
Hermite Functions and the Quantum Oscillator 

  Background 

 Differentials Equations handout 

 The Laplace equation – solution and application 

Concepts of primary interest: 

 Separation constants 

 Sets of orthogonal functions 

 Discrete and continuous eigenvalue spectra 

 Generating Functions 

 Rodrigues formula representation 

 Recurrence relations 

 Raising and lowering operators 

 Sturm-Liouville Problems 

Sample calculations: 

Tools of the trade:  

 

The Quantum Simple Harmonic Oscillator is one of the problems that motivate the 

study of the Hermite polynomials, the Hn(x). Q.M.S. (Quantum Mechanics says.):  
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This equation is to be attacked and solved by the numbers. 
 

STEP ONE: Convert the problem from one in physics to one in mathematics. The 

equation as written has units of energy. The constant  has units of energy * time, m 

has units of mass, and k has units of energy per area. Combining, 


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mk

  has units of 

(length)4 so a dimensioned scaling constant  = 
1/ 4



 2

m k
 

is defined with units (length)-1 

as a step toward defining a dimensionless variable z = x. . The equation itself is 

divided by the natural unit of energy ½  (k/m)
½ leading to  a dimensionless constant 
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 which is (proportional to) the eigenvalue, the energy in natural units. 

The equation itself is now expressed in a dimensionless (mathspeak) form:   
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   0 .   [Hn.2]            (**See problem 2 for important details.) 

The advantage of this form is that one does not need to write down as many symbols. 

 

Exercise: Divide equation [Hn.1] by the energy unit ½  (k/m)
½

. Note that the second 

derivative with respect to x has dimensions length-2 and that x2 has units of length2. 
Divide the coefficient of x2 by the coefficient of the second derivative with respect to x, 
and you have a constant with dimensions length-4. Compare the fourth root of this 
constant with the definition of .
 

STEP TWO: Identify and factor out the large z behavior.1 For large z, the n un term is 

negligible compared to z2 un. Study: 
2
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z u x
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 . It follows that, to leading order in z 

the large |z| limit is, u(z) ≈ A + B . As the function u(z) must be 

normalizable, the second behavior is discarded. 
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STEP THREE: Propose that the full solution is: un(z) = g(z)  where g(z) is a 

slower-varying, well-behaved function that multiplies  to yield the full solution to 

the differential equation 

2/ 2ze

2/ 2ze

[Hn.2]. 
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1 When the domain range runs to infinity, it is common to have an exponential regulating behavior that complicates the 

power series solution method so we begin by factoring out that large argument behavior. When the range ends at zero, we 

often factor out the small argument behavior as well although the method of Frobenius also handles the issue. 
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After some substitutions and division by , it follows that un(z) will satisfy 

equation 

2 2/ze

[Hn.2] if g(z) satisfies:          
2

2

d g
2 ( 1) 0n

dg
z g

dz dz
                      [Hn.3]  

This equation is the DE for the Hermite polynomials if n = 2n + 1 (See problems 5 and 

6.). The ratio and comparison tests indicate that the series solution to equation [Hn.3] 

diverges and that it diverges as fast as 
2ze or faster than  converges. The series 

must be terminated after a finite number of terms if the overall solution functions are to 

remain finite.  Therefore the functions g(z) are the Hermite polynomials, the Hn(z) to 

within a multiplicative normalization constant. The conclusions flow forth as series 

termination requires that n = 2 n + 1 leading to energy eigenvalues En = (n +½) 

= (n + ½) o and spatial and temporal eigenfunctions:   un(z) = hn(z) = [2n n! 

1/2]-1/2 Hn(z) and (x, t) = [2n n! 1/2]-1/2 Hn(z) 

2 / 2ze

/ 2 ( 1i ne

1/ 2( / )k m

2/ 2ze 2ze / 2) t  .Hn(z) is the Hermite 

polynomial of order n, and the hn(z) are the spatial parts of the normalized 

wavefunctions for the quantum harmonic oscillator.

 

Comment/Exercise: Consider the original form of the equation 22
2 ( ) ( )d u

dz
z u z   0 . 

Insert a template power series solution and isolate the coefficient of the zs terms. Show 

that the recurrence relation becomes (s + 2)(s + 1) as+2 +  as – as-2 = 0. A two-term 

recurrence relation is a good thing. A three-term relation is an indication that you 

should factor out an asymptotic or other behavior out of the solution and try again. A 

recurrence relation relating only odd or only even index terms is expected for problems 

with symmetric domains.

 

Exercise: Consider 
2

2 2 ( 1)n
d g dg

z
dz dz

   0g  . Attempt a solution using the power 

series methods. That is: insert a template power series solution  and 
0
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n

n

g z a z
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isolate the coefficients of the zs terms. Show that the recurrence relation becomes (s + 

2)(s + 1) as+2 – 2s as + ( -1) as = 0. A two-term recurrence relation is a good thing. 

Find the requirement on  that will ensures that the power series terminates as a 

polynomial. Show that for  = 2n + 1, the series terminates as an nth order polynomial.

 



Charles Hermite  1822-1901 
 

Hermite made important contributions to number theory, algebra, 
orthogonal polynomials, and elliptic functions. He discovered his 
most significant mathematical results over the ten years following 
his appointment to the École Polytechnique. In 1848 he proved 
that doubly periodic functions can be represented as quotients of 
periodic entire functions. In 1849 Hermite submitted a memoir to 
the Académie des Sciences which applied Cauchy's residue 
techniques to doubly periodic functions. Sturm and Cauchy gave a 
good report on this memoir in 1851 but a priority dispute with 
Liouville seems to have prevented its publication. 
   

MacTutor Archive on Mathematics History; University of St. Andrews  Scotland 
 

Properties of the Hermite Polynomials: 

The differential equation:        
2

2 2 2n n
n

d H dH
z n H

dz dz
0    

Normalization condition:       Hn(z) = 2n xn + (terms with powers of xn – 2, xn – 4, …) 

Hermite polynomials are alternately even and odd 

Orthogonality Relation: 
2
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Rodriques Formula:                  Hn(z) =  2 2
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Generating Function:                    
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Recurrence Relations:                          1( ) 2 ( )n n
d
dz H z n H z  

  1( ) 2 ( ) ( )n n n
d
dz H z z H z H z  

 1 12 ( ) 2 ( ) (n n nz H z n H z H z  )  
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Sample Hermite Polynomials:         H0(z) = 1           H1(z) = 2 z      H2(z) = 4 z2 - 2   

H3(z) = 8 z3 - 12 z           H4(z) = 16 z4 - 48 z2 + 12      H5(z) = 32 z5  - 160 z3 + 120 z 

Mathematica syntax: HermiteH[n,z]      Hn(z) 
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Properties of the Harmonic Oscillator Wavefunctions:  
2
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The differential equation:        
2

2
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Normalization condition:        ( ) ( )n mh z h z dz 
 


     (The hn(z) are real-valued.) 

Rodriques Formula:                  hn(z) =  
2

21/ 2 2[2 ! ] ( 1)
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n
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dzn e  ze  

Recurrence Relations:                  1 1
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n nh z h z h z 
  n  

                1 1
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Abstract Space Notation:           1| | 1 |2 2
d
dz

n nn n n 1      

       1| | 1 |2 2
n nz n n n 1     

Sample Wavefunctions: ho(z) = 1

  
2z

2e
    h1(z) = 

4

2 z

  
2z

2e
   h2(z) = 

22 1

2

z
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  
2z

2e
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  h3(z) = 
32 3

3

z z



  
2z 2e        h4(z) =

4 24 12

4!

z z



3    
2z 2e       h5(z) =

5 34 20 15

60

z z



  z  
2z 2e  

 

Notation Alert:  The use of the zero vector notation 0 representing the additive 

identity is sometimes preempted by another convention. For example, in quantum 
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mechanics, |0 represents the ground state (lowest energy state) for problems 

such as the quantum harmonic oscillator. In these cases the additive identity is to 

be represented as |ZERO or |NULL. Stay alert; this conflict will arise when you 

study the quantum oscillator. That is 0 is the ground state, a state vector with 

non-zero magnitude, for the QSHO problem. Lowering 1 yields 0, the ground 

state; it does not annihilate the state. Lowering 0 results in annihilation.       

Ignore the last sentence if you have not heard of lowering. 

 

Interlaced Zeros Property 
 

The eigenfunctions of a Sturm-Liouville operator (includes most Hamiltonians studied 

in the first year of quantum) have the properties that they can be chosen to be real 

valued and that the zeros of functions with adjacent eigenvalues are interlaced. This 

discussion assumes a discrete eigenvalue spectrum. Other than perhaps endpoint 

zeroes, a zero for the function with the higher eigenvalue will appear between any two 

zeros of the function with the next lower eigenvalue.  
 

SHOwavefn[n_,z_]:= HermiteH[n,z] Exp[-(z^2)/2]*(1/Sqrt[2^n n! Sqrt[Pi]]) 

Plot[{SHOwavefn[5,z], SHOwavefn[6,z]},{z,-5,5}, AspectRatio0.4] 
 

This result does not mean that a function with a higher eigenvalue can never share an 

interior zero location with a lower eigenvalue function. It means that adjacent-

eigenvalue functions will not share an interior zero location and that the wavefunctions 

gain a node for each step up in eigenvalue. 
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Plots of the n = 5 and 6 QHO wavefunctions 

 

Plots of the n = 30 and 31 QHO wavefunctions 

 

Given an eigenfunction, the next eigenfunction with a higher eigenvalue will have  one 

zero between any two zeroes of that eigenfunction. 

Exercise: Give an example in which a SHO wavefunction shares an interior zero 

location with a function with a lower eigenvalue. 
 

The interlace behavior suggests that the higher eigenfunctions wiggle more rapidly and 

have smaller and smaller separations between their zero locations indicating that they 

might represent finer and finer spatial variations.  The case that the eigenvalue 

spectrum is unbounded above might then suggest that the eigenfunctions can wiggle as 

fast as necessary to characterize any reasonable functions and hence that the set of 

eigenfunctions is a complete basis for all reasonable functions defined on the domain. 
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Completeness:  The SHO wavefunctions hn(x) are orthonormal and so one can attempt 

to use them as an expansion set for a function f(x). 

 2

0 0 0

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
n x

n n n n n
n n nn n

h x f x
f x a h x h x h x f x e dx h x

h x h x

    

  
       

 

Recall that the hn(x) are normalized so that ( ) ( )n nh x h x = 1.  

The set is complete if expansions converge in the mean to all reasonable functions. 

22

0

( ) ( ) 0 reasonable ( )[ | | ]
N

x
n n

n
N

f x a h x e dxLimit f x
 





    

Basically if the total integrated value of the square of the error in the series 

representation goes to zero, then no important parts of the behavior of f(x) are absent. 

All our functions are faithfully represented so expansion set is adequate to provide a 

complete representation. 

Tools of the Trade 
 

The following section will proceed in discovery mode. We will not just present the best 

solution by hindsight. Rather we will muddle through and adjust to more optimal 

definitions and approaches at the end.  

 

Ladder Operations and the Solution of Differential Equations: 

The form of the differential operator for the Hermite functions suggests an alternative 

approach to solving the equation for the Hermite functions. 

              
2

2
2 ( ) ( )n

n n n
d u

z u z u z
dz

                        [Hn.4] 

that has the eigenvalue form: 
2

2
2

ˆ ˆ( ) ( ) wheren n n
d

Lu z u z L z
dz

                     [Hn.5] 

The process is suggested by the  great algebraic identity: x2 – y2 = (x – y) (x + y), one is 
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tempted to express  as either L̂ ˆ ˆAB  or ˆB̂A  where ˆ d
dzA z   and ˆ d

dzB z  . 

Unfortunately, neither representation is correct due to the appearance of product rule 

terms in the derivative. 

    2

2

2ˆ ˆ ˆ( ) 1 1n n n n n
d d d
dz dz dzAB u z z z u z u u L u u                n n          [Hn.6] 

    2

2

2ˆˆ ˆ( ) 1 1n n n n n
d d d
dz dz dz n nBA u z z z u z u u L u u                          [Hn.7] 

Note: The process seems to produce multipliers differing in value by 2. At this point, it 

is postulated that the spectrum for the eigenvalues n is discrete and consists of values 

separated by intervals of magnitude 2. Thus n+1 is assumed to be n + 2. This 

problem arose in the study of the quantum harmonic oscillator and is the 

dimensionless form of the Hamiltonian, the operator for the sum of the kinetic energy 

and the positive potential energy ½ k x2. All the eigenvalues n should be positive. The 

spectrum of eigenvalues should start with a minimum positive value, and include 

values generated by incrementing that value by +2 multiple times.

L̂

1 
 

Exercise: What combination of the operators Â  and B̂ would equal ? L̂

 

Summary of the notation and results: 
2

2
2

ˆ ˆ( ) ( ) wheren n n

d
Lu z u z L z

dz
     

                    ˆ d
dzA z                         ˆ d

dzB z                  [Hn.8] 

 ˆ ˆ ˆ( ) 1 1n n nABu z L u u      n n            ˆˆ ˆ( ) 1 1n n nBAu z L u u       

Combining,                 [Hn.9] ˆ ˆ ˆˆ ˆ ˆ( ) , 2n nAB BA u z A B u u     n

                                          

Clearly, the average of the two ordering reproduces the desired differential operator. 

 
1  Rather than a minimum positive value, a more general requirement is that there should be a minimum or lowest 

eigenvalue such as – 13.6 eV for the hydrogen atom problem. 
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 ˆ ˆˆ ˆ ˆ ( )n nLu AB BA u z un n                   [Hn.10] 

A short calculation verifies that the multiplication of the linear-differential operators 

,Â B̂ and  is associative, but not commutative.   (L̂ Â B̂ Â ) = ( Â B̂ ) , but Â B̂ Â   Â B̂ . 

In fact, Â B̂ - B̂ Â   
 

Exercise: Verify that (Â B̂ Â ) = ( Â B̂ )  and that the operatorÂ Â B̂ - B̂ Â  is equivalent to 

multiplication by  
 

Raising and Lowering Operators 

Consider:  

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )n n nLAu AB BA Au AAB ABA AAB BAA ABA ABA u                [Hn.11] 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] ½ 2 2 2½( ) ( ) ( )n n nnLAu AAB A B A B A A ABA A AB AB A Lu u          u

n

 

 ˆ ˆˆ ˆ 2 ( 2)( )n n nL Au A L uu               [Hn.12] 

Compare this result for L̂  on an eigenfunction uk (See [Hn.10]). If un is an 

eigenfunction of the scaled hamiltonian L̂ , then ˆ
nAu  is an eigenfunction with 

eigenvalue n – 2.

 

The reasoning can be applied to ˆ
nBu  to show that  ˆ ˆ ( 2)n nL Bu u  n . We conclude that  

 acts as a raising operator.  ˆ ˆˆ ˆ 2 ( 2)( )n n nL Au A L uu     n

Â  lowers the eigenfunction to (perhaps a multiple of) the eigenfunction with the next 

lowest eigenvalue and B̂  raises the eigenfunction to (perhaps a multiple of) the one 

with the next highest eigenvalue. These operators seem to be joined together or 

associated. The operator B̂  is to be relabeled Ât  and dubbed the adjoint of Â  and read 

as ‘A-dagger’. Nothing has been said about the normalization and any multiple of an 
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eigenfunction is a solution to the eigenvalue equation. The results are restated allowing 

for a loss of normalization when the operators raise or lower a function. 

1

1

ˆ ˆ( ) ( ) 1

ˆ ˆ( ) ( ) 1

n n nn

n n nn

Au z c u z A n c n

A u z d u z A n d n





 

 t



t
            [Hn.13] 

 

Recalling previous result and converting them to abstract vector space notation, 

   ˆ ˆ ˆ ˆ( ) 1 ( ) 1n n n nAA u z u z AA n n    t t          [Hn.14]    

   ˆ ˆ ˆ ˆ( ) 1 ( ) 1n n n nA Au z u z A A n n    t t          [Hn.15] 

As the n are positive and separated from one another by 2, there must be a least value 

of  Assume that the lowest value is o and that the corresponding eigenfunction is 

uo(z). It is impossible to lower the lowest eigenfunction as there is none lower. The 

action of  uo(z) should be to annihilateÂ 1 it (return zero as the result).   

Â  uo(z) = 0  or     ( )( ) 0 z
n n

ndud
dz dzz u z z     u  

This equation can be integrated to yield uo(z) = c 
2

2
z

e
  where c is a scalar constant. 

With the lowest eigenfunction in hand, its eigenvalue can by computed. 
2

2
2

ˆ ˆ( ) ( ) wheren n n

d
Lu z u z L z

dz
    0 0 0

ˆ ( ) ( )Lu z u z  

 2 22 ½ ½ ½2
2 1z zd

dz
z ce ce ce   

  
   

2z  

The conclusion is that the lowest eigenvalue o is 1. The next task is to raise uo(z) to 

find u1(z). 

Ât uo(z) = dn un(z)       ½
0 1

2
( ) ( ) (2 )n

zd
dzz u z d u z z e    

                                           
1 This behavior leads to the alternative name set of annihilation and creation for the lowering and raising operators. 
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The conclusion is that u1(z) is a multiple of . The overall constant multiplier 

would be set by a normalization procedure. Even without normalization, we can find 

the eigenvalue for u1(z). 

½ 2
(2 ) zz e

 2 ½ ½ ½2 22
2 (2 ) (6 ) 3 (2 )z zd

dz
z z e z e z e  

  
   

2z  

The eigenvalue 1 = 3 which is 0 + 2 supporting the previous speculation about the 

spacing between eigenvalues and leading to the final result that n = 2 n + 1.  

The energy eigenvalues for the quantum harmonic oscillator follows from the values for the .
2

2 1 ( ½)n nk m

nE kn E n m      


  

 

Combining the result n = 2 n + 1 with equations: [Hn.13], [Hn.14] and [Hn.15], the 

identifications  

cn = (2 n)½ and dn = (2 [n + 1])½ are possible. The choices of raising and lowering 

operators as defined to this point were based on an old algebraic identity. Now we add 

the normalization information. We can’t get rid of the factors that depend on n, but we 

can dispense with the square roots of two. The new, improved raising and lowering 

operators are to be defined as: 

    1 1
2 2

ˆˆ d
dza A z  

t t 
     and 1 1

2 2
ˆˆ d

dza A z                          [Hn.16] 

New Action Summary: 

           ˆ ˆ1a n n n a n n n    t 1 1                                   [Hn.17] 

           0
1

2 !
ˆ( ) 0 ! ( ) ( )

n
n

n n
d
dzna n n u z z u    

t z                   [Hn.18] 

It follows that ˆ ˆ ˆ ˆand 1a a n n n aa n n n t t 

1

 leading to the identification of  as 

the number operator and of the relation 

ˆ ˆa at

ˆ ˆ ˆ ˆ ˆ ˆ,aa a a a a 
  t t t 

â

. The action of this 

combination of  is to multiply the wavefunction by 1. Hence that operator ˆ andat
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combination, , is completely equivalent to multiplication by 1. 

 is called the commutator of . 

ˆ ˆ ˆ ˆ ˆ ˆ,aa a a a a
 t t t

ˆ ˆa at




ˆ ˆ ˆ ˆ,a a aa 
   t t ˆ ˆanda at

ˆ ˆ

 

With a little effort, it follows that ˆ ˆ ˆ½L aa a a 
 t

 t . Comparing with the eigenvalue 

equation, 

ˆ ˆ ˆ ˆ ˆ 2 1)L n aa a a n n n 
    t t½ (n n  

The dimensioned Hamiltonian is Ĥ  = ½  (k/m)½  leading to L̂ Ĥ n = (2 n + 1)½  (k/m)½.
 

 

The dimensionless momentum operator is: ˆ z
d
dzp i  .   

1
2

ˆ d
dza z 

t 
 and 1

2
ˆ d

dza z     become  1
2

ˆ ˆ za z i t p and  1
2

ˆ ˆ za z ip   

Inverting the equations, 

                         1
2

ˆ ˆz a 
t a         and      2

ˆ ˆz
i ˆp a a   

t                                       

[Hn.19] 

The commutator of the position and momentum can now be computed in terms of the 

commutator: . ˆ ˆ ˆ ˆ ˆ ˆ,a a aa a a 
   t t t

     1
2 2

ˆ ˆ ˆ ˆ, ,z
iz p a a a â    

t t  

      2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , 0 ( 1) (1) (0z
i iz p a a a a a a a a i                  

t t t t )   

This result is valid for our dimensionless operators. The fully dimensioned form 

is: ˆ, xx p i     . The value of the commutator is deduced by allowing the operator to act 

on an arbitrary function f(x). 

ˆ, ( ) ( ) ( ) ( ) (

( ) ( )

x
d d
dx dx

df df
dx dx

)x p f x x i f x i x f x

i x x f x i f x

  

 
  

   

    

 

 
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The action of the commutator on an arbitrary function is to multiply it by i so the 

commutator is equivalent to multiplication by i. 

 

Developing the Rodriques Formula: 

 

The machinery developed in the previous section provides a basis for developing the 

Rodriques formula for the  
2

2
2( )

z z
n

n
n

d
dzu z e e .  Consider an arbitrary function f(z). 

2 2 2 2½ ½ ½ ½( ) ( ) ( )z z z zd d
dz dz dze e f z e e z f z z f             

d z  

Next the induction step. It is assumed that: 

2 2½ ½( ) ( )
n

n
z z

nd d
dz dzz g z e e g z        

This assumption is used to establish the result for n + 1. 

   2 2½ ½
1

( ) ( ) ( )
n

n
z z

n nd d d d d
dz dz dz dz dzz g z z z g z z e e g z


                        

   
     

2 2 2 2

2 2 2 2 2 21

1

½ ½ ½ ½

½ ½ ½ ½ ½ ½

1
( ) ( ) ( )

( ) ( ) ( )

n n

n n

n n n

n n n

z z z z

z z z z z z

nd d d d
dz dz dz dz

d d d
dz dz dz

z g z e e g z z e e g z

z e e g z e e g z z e e g z




 

 


           

            


 

or  2 21

1
½ ½

1
( ) ( )

n

n
z z

nd d
dz dzz g z e e g z







        

With the n = 1 anchor step and the induction (n  n + 1) step validated, the result is 

true for all n. 

 2 2½ ½( ) ( ) and well- behaved ( )
n

n
z z

nd d
dz dzz g z e e g z n g z                     [Hn.20] 

To this point, g(z) has been an arbitrary function; now g(z) is identified with uo(z) = c e 

- ½ z
2
. The operation begins with the lowest eigenfunction, the ground state and raises it 

n times to generate a multiple of un(z). 
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 2 2½ ½ ½
0 0( ) ( ) ( )

n

n
z z

n

n nd d
dz dzz u z A u z d u z e e c e  2z           

t  

   2 2½( )
n

n
z z

n
d

c
d
dzu z e e     

The factor d/c provides for normalization if needed. It is claimed that the process has 

generated a multiple of the nth eigenfunction. Developments covered in the problem 

section establish that: 

 2 2 2 2½ ½ 2 4 ½
2 4( 1) (2 ) ... ( )

n

n
n z z z n n n z

nn n
d
dze e e z b z b z e H    

 
           z  

It follows that  2 2 2 2½ ½( 1) ( ) ( ) or that ( 1) ( )
n

n
z n z n z z

n n n
d
dze e H z H z e e H z  

     . 

Rodriques got it right. 

 

 

Sturm – Liouville Problems    Almost all of our DEs

 

A homogeneous linear differential equation for y(x) of the form: 

    ( ) ( ) ( ) ( ) 0
d dy

p x w x q x y x
dx dx

     


                                          

       [SL.21] 

Where p(x),  q(x)  and w(x) are real-valued functions, w(x)  0 and some rather general 

boundary conditions are met at a and b, the ends of the interval over which the 

solutions are to be defined. The equation is found to possess physically meaningful 

solutions only if the parameter  is one of a certain set of characteristic values call 

eigenvalues. The permissible values of  are known as its characteristic values (or 

eigenvalues) k, and the corresponding functions yk(x), which then satisfy the 

conditions of the problem when  = k, are known as the characteristic functions (or 

eigenfunctions)1.  In most physics applications, the functions p(x) and w(x) are positive 

 
1 Eigen is German for characteristic property. eigen, eigene, eigenes: own or its own; Eigenschaft (f): property 
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definite in the interval [a,b], except possibly at one or both of the end points.

 

Consider the differential equation and its complex conjugate. 

 
*

* *

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

m
m m

m
m m

dyd
p x w x q x y x

dx dx

dyd
p x w x q x y x

dx dx





     
 

     
 




                              [SL.22] 

Multiply the second equation by yn(x). 

*
* *( ) ( ) ( ) ( ) ( ) ( ) 0m

n m n

dyd
y x p x w x q x y x y x

dx dx


 
  m     

 
 

Prepare a copy with m and n interchanged and subtract it from the one above.  

*
* *( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m n

n m n m n

dy dyd d
y x p x y x p x w x y x y x

dx dx dx dx
 

             
*
m   

Integrate both sides over the range a  to b. Use integration by parts on the left-hand 

side: 

* * *
*

* *

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

b
m n m n m n

n m a

b

n m m na

b

a

dy dy dy dy dy dy
p x y x y x p x p x dx

dx dx dx dx dx dx

y x y x w x dx 

  
    

  

   







      [SL.23] 

It is to be assumed that the following boundary condition is met: 

*
*( ) ( ) ( ) 0m n

n m

b

a

dy dy
p x y x y x

dx dx




 






                                          [SL.24] 

and it is clear that the second integral vanishes so the result is: 

                                       [SL.25] * * ( ) ( ) ( ) 0
b

n m m na
y x y x w x dx    

Note that this procedure has generated a natural inner product for the functions 

associated with this differential equation. The function w(x) is everywhere 

positive and is called the weight function.  
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            *
( ) ( ) ( ) ( ) ( )

b

a
f x g x f x g x w x dx                     [SL.26] 

 

In the case that m = n,  

* *( ) ( ) ( ) 0
b

n n n na
y x y x w x dx      

and, as   0 for non-trivial functions yn(x), *( ) ( ) ( )
b

n na
y x y x w x dx
n =n*                                           [SL.27] 

If a complex number is equal to its complex conjugate, it is a real number. The 

eigenvalues are real, and, as all the eigenvalues are real for Sturm-Liouville problems, 

the general case becomes:  

* ( ) ( ) ( ) 0
b

n m m na
y x y x w x dx       

Solution functions yn(x) and ym(x) with distinct eigenvalues (n  m) are necessarily 

orthogonal.

* ( ) ( ) ( ) 0 for
b

m n m n n ma
y y y x y x w x dx                   [SL.28] 

Eigenfunctions with distinct eigenvalues are orthogonal. 

In the cases that an eigenvalue is repeated, the several functions corresponding to the 

eigenvalue can be used to build a set of mutually orthogonal functions by applying the 

Gram-Schmidt procedure.  

 

COMPLETE BASIS:  The collection of the eigenfunctions that solve the differential 

equation is a complete set of basis functions for the problem. A well-behaved, general 

function defined over same interval can be expanded in a generalized Fourier series 

as: 

1

( ) ( ) where m
m m m

m m m

y f
f x a y x a

y y




                          [SL.29] 
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Exercise:  Show that the Hermite polynomial equation can be written as:  

2 2
2 (n

n
x xdHd

e ne H
dx dx

     ) 0x     
 

Compare this with the general Sturm-Liouville form to identify each function in the 

general form. What values are the allowed eigenvalues? What is the interval (a, b)? 

 ( ) ( ) ( ) ( ) 0
d dy

p x w x q x y x
dx dx

      
 

Give the form of the natural inner product for the space spanned by the Hermite 

polynomials. 

Is the condition 
*

*( ) ( ) ( ) 0m n
n m

b

a

dy dy
p x y x y x

dx dx



 


   met for the particulars of the Hermite 

problem? 

 

 

Tools of the Trade: 

 

How does one get back to the dimensioned physics problem after solving the 

associated dimensionless math problem? 

 

The first step is to multiply the differential operator by ½  o to recover the 

hamiltonian.         ˆ ˆ ˆ ˆ ˆ½ (nL n aa a a n n n n 
     t t 2 1)  

The dimensioned Hamiltonian is Ĥ  = ½  (k/m)½  leading to L̂ Ĥ n = (2n+1)½ (k/m)½.

Hence the energy eigenvalues are: En = (n + ½)  o. The problem also generates a 

characteristic length -1 =  1/42

ommk    leading to the assignment, z = x, and the 
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inner product relation: 

      * * ½ * ½ *
1 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j k j k j kh z h z dz h x h x dx h x h x dx x x dx               

Important: We identify n(x) = ½ hn(x). We have explicitly noted that n and hn are 

different functions. Putting it all together,   

22
2 2

( )1
( ) ( ) ; ( ) ( )

2 ! 2 !
n n n n

n n

xz a
h z H z e x H x e

n n


 

 

    

Next we back-convert the operators. The coordinate is easy: z x as is the derivative 

relation: /z  -1 /x. Let’s move on to the raising and lowering operators. 

            11 1 1 1
2 2 2 2

ˆ ˆ
o o

o om m
d d d
dz dx dxa z x m x i i m x

 
                       ip  

and       11 1 1
2 2 2

ˆ ˆ
o

om
d d
dz dxa z x m x


              

† ip . 

These relations can be inverted as well: 

   1

2 2
ˆ ˆ ˆ ˆ ˆi ˆx a a x a a    † †  

Application: 

   

   

* ½ * ½ *

2 2

*
1 1 , 12 2

1 1

1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) 1 ( ) ( ) 1

m n m n m n

m n n m n

x x x dx h z a a h z dx h z a a h z dz

h z n h z n h z dz n n

 

 

   

 

  

  



  

 

 

   

     

  



† †

, 1m n

 

 

Exercise: Use the method of the application above to compute * ˆ( ) ( )m nx p x d 


 x . 

 

 

The Generating Function: What is it good for? 

 

Consider the generating function relation for the Hermite polynomials: 

0

2(2 ) ( )
!

n

n
n

zh h h
H z

n
e





   and hence 
2

0 0

2 2(2 ) (4 2 ) ( ) ( )
! !

n m

n m
n m

zh h zh h h h
H z H z

n m
e e

 

 

           
  



.  
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Note that: Sums start at zero for the Hermite problem. Exercise (what else) the inner 

product. 

0 0

2 2 2(4 2 ) ( ) ( )
! !

n m

n m
n m

zh h z zh h
e dz H z H z e d

n m
e

  

 
 

    
   

  
   z  

2

, 0

2 2( 2 )2 ( ) ( )
! !

n m

n m
m n

z hh zh h
dz H z H z e dz

n m
e e

 

 


      

We have shown that that the Hermite polynomials form a mutually orthogonal set.  

2 2
( ) ( ) ( ) ( )n m mn n n

z zH z H z e dz H z H z e dz
 

 

    

2
2

2
0

2 22 2 2
( ) ( )

( !)

n

n n
n

h u h zh
du H z H z e dz

n
e e e 

 

 


     

Expanding the left-hand side: 

0 0

2 22 2 2
2

2
! ( !)

( ) ( )n n
n n

h n n n zh h
n n

H z H z e dze  
  


 

     

Each power of h is an independent function so the coefficient must match left to right. 

2 2

2
1

( !)!2 ( ) ( ) or ( ) ( )n n
n n n n

z z
nn H z H z e dz H z H z e dz n 2 

 

 

     

After incorporating the normalization and splitting the weight function between um(x)* 

and un(x), the wavefunctions for the harmonic oscillator become: 

2½1
( ) ( )

2 !
n n

n

zu z H z e
n 

          
2

0( ½)½1
( ) ( )

2 !
n n

n

i n tzz H z e e
n




   

CONCLUSION: The generating function may have application beyond being a 

difficult method to generate the eigenfunctions. 
 

Warm Up Problems 
 

WUP1. The constant  = 
1/ 4

2

m k 
 
 

has dimensions of length inverse. It is used to define 

the dimensionless coordinate z = x.  

a.) Provide an equation for x given z. 
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b.) The potential energy of a SHO is ½ k x2. Give the expression for the potential 

energy as a function of z.  

c.) Express d/dx in terms of d/dz. 

d.) Express p̂ i
x





  in terms of a derivative with respect to z. 

e.) Express the kinetic energy operator 
2 2

22m x

 


 using derivatives with respect to z. 

f.) What was identified as the natural energy unit for the SHO problem? 

Partial Answers:  x = 
1/ 42

1 z
m k

  
  
 


z              kin. en. op. = 

2 2
2

2

2

2
1

22
k m zm z

 


 
 


  

WUP2.  The Hermite polynomials are alternately even and odd and are normalized 

such that they have the form: Hn(x) = (2x)n + an-2 x
n-2 + an-4 x

n-4   + … . 

Give the values of: 
1 1

1 1

( ) ( ) ( )
; ;

n n n
n n
n n n

d H x d H x d H x

dx dx dx

 

 
n  

WUP3. Consider 
2

2 2 ( 1)n
d g dg

z
dz dz

   0g  . Attempt a solution using the power series 

methods. That is: insert a template power series solution  and isolate the 

coefficients of the zs terms. Show that the recurrence relation becomes (s + 2)(s + 1) 

as+2 – 2s as + ( -1) as = 0. A two-term recurrence relation is a good thing. Find the 

requirement on  that will ensures that the power series terminates as a polynomial. 

Show that for  = 2n + 1, the series terminates as an nth order polynomial 

0

( ) n
n

n

g z a z






 

WUP4. We wish to prove that ( )
n

n
n

d
z

dz
!n . Show that the formula works for n = 1. 

Assume that the formula works for n and use this to prove that it works for n + 1 by 

starting with: 
1

1
1

( ) ( *
n n

n
n n

d d d
z

dz dz dz




  )nz z . Remember that the target result is (n + 1)!. 
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What is: (2 )
n

n n
n

d
z

dz
? 

 

Problems 

1.) Find the location of all the zeros of the seventh and eighth eigenfunctions for the 

harmonic oscillator in terms of their dimensionless argument. Locate the zeros to three 

significant figures. 
2

2
1

( ) ( )
2 !

n n
n

z
h z H z e

n 

  

Do the zeros obey the interlaced-zeros hypothesis? Give a specific example in which a 

wavefunction has exactly the same location of an interior zero as does another 

wavefunction with a lower eigenvalue. 

Use Mathematica:  n = 6; NSolve[HermiteH[n,x]0,x,6] 

 

2.) Begin with the Shroedinger equation for the harmonic oscillator. 
22

21
22

( ) (
2

n
n n

d u
k x E u x

m dx
  


) 0  

As each term must have the same dimensions, argue that 
2

mk

  has units of (length)4 and 

that   has the dimensions of energy. Define  = 1/ 2( / )k m
1/ 4

2

m k 
 
 

and use the change of 

variable z = x and division by ½  to convert the Shroedinger equation a 

dimensionless form, a simple problem in mathematics. The DE becomes the 

dimensionless (mathspeak) form:   

1/ 2( / )k m

2
2

2
( ) ( )n

n n

d U
z U z

dz
 0    
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Note that if one wants to be pure, Un(z) = Un( x) = un(x). The variable x has 

dimensions while z is dimensionless. In the mathform, functions and their arguments 

are dimensionless. We are sloppy and often just write 
2

02
2

( ) ( )n
n n

d u
z u z

dz
    even 

though we should be more careful. !This course is SP35x, not SM35x. 

 

3.) Identify and factor out the large z behavior. For large z, the n un term is negligible 

compared to z2 un. Study: 
2

2
2

( )n
n

d u
z u x

dz
 . To leading order in z, u(z) ≈ A for |z| 

very large.  Show that: 

2/ 2ze

 2 2
2

2 2
2

/ 2 / 2 1 ( )z zd
e z e z

dz
       ) where represents “and terms of order that vanish 

as z-2 or faster”.  Why is the behavior u(z) ≈ A , which works to the same order, 

banished for the list of possibilities? Propose that the full solution is: un(z) = Nn Hn(z) 

where Nn is a normalization constant, and show that Hn(z)  must satisfy 

2(z

2/ 2ze

2/ 2ze

2

2
2 ( 1)n n

n n

d H dH
z

dz dz
   0H   if un(z) is to satisfy the original equation . The equation 

2

2
2 ( 1)n n

n n

d H dH
z

dz dz
   0H   is the DE for the Hermite polynomials (See problems 5 

and 6.) The ratio and comparison tests indicate that the series diverges and that it 

diverges faster than  converges. The series must terminate to yield polynomials if 

the overall solution functions are to remain finite. The conclusions flow forth as series 

termination requires that n = 2 n + 1 leading to energy eigenvalues: En = (n + 1/2) 

=(n + 1/2) 

2/ 2ze

o
1/ 2( / )k m  and spatial and temporal eigenfunctions:    

un(z) = hn(z) = [2n n! 1/2]-1/2 Hn(z) and (x,t) = [2n n! 1/2]-1/2 Hn(z) e-i(n+½)t2/ 2ze 2/ 2ze


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4.)  The normalized oscillator wave functions are:
2

2
1

( ) 2 ! ( )m
m m

x
u x m H x e

     
. 

Verify this normalization for uo(x) and u2(x) and show that uo(x) and u2(x) are 

orthogonal. The quantum mechanics inner product: [ ( )]* ( )f g f x g x



  dx     

 

5.) The Hermite polynomials are a family of polynomials central to the study of the 

harmonic oscillator in quantum mechanics and the transverse intensity pattern of laser 

beams. The governing differential equation is: 

 
2

2
2 1n n

n n
dx dx

d H dH
x H 0     

Apply the power series method to find the indicial equation. If the series for Hn is 

allowed to be infinite, it diverges by the ratio test. Identify the spectrum of values for 

n that terminate the series after a finite number of terms. Generate the form of the four 

lowest order polynomials using the recurrence relations for the coefficients in the 

power series trial solution and setting the lowest index coefficients ao and a1 

alternately to 1 and 0 or to 0 and 1. Renormalize the mth order polynomial by 

multiplying by whatever value makes the coefficient of the highest (mth) power of x 

equal to 2m. Compare with the forms given below and comment. 
2 3

0 1 2 3( ) 1 ; ( ) 2 ; ( ) 4 2 ; ( ) 8 12H x H x x H x x H x x x       

Quantum mechanics identifies n as (2En) /[(k/m)1/2] where the En  are the allowed 

energy levels for the harmonic oscillator. What are the allowed energy values? 

 

6.) Hermite Polynomials:  There are many ways to develop the Hermite polynomials.  

One method begins with the initial set of polynomials { 1, x, x2, x3, …  , xn,  … } and 

uses the Gram-Schmidt procedure to generate an orthogonal set over the interval (-

,) using the inner product: 
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2

( ) ( ) 0x
m mH x H x e dx H H

 


      for m    

The weight function 
2xe  is necessary to assure that the integrals over the infinite range 

converge. Assume that H0(x) = 1 and that H1(x) = 2 x is orthogonal to it.  Start with x2 

and use the Gram-Schmidt procedure to get an H2(x) that is orthogonal to H0(x) and 

H1(x) and that has 2n  s the coefficient of the xn.  Continue to find H3(x). Starting at x0 

and proceeding up the list of powers, the Gram-Schmidt procedure guarantees that 

each new polynomial is orthogonal to all polynomials of lower order. 

Use: 
2xe dx 

 


  and     

22 31
2 2 ...n xx e dx n n

 


   1

2  for n = 1,2, … 

Partial Answer: H4(x) = 16 x
4
 – 48x

2
 + 12. 

 

7.) Use the Rodriques representation Hn(x) =  2

( 1)n x xn

n
d
dxe e

2

for the Hermite 

polynomials to show that   1( ) 2 ( ) ( )n n n
d
dx H x x H x H x  . Use the first derivative of this 

result and the differential equation satisfied by the Hermite polynomials 
2

2
2 2n n

n
dx dx

d H dH
x n H  0  to establish the recurrence relation   1( ) 2 ( )n n

d
dx H x n H x . 

Continue to show that: 1 12 ( ) 2 ( ) ( )n n nx H x n H x H x   .  Use recurrence properties of the 

Hermite polynomials to show that:   0( ) 2 ! ( ) 2 !n n
n

n
n

d
dx H x n H x n  . 

 

8.) a.) Generate the first four Hermite polynomials be exercising the Rodriques 

formula. Show that your results are consistent with 

     2 22 4
2 41 2 ... ( )

n

n

n n 2x n n x
nn n

d
dx e x a x a x e H x   

 
 
 

      xe . That is the exponential 

times a polynomial with leading term 2n
 x

n followed by terms that drop the power of x 

by two as they step down to x1 or x0. Assume pn(x) =   2 4
2 42 ...

n n n
n nx a x a x 
     and 
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show that   2 2

( ) 2 ( ) ( ( ))x x
n n n

d d
dx dxp x e x p x p x e       leads to: 

     2 2 21

1

1 1 1 3
1 3 11 2 ... ( )

n

n

n nx n n x
n n n

d
dx e x a x a x e H x





    
  

 
  

      xe . 

Proving the result for n = 0 anchors the hypothesis. Assuming the result for the case n 

and then proving it for the case n + 1 establishes the result for all cases. The Hn(x) are 

alternately even and odd polynomials. Continue to argue that: 

  0( ) 2 ! ( ) 2n
n

n
n

d
dx H x n H x n  !n . Use this result in the problem below. 

b.) Use the identity   1( ) 2 ( )n n
d
dx H x n H x  to show that   0( ) 2 ! ( ) 2 !n n

n

n

n
d
dx H x n H x n  . 

 

9.) Use the information in the previous two problems to evaluate:    (Assume m  n)

  2 2 2 2

( ) ( ) ( ) ( 1) 2 !x m x x x n
n m n

m

m
d
dxH x H x e dx H x e e e dx n mn 

   

 
     

Explain why one can assume m  n without loss of generality. (The Hermite 

polynomial of higher order is represented by its Rodriques formula.) Note that the 

results of this problem identify the orthonormal harmonic oscillator wavefunctions 

as
2

2
1

( ) ( )
2 !

n n
n

x
u x H x e

n 

 . 

10.) The Hermite generating function relation is: 
0

2(2 ) ( )
!

n

n
n

xh h h
H x

n
e





  . Expand the left-

hand side keeping all terms up to and including order h4. Identify the Hermite 

polynomials Ho to H4.  

 

11.) Give the value of H0(x). Prepare an argue that:   0( ) 2 ! ( ) 2 !n n
n

n

n
d
dx H x n H x n   based 

on the recurrence relations.     (short form of #8) 
 

 

12.) Given the Hermite function definition: 
2

2
1

( ) ( )
2 !

n n
n

z
n h z H z e

n 

  . Develop 

recurrence like expressions for z |n and (d/dz) |n.  Use the recurrence relations for the 
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Hermite polynomials; do not assume those for the Hermite functions (SHO 

wavefunctions). What states are linked to |n by z and d
dz ? 



13.) Combine the Hermite function recurrence relations to find:    1
2

( )n
d
dzz h   z . 

Recast your results in the abstract vector space KET-style notation. What states are 

linked to |n by   1
2

ˆ d
dza z 

  and  1

2
ˆ d

dza z   
† ?

14.) Develop the recurrence relations based on  2

2 ( )n
d
dz h z  and . What states are 

linked to |n by z2 and the second derivative with respect to z?

2 ( )nz h z

 

15.) Given: 
2

2
1

( ) ( ) ( )
2 !

n n n
n

x
z h x H x e

n




  , use the recurrence relations for the 

oscillator wave functions to evaluate:  All integrals are over the range -

Use the methods from the Tools of the Trade section. 

 

* 2
3 1( ) ( )x x x d  x        * 2( ) ( )m nx x x d  x       *

1 3( ) ( )
d

x x dx
dx

       * ( ) ( )m n

d
x x dx

dx
   

 
2

*
2

( ) ( )m n

d
x x dx

dx
      and   

2
* 2

2
( ) ( )m n

d

dx
x x dxx 

 
 
 
  

 

 

16.) Use the methods from the Tools of the Trade section. 

Given: 
½

½
2

2
( )

( ) ( ) ( )
2 !

n n n
n

x
x h x H x e

n

   


   Use the recurrence relations 

ˆ ˆ1a n n n a n n n    t 1 1    to develop expressions for : 
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( ) and ( )n

d
nx x

dx
 x . Continue to evaluate  * ( ) ( )m n

d
x x x dx

dx
  ,  * ( ) ( )m n

d
x x x d

dx
  x  

and  * ( ) ( )m

d d
nx x x x dx

dx dx
      .    Both integrals are over the range - 

 

17.  Starting with the linearly independent set of functions {1
2

2
x

e
 , x

2
2

x
e
 , x2 2

2
x

e
 , 

x3 2
2

x
e
 , …. } over the domain (-,) construct the first three members of a set of 

orthonormal functions using the Gramm-Schmidt method with the inner product: 

[ ( )]* ( )f g f x g x



  dx .     

 

Hermite Functions: ho(x) =  ________  ;  h1(x) =  ________    ; h2(x) =  ____________ 
 

Companion problem  for #6. 

 

18.  Identify and factor out the large z behavior. For large z, the n un term is negligible 

compared to z2 un. Study: 
2

2
2

( )n
n

d u
z u x

dz
 . To leading order in z, u(z) ≈ A for |z| 

very large.  Show that: 

2/ 2ze

 2 2
2

2 2
2

/ 2 / 2 1 ( )z zd
e z e z

dz
       ) where represents “and terms of order that vanish 

as z-2 or faster”.  Why is the behavior u(z) ≈ A which works to the same order 

banished for the list of possibilities? Propose that the full solution is: un(z) = Nn Hn(z) 

where Nn is a normalization constant, and find the equation satisfied by Hn(z  is 

2(z

2/ 2ze

2/ 2ze

2

2
2 ( 1)n n

n n

d H dH
z H

dz dz
   0 . 

This equation is the DE for the Hermite polynomials (See problems 5 and 6.) The ratio 

and comparison tests indicate that the series diverges and that it diverges faster than 

 converges. The series must terminate to yield polynomials if the overall solution 

functions are to remain finite. The conclusions flow forth as series termination requires 

2/ 2ze
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that n = 2 n + 1 leading to energy eigenvalues: En = (n + 1/2) =(n + 1/2) 1/ 2( / )k m

o and spatial and temporal eigenfunctions:   

un(z) = hn(z) = [2n n! 1/2]-1/2 Hn(z) and (x,t) = [2n n! 1/2]-1/2 Hn(z)  
2/ 2ze 2/ 2ze

19.) The eigenvalue problem for the QSHO:     
2

2( ) ( )
z

n h z z e
 

1

2 !
n n

n
H

n 
 

Find the recurrence relations for  ( )n
d

dz h z  , z hn(z) and  2

2 ( )n
d
dz h z  and . Use then 

to evaluate 

2 ( )nz h z

2

2

2 ( )n
d
dz z h z     . Conclude that hn(z) is an eigenfunction of the operator 

2

2

2d
dz z     with eigenvalue 2 n +1. Recall that 2

2

2d
dz z     is the dimensionless form of 

the operator for the energy in terms of the energy unit ½  (k/m)
½

. 

 

20.) The eigenfunctions of the QSHO are known to be a complete set so any time 

independent solution can be represented as  where the hm(z) are ortho-

normal. The general form for a time dependent wave function 

is

0

( ) ( )m n
m

u z a h z




 

0

0( ½)( , ) ( )m n
m

i n tz t a h z e 




  

( , )] ( , )z t z t dz 

( ) ( )m n mnh z h z dz

. Use this form to compute the normalization integral 

. Be sure to use distinct dummy indices in the representations of the 

wavefunction and its complex conjugate. Use the orthogonality relation,  

[






  . Express the probability that the particle is in the state hk(z) in 

terms of the expansion coefficients in the series representation of .

 

21.)  The eigenfunctions of the QSHO are known to be a complete set so any time 

independent solution can be represented as  where the hm(z) are ortho-
0

( ) ( )m n
m

u z a h z




 
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normal. The general form for a time dependent wave function 

is
0

0( ½)( , ) ( )m n
m

i n tz t a h z e 




   . Each state 0( ½)( )n

i n th z e    has an energy eigenvalue of 2 n 

+ 1 (in units of  ½  (k/m)
½

) where 2

2

2zd
dz

     is the operator for the energy.  Compute 

the expectation value of the operator 2

2

2[ ( , )] ( , )d
dzz t z z t dz 

 


   

mndz

using series 

representations for the wave function and its complex conjugate. Also use the 

orthogonality relation,  ( ) ( )m nh z h z 




0

0( ½)( , ) ( )m m
m

i m tz t a h z e



0

( ) ( )m m
m

u z a h z




 

. Discuss the result and the interpretation 

that ak*ak is the probability that the system is in the quantum state k which has the 

(dimensionless) energy eigenvalue 2 k + 1. 

 

22. The eigenfunctions of the QSHO are known to be a complete set so any time 

independent solution can be represented as  where the hm(z) are ortho-

normal. The general form for a time dependent wave function 

is 




  

[ ( , )] ( , )z t z z t dz 
 



. Find the expectation value of the coordinate z in a 

general state of the QSHO.  Compute that expectation value of position as: 

 using series representations for the wave function and its 

complex conjugate. Also use the orthogonality relation,  




 ( )m nh z h ( ) mnz dz  . Make 

use of the recurrence relation: 1 1( )2 n
n h z

1( )2n n
n h z

 ( )z h z

0 0 | |i te C e 

. The result has two 

sums. Redefine the summation index in one sum as needed to make the summation 

ranges identical and show that the sums are the complex conjugates of one another. 

The result can be written as:   

z 0 0
0| | cos[ ]i t i ti ie C e e A t  * i tC e C      

         
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where 1
0

½| | (2) 1i
k k

k

C C e a a k







     , A = 2 |C|     (Answer not verified) 

That is the expectation value of position has the same time dependence as does the 

position of a classical oscillator with the same m and k. Note that the expectation value 

of the classical observable z is real-valued.  

This answer is for the dimensionless form of the problem. x = -1z

x= 2 |C| 
1/ 42

mk

 
 
 

 cos[0t + ]

23. The eigenfunctions of the QSHO are known to be a complete set so any time 

independent solution can be represented as  where the hm(z) are ortho-

normal. The general form for a time dependent wave function 

is

0

( ) ( )m m
m

u z a h z




 

0

0( ½)( , ) ( )m m
m

i m tz t a h z e 




   . Find the expectation value of the dimensionless 

momentum in a general state of the QSHO using its operator i
z





.  Compute that 

expectation value of position as: [ ( , )] ( , )z t i z t dz
z

 
 



   

( ) mnz dz

 using series 

representations for the wave function and its complex conjugate. Also use the 

orthogonality relation, ( )h zm nh 


  . Make use of the recurrence relation: 

1 1( )2 n z
1n h

( ) ( )2n n

d nh z h z
dz

  . The result has two sums. Redefine the summation 

index in one sum as needed to make the summation ranges identical and show that the 

sums are the complex conjugates of one another. The result can be cast in the form: 

pB sin[o t + ] = 2 |C| sin[o t + ]  (see previous problem)

That is the expectation value of position has the same time dependence as does the 

momentum of a classical oscillator with the same m and k and a position zcos[o 

t + ]. Conclude that the expectation values of the quantum system obey the classical 
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equations of motion. Note that the expectation value of the classical observable p is 

real-valued. Compare with the previous problem. 

With the dimensioned constants reasserted, 
1/ 4

2
ˆ

mk
p i i

x z

         
 


.  

Show that in the dimensioned form p = m d/dt x. Expectation values obey the 

classical equations of motion. 

 

24.) The most general form for a time dependent wave function for a quantum 

harmonic oscillator is
0 0

0 0( ½) ( ½)( , ) ( )m m m
m m

i m t i m tz t c h z e c m e 
 

 

      . Compute: 

*( , ) ( , )z t z t dz   



  . Use the orthogonality statement n|m = nm.  

Your answer should be: *

0
k k

k

c c 




 . As it represents the normalization integral, 

| = 1.What quantity is being normalized?  Provide your best interpretation of  

and .

*
5 5c c

*
k kc c

 

25.) Consider our lowering and raising operators:  1
2

ˆ d
dza z     and  1

2
ˆ d

dza z   
† . 

ˆ ˆ| | 1 and | 1 |a n n n a n n n   † 1  

 The ground state cannot be lowered. Rather, it is annihilated by the lowering operator. 

ˆ | 0 0 | 1 0a n   . Moving from abstract vector to function notation, this becomes 

 1
2

d
dzz 

 u(z) = 0.  

a.)Solve this equation to find the spatial form of the ground state wave function of a 

harmonic oscillator. Be sure to normalize your result. 
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b.) ˆ | 1 |a n n n  † 1  translated into  1
2

d
dzz   un(z) = (n + 1)½ un+1(z). Use the 

raising operator repetitively to generate u1(z) and u2(z) from your uo(z). Note that the 

process generates the properly normalized wave functions.
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 2 2/ 2 / 2 / 2( ) ( )z zn
n n

dHd
H z e e z H z e

dz dz
  

2z       

 2 2 2
22

/ 2 / 2 / 2 2 / 2
2 2

( ) 2 ( )z z zn n
n n

d H dHd
H z e e z e z H z e

dz dz dz
    

2z  

2

2
2 ( 1)n n

n n

d H dH
z H

dz dz
 0     
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