt
   . 
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46.) Look at the previous problem. Define g(t) = 
0

( )
t

f t dt  over the same base 

period. Compute the series directly and by integrating the series from the previous 

problem term by term.  

Lessons Learned 

Problem 1.  Orthgonality relations are extremely important. The relations are so 

important that one should sweat blood for hours proving them. The expressions for 

the sine and cosine in terms of complex exponentials are useful. Learn them; love 

them. 
 

Problem 2.  A Parseval identity is a representation of an inner product as the 

sum of the products of the corresponding expansion coefficients of the vectors. 

The representation of the inner product is not unique. Inner products return a scalar 

value that gauges the degree to which two entities share common behavior. For 

vectors we have two procedures to gauge the  

cos x x y y zA B AB A B A B A B    
 

z  

degree to which the two are directed in the same direction. One can have two sets 

of basis behaviors that completely characterize the members of the set under study. 

Consider a 3D Cartesian coordinate system (unprimed) and a second system 

(primed) with axes that are rotated relative to those of the first system. Each vector 

has a representation in each system. 

/ / / / / /

/ / / / / /

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

x y z x y z

x y z x y z

A A i A j A k A i A j A k

B B i B j B k B i B j B k

     

     



  

The inner product can be computed in either representation 

/ / / / / /
x x y y z z x x y y zA B A B A B A B A B A B A B      

 
z  

Either set of basis behaviors,  ˆˆ ˆ, ,i j k  or  / / /ˆˆ ˆ, ,i j k  is adequate to describe all the 3D 

vectors. Such sets are said to be complete.  Problem two reveals that there are two 
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equally valid methods to compute the inner product of two functions that are 

periodic with period T. And, in particular, the set { 1, …, cos( m 0 t), …. , …, sin( 

n 0 t), ….} is a complete set to characterize those same functions give that 0 = 2 

/T and that m and n are the counting integers 1, 2, 3, … .
 

Problem 3. If the basis is chosen to be orthogonal and complete, every entity in the 

set of interest can be represented as a sum of scalar multiples of members of that 

basis. To find the scalar multiple for a particular basis member, compute the inner 

product of the member with the entity being represented. To find the x component 

of a vector A


, one computes the inner product of the x character  basis member  

with the vector  and normalizes by dividing by the inner product of the basis 

member with itself.   

î

A


ˆˆ

ˆ ˆ ˆ ˆx

i Ai A
A

i i i i


 




.  Verify that  

2

2
2

2
2

2

1
cos ( )

cos ( )2
cos ( )

1 cos cos
cos cos

T

pT
pT

f p p T
T p p

p p

T

t f t dt
t f tT

a t f t dt
T t t

t t dt
T





  







                      





 

Two expansions in terms of the same set of orthogonal behaviors can only be equal 

if the coefficients are equal behavior by behavior. , ....x xA B A B  
 

 
 

Problem 4. The Fourier series expansion is a linear operation. The various Fourier 

coefficients are added and multiplied coefficient by coefficient just as vectors are 

added component by component. h(t) = A f(t) + B g(t) leads to:  

ahp= A afp + B agp. just as C a A b B 
  

 leads to Cx = a Ax + b Bx. 

Even though the result seems obvious, one should anchor the result by computing 

the coefficients for h(t) in the canonical fashion. 
2

0

2

1
( )

T

h

T

c h t d
T 

  t ;  
2

2

2
cos ( )

T

hp p

T

a t h t dt
T




    ; 
2

2

2
sin ( )

T

hp p

T

b t h
T




    t dt  
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Hence,  

 
2

2

2 2

2 2

2
cos ( ) ( )

2 2
cos ( ) cos ( )

T

hp p

T

T T

p p

T T

a t A f t B g t dt
T

A t f t dt B t g t dt Aa B a
T T



 



 

   

                 
      



  fp gp

 

Problem Discussion 

Problem 8 with matched slope parabolas: 

               Plot of the function 
 

Partial Sum Sn = (32/(Pi^3)) Sum[ Sin[ m Pi t/2]/(m^3),{m,1,n,2}] 

The sum index begins with m = 1 and sums terms through index n incrementing by 

2 to include only the odd terms. 

NOTE: As 2 t - t2 is subtracted from the partial sum of the Fourier series, the error 

term is plotted. 
 

Plot[(32/(Pi^3)) Sum[ Sin[ m Pi t/2]/(m^3),{m,1,1,2}] -( 2 t - t^2), {t,0,2},  

  PlotRange -> All, PlotPoints -> 1024]     

 

Plot of the ERROR with mmax = 1 
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Plot[(32/(Pi^3)) Sum[ Sin[ m Pi t/2]/(m^3),{m,1,11,2}] -( 2 t - t^2), {t,0,2}, 

   PlotRange -> All, PlotPoints -> 1024] 

Plot of the ERROR with mmax = 11 

Plot of the ERROR with mmax = 31 

 Plot of the ERROR with mmax = 101 

 

What behavior of the function occurs at t = 0 and at t = 2 that causes the 

convergence to be slower in the regions of those points. 
 

Gibbs overshoot phenomenon and consistent partial sums:   
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The Gibbs phenomenon was discovered by Albert Michelson1 while he was 

summing a Fourier series using coefficients for a periodic function that he 

measured using an optical-mechanical system. Noting the overshoot, he brought it 

to the attention of J. Willard Gibbs who computed its magnitude. The overshoot 

phenomenon demonstrates the importance of completing partial sums consistently 

to an upper frequency. 

 
Albert Michelson (pre-discovery photo) 

 

   The Gibbs phenomenon was 
discovered by Albert Michelson 
while he was summing a 
Fourier series using coefficients 
for a periodic function that he 
measured using an optical-
mechanical system.  
   
 Michelson was a U S Naval 
Academy midshipman and 
instructor. One of his speed-of -
light measurements was made at 
the academy. 

Michelson-Stratton 

harmonic analyzer 

         

Consider the Fourier series for the function f(x) which has period 2.  

1
4

3
4

1
4

0

( ) 0 2

2

for x

f x for x

for x




 

    
 

 





                                          

 

 

 
1  McQuarrie, page 735   
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Examine an incorrect partial sum. Note the first two sum are through a frequency 

201 while the last term in the sum reaches a frequency of 402. The result is the 

improper appearance of Gibbs (overshoot) ringing at points that alias the positions 

of the discontinuities.  

Plot[(1/Pi) * 

 Sum[  ( Sin[( 2 m + 1) x]/( 2 m + 1)+ 

  (-1)^m  Cos[( 2 m + 1) x]/( 2 m + 1)   

 +2 * Sin[(4 m + 2) x]/(4 m + 2)), {m,0,100}], 

 {x,-4,4}] 

 

A proper partial sum contains all terms of frequency up to the maximum and none 

others. The sum below contains all term with frequencies up to 202 and none 

higher.  Note that the series now appears to converge uniformly in regions in which 

the function is continuous. The ringing behaviors at ±  and at - 

/2  are artifacts of 

an improper partial sum. 

 

Plot[(1/Pi) * 

 (Sum[ ( Sin[( 2 m + 1) x]/( 2 m + 1)+ (-1)^m  Cos[( 2 m + 1) x]/( 2 m + 1) 

 ), {m,0,100}] +  Sum[2 * Sin[(4 m + 2) x]/(4 m + 2), {m,0,50}]), 

 {x,-4,4}, PlotPoints -> 512, PlotRange -> All] 
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The sum is repeated keeping all terms up to  = 402. 

 

The Gibbs phenomenon occurs only at the discontinuities and, as the frequency 

limits was doubled, the domain over which it occurs is halved. Correct partial 

sums include all terms with frequency up to the maximum chosen and none 

higher. 
 

Linear Transformations and the Various Fourier Series: 

Read only if you have studied Vector Spaces and Linear Transformations. 

 

Consider the relations between:       0 0
1 1

( ) 1 cos sinm m
m m

0f t c a m t b m t 
 

 

        
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where 0
2   and:  2( ) expm

m

f t d i m T






t    . These represent the vector 

f(t), an element in a function space, using two choices of orthogonal basis set 

vectors (functions). Following the conventions discovered for partial sums, all 

expansions are to be order in increasing frequency order. 

Traditional Basis Set: 

{ 1, cos(ot), sin(ot), cos(2ot), sin(2ot), cos(3ot), sin(3ot), ...  } = 

{T1(t),        T2(t),          T3(t),       T4(t),      T5(t),      T6(t),     T7(t), ...  } 

Complex Basis Set: 

{ 1,eiot, e-iot,ei2ot, e-i2ot, ,ei3ot, e-i3ot, ,ei4ot, e-i4ot,...  } = 

{C1(t),   C2(t),   C3(t),   C4(t),  C5(t),  C6(t),   C7(t), ...  } 

 

The function f(t) is represented by column vectors in each scheme. 

0

1

1

2

2

3

3

( )

TRADITIONAL

c

a

b

a
f t

b

a

b

 
 
 
 
 
   
 
 
 
 
  

                                                 

0

1

1

2

2

3

3

( )

COMPLEX

d

d

d

d
f t

d

d

d







 
 
 
 
 
   
 
 
 
 
  

The transformation matrix from the traditional to the complex basis has matrix 

elements {i,j} = Ci|Tj.

 

References: 

1.  K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics 

and Engineering, 2nd Ed., Cambridge, Cambridge UK (2002). 

2. J.W. Brown and R. V Churchill, Fourier Series and Boundary Value 

1/21/2010 USNA Physics Handout Series.Tank:  Fourier Series FS-88 



Problems, 6th Edition, McGraw-Hill, Boston (2001). 

3. H. F. Weinberger, Partial Differential Equations, Blaisdell, Watham, MA 

(1965). 

4.  Discovery exercises are inspired by or directly borrowed from the Physics 

Education Group at Oregon State headed by Corinne A. Manogue. 

5.  Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers, 

University Science Books, Sausalito, CA (2003). 

 

Fourier Series Collected: 

1.)  An odd square wave with period T stepping from -1 to +1 is presented. 

t

f(t)

1

-1

-T/2 +T/2 T-T

 

The square wave f(t) has a period of T and is extended beyond the base period to 

display the discontinuities at each multiple of T/2.  The function is represented as: 

                                    
1 0 2( )
1 02

Tfor t
f t

Tfor t

   


   

                       [FS.31] 

FOURIER SERIES FOR THE ANTI-SYMMETRIC SQUARE WAVE: 

4

0
p

for p oddpb

for p even


 
   


    or     
0

4 1 2
( ) sin 2 1

2 1m

t
f t m

m T


 

    
 

   



 

 

2.)  The second example chosen is a triangular wave.   This function is smoother 

than the square wave as it has no discontinuities.  It does have periodic 
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discontinuities in its first derivative.  Be alert to the differences associated with 

expanding a smoother function. 

t

f(t)

1

-1

+T/2 T-T +3T/4+T/4-T/4-T/2-3T/4

-2

2

 

base period: - T//2 < t <  T//2 

                         

42 4 2
4( ) 4

42 2 4

t T Tfor tT
t T Tf t for tT

t T Tfor tT

  


  

     


4



                        [FS.32] 

Once again, the function is odd with average value zero. 

 

 
1 1

2
( ) sin sinm m m

m m

t
f t b t b m

T


 

 

     
   where 

 

FOURIER SERIES FOR THE ANTI-SYMMETRIC TRIANGULAR WAVE: 

 
 

 

2 2 2

2 2
0

2 2 2
....

8 1 1( ) sin sin sin
3 5

18 2sin 2 1
2 1

m

m

t t
m m m

T T T
f t

tm
Tm

  









                   

t


 
 
 




 




             [FS.33] 

 

3.)  Slope-matched parabolic sections.  Consider the function of period 4 defined 

over the interval [-2,2] by the equations: 
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2 2

2 2

1 ( 1) 2 0 2
( )

1 ( 1) 2 2 0

t t t for t
f t

t t t for t

      
 

       

  

-2 -1.5 -1 -0.5

-1

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

  

It has a Fourier expansion   3 3
0

32
( ) sin 2 1

(2 1)m

f t m
m







 t    . 

 

4.) Asymmetric 25% square pulse which has a period of 2.  

0 0

( ) 1 0 2

0 2

for x

f x for x

for x




 

   
 


 

  

In the final form, the contents of each set of parentheses should be replaced by an 

infinite sum with an index that assumes integer values. Use the unit circle tool to 

evaluate trig functions for a set of even spaced arguments. 

1 1 cos( ) cos(3 ) cos(5 ) 1 sin( ) sin(3 ) sin(5 )
( ) ... ...

4 1 3 5 1 3 5

2 sin(2 ) sin(6 ) sin(10 )
...

2 6 10

x x x x x x
f x

x x x

 



            
  

     
 



 

Fourier series for:   2( )f x x x      assuming that the function is extended 

periodically with period 2. Use the result to compute  
1

1

2
1

m

m

m








 .        Answer:     

   2

cos( )m m x

m
x x

1

2 13 4
m

    




   ; 12
 
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	Mathematica 5.2 Syntax                  ` is to the left of the 1 key
	<<Calculus`FourierTransform`              loads the Fourier package                         
	UnitStep[x]                                                  = 0 for x < 0; = 1 for x > 1
	Note that the function to be plotted has been replaced by a list of two functions


