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Tools of the Trade 

  

  

 

http://mathworld.wolfram.com/ 

http://scienceworld.wolfram.com/ 

http://www.efunda.com/math/ math_home/math.cfm 

http://www.exampleproblems.com/wiki/index.php?title=Main_Page 

 

 

Proposed Edits: 

add Schiff minimum uncertainty problem 

rework SC4 

review all problems; DE 

rework the signal bandwidth problem 

 

Introduction to Integral Transforms 

   The Fourier transform is the perhaps the most important integral transform for 

physics applications. Given a function of time, the Fourier transform decomposes that 

function into its pure frequency components, the sinusoids (sint, cost, e± it). When 

driven by a pure frequency, linear physical systems respond at the same frequency 

with amplitudes that are frequency dependent. As a result, Fourier decomposition and 

superposition are attractive tools to analyze the systems. Applications include the 
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solution of some differential equations, wave packet studies in quantum mechanics 

and the prediction of far-field diffraction patterns in optics. It is crucial to the 

application of the Fourier transform technique that an inverse transform exists that it 

recovers the time-dependent function from its frequency component representation. 

    Laplace transforms are based on Fourier transforms and provide a technique to 

solve some inhomogeneous differential equations. The Laplace transform has a 

reverse transform, but it is rarely used directly. Rather a table of transforms is 

generated, and the inverse (or reverse) is accomplished by finding matching pieces in 

that table of forward transforms. The Laplace transforms often take the form of a 

rational function with a polynomial in the denominator. A study of the singularities of 

these forms provides resonant response information for mechanical and electronic 

systems.  

 

Fourier Transforms:  The Fourier Series - Extended  

 

Joseph Fourier: French mathematician who discovered that any periodic 

motion can be written as a superposition of sinusoidal and cosinusoidal 

vibrations. He developed a mathematical theory of heat in Théorie 

Analytique de la Chaleur (Analytic Theory of Heat), (1822), discussing it in 

terms of differential equations.  Fourier was a friend and advisor of 

Napoleon. Fourier believed that his health would be improved by wrapping 

himself up in blankets, and in this state he tripped down the stairs in his 

house and killed himself. The paper of Galois that he had taken home to 

read shortly before his death was never recovered.  

Eric W. Weisstein @http://scienceworld.wolfram.com/biography/Fourier.html, a Wolfram site 

 

The development begins by motivating the spatial Fourier transform as an extension 

of a spatial Fourier series. Fourier series are appropriate for periodic functions with a 

finite period L. The generalization of Fourier series to forms appropriate for more 

general functions defined from - to + is not as painful as it first appears, and the 
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process illustrates the transition from a sum to an integral, a good thing to understand. 

The functions to be expanded are restricted to piecewise continuous square integrable 

functions with a finite number of discontinuities. Functions meeting these criteria are 

well-behaved functions.  Everything that follows is restricted to well-behaved cases. 

(Less restrictive developments may be found elsewhere.) 

 

Exercise: A standard trigonometric Fourier series for a function f(x) with period L has 

the form: 

    0 0
1 1

( ) 1 cos sinm m
m m

0f x c a mk x b mk x
 

 

        where ko = 2/L. 

Show that this can be cast in the form: 

0 0(0)
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       0



 

This result justifies the form of the complex Fourier series used below.

 

The development that follows is intended to provide a motivation for Fourier 

transforms based on your knowledge of Fourier series. It is not a mathematical proof, 

and several terms are used loosely (particularly those in quotes). The complex form of 

the Fourier series is the starting point.           Notation Alert:    exp[i]  ei

   2( ) expm
m

f x i m L
 x





 
  

   [IT.1] 

A typical coefficient p (the amplitude of the  2exp i p xL
 

 
behavior) is projected 

out of the sum by multiplying both sides by the complex conjugate of  2exp i p xL
 

 
 

and then integrating over one period as required by the inner product.     Some call 

this procedure Fourier’s trick; we prefer to call it projection. 
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                   or                
/ 2

/ 2

21 exp ( )
L

p
L

i p x f x dxL L




 
  

  .                   [IT.2] 

The orthogonality relation for the Fourier series basis set of complex exponentials has 

been used:    /2

/2

2 2exp exp
L

pmL
i p x i m x dx LL L

  


    
    . 

If you have studied vector spaces, note that this relation is consistent 

with and inner product:        
/ 2

/ 2

1
( ) ( ) ( ) ( )

L

LL
f x g x f x g x dx




  . 

 

Exercise:        /2 /2

/2 /2

2 2 2exp exp exp
L L

L L
i p x i m x dx i m p x dxL L

  
 

           L
   

Show that this integral vanishes for integers m and p if m  p. Show that it has the 

value L if m = p. 

 

The trick is to define k = 2  m/L in  2( ) expm
m

f x i m L  x




 
  

   and to multiply 

and divide by 2/L to yield: 

         2 2( ) exp exp2 2 m
m m

m m
L Lf x i m xL L

   
 

 

  
   i k x k  

Where k = 2/L, the change in k as the index m increments by one between terms in 

the sum. The factor k must appear explicitly in order to convert the sum into an 

integral. In the lines above, the equation was multiplied and divided by k = 2/L  to 

identify g(k) in the form g(k) k that becomes the integral  g(k) dk. We conclude 

that:  g(k) = (L/2) (k) exp[im(2/L)x] = (L/2)  (k) exp[ikx]. In the limit , k 

becomes the infinitesimal dk in the integral, and k effectively becomes a continuous 

rather than a discrete variable [m  (k); km  k], and the sum of a great many small 

contributions becomes an integral. (See Converting Sums to Integrals in the Tools of 

the Trade section for a discussion of identifying and factoring out the infinitesimal.) 

L 
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     1 1( ) ( )2 2( ) ikx ikxk L e dk f k e dkf x  
 

 
       

The equation for p L evolves into that for (k) as L  .
/2

/2
( ) ( )( ) ( )

L

L

ikx ikxe f x dx e f x df k k L x


 

     x  

The function ( )f k  is the Fourier transform of f(x) which is the amplitude to find 

wiggling at the spatial frequency k in the function f(x).   

 

Notation Alert: The twiddle applied over a function’s symbol denotes the Fourier transform 

of that function.   The Fourier transform of f(x) is to be represented as ( )f k . 

 

Sadly, there is no universal convention defining the Fourier transform, and factors of 

2 are shuttled from place to place in different treatments.  Some hold that the 

balanced definition is the only true definition:

 1 1( ) ( )
2 2

( ) ( )ikx ikxf k e dk f x e df x f k
 

  

 
      x         [IT.3] 

 In truth, the inverse of 2 must appear, but it can be split up in any fashion. 

     
1

( ) ( )1 1( ) ( )2 2
ikx ikx

S S
f k e dk f x e df x f k 

  

 


      x  

The common choices are S = 0, S = 1 and S = ½. The balanced form: S = ½ is adopted 

in this note set.  Quantum mechanics texts often adopt S = 0.  

 1
2( ) ( ) ; ( ) ( )ikx ikxf x f k e dk f k f x

  

 
         e dx  [IT.4] 

OUR CONVENTION for the Fourier transform:  

 1 1( ) ( )
2 2

( ) ; ( )ikx ikxf k e dk f x e dxf x f k
 

  

 
                [IT.3] 

 

Somewhat surprisingly, the temporal transform pair interchanges the signs of the 

exponents. 
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  1 1( ) ( ) ( ) ( )
2 2

i t i tf t f e d f f   
 

 


 

               t e dt  [IT.5] 

This sign convention is a consequence of the form chosen for a plane wave ( [ ]i kx te  ) 

in quantum mechanics. The Fourier transform ( , )f k 
  is amplitude of the e [ ]i kx t  

plane wave character in the function ( , )f r t


.  

 

The Fourier transform has an inverse process that is almost identical to the Fourier 

transform itself. Fourier transforming and inverting are balanced processes.  

 

Combining the Fourier transform and its inverse identifies a representation of the 

Dirac delta:  
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      [IT.6] 

Compare the middle equation above with the defining property of the Dirac delta. 

0 0
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( ) ( , )
( ) ( )
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f x if x a b
f x x x dx

if x a b



   

  

The Fourier transform has a rich list of properties.  Equation [IT.6] indicates that each 

e-it is an independent (wiggling) behavior; that is: [IT.6] is an orthogonality relation. 

Suffice it to say that analogs of the convergence properties, inner products and 

Parseval relations found for the Fourier series exist and much more.  

 

Sample Calculation FT1: Fourier Transform of a Rectangular Pulse 
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Consider the rectangular pulse with unit area: 
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Note that the sinc (“sink”) function sinc(x) is defined to be sin(x)/x. 

 

Sample Calculation FT2: Fourier Transform of a Gaussian 

 

Consider the Gaussian 
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The transform of the Gaussian follows from the tabulated integral 

2ue du 




   after a change of variable.  The trick is completing the square in 

the exponent. Choosing 
2 2

t ia

a
u  
  
  

, 
2 2

2
22

t a
i t

a
u

2

2


 

   
 

. The integral 

 becomes:
2(0.5)( / ) i tt ae e 



 dt
2( ) /22( ) 2aue e a d 



 u . You should be prepared to 

use this completing-the-square trick and perhaps even to extend it. Also used: 

    22 2 (m uu e du G 31 1 1
2 2 2 22 ) ) ...m m m m 

 
        . 

 

One observation is that the Fourier transform of a Gaussian is another Gaussian. There 

are a few other functions that have this property. Examples are the Hermite-Gaussian 
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and the Gaussian-Laguerre functions used to describe the transverse amplitude 

variations of laser beams.1

Uncertainty: Following conventions adopted in Quantum Mechanics, the 

uncertainties in t and in  are to be computed for the Gaussian example above. The 

average uncertainty squared is the difference of the average of the square and the 

square of the average. 

 2 22 2( )t t t t t      and   2 22 2( )          

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
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It follows that 
2

t a   and that 2
1 a   yielding the uncertainty product  t = 

½. A Gaussian transform pair has the smallest possible uncertainty product2 and that 

the general result is  t  ½. 

Sample Calculation  FT3: 

2
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1 Ed Montgomery (centre.edu) notes that hyperbolic secant meets the test as does any function plus its properly scaled 

Fourier transform. See also: Self-Fourier functions and self-Fourier operators, Theodoros P. Horikis and Matthew S. 

McCallum, JOSA A, Vol. 23, Issue 4, pp. 829-834 (2006)       
2 L. I. Schiff, Quantum Mechanics, 3rd Ed., page 60,  McGraw-Hill (1968). 
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The functions G(n) and (n) are discussed in the Definite Integrals section of these 

handouts. Note that 
2ue du 

 


  = 2 G(0) = (½).

 

Quantum Mechanics and Expectation Values: Expectations values are computed in 

quantum by sandwiching the operator for the quantity of interest between the complex 

conjugate of the wavefunction and the wavefunction and integrating over the full 

range. If the wavefunctions have been normalized, the process is represented as: 

ˆ( ) ( )O x O 
 


  x dx  

In the case that the wavefunctions have not been normalized, the procedure must by 

supplemented by dividing by the normalization integral. Suppose that you know a 

multiple of (x), but not (x) itself. That is: you know u(x) = c x), but c is not 

known.  

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆx O x dx c u x O cu x dx u x O u x dx
O

x x dx c u x cu x dx u x u x dx

 

 

     

  
     

  

  
  
  

 

You can use un-normalized wavefunctions if you divide by the normalization integral 

on the fly. In many cases, the normalization constants have complicated 

representations that are difficult and tedious to evaluate. In these cases, division by the 

normalization integral  is actually the preferred method. Study the ( ) ( )u x u x dx
 


sample calculation above as an example. 

 

The transform of the Gaussian demonstrates an important, general property of 

Fourier transforms. If the base function is tightly localized, its Fourier transform is 

broad (it contains significant high frequency components). It takes a broad range of 

frequencies to interfere constructive at one point and destructively at a nearby point. A 

function that has rapid variations has high frequency components. A function that 
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varies only slowly can have a narrow transform (one will mostly low frequency 

components). Making a small corresponds to an f(t) that varies rapidly and that is 

tightly localized. Hence its transform in -space is broad for small a.  These 

observations are summarized in the uncertainty relation. 

 t  ½ 

This uncertainty relation is fundamental whenever a wave representation is used. 

Consider a function with two wave components with frequencies  and ( + ) that 

are in phase at a time t and that are to be out of phase by t + t. A relative phase 

change of  is required or the wave to shift from being in-phase to being out-of-phase.

( +  t -  t = m 2             and       ( +  (t + t) -  (t + t) = m 2   + 

( +  (t) -  (t) =  t =  

The details are slightly different, but not the idea. In a wave description, localization is 

achieved by have wave components with frequencies split by  that slip from being 

in phase to be out of phase in the localization span of t. If the localization region size 

t is to be made smaller, then the frequency spread  must be larger. The quantum 

mechanics minimum product of ½ differs from the  found above because quantum 

prescribes very specific procedures to compute  and t.



Information may be encoded onto a high frequency carrier wave. If audio information 

up to 40 kHz is to be encoded on a 100.3 MHz carrier wave then the final signal wave 

has frequencies smeared for about 40 kHz around 100.3 MHz. The 40 kHz encoded 

signal has variations as fast as 25 s and obeys the  t  ½  relation. (The more 

formal statement is that a system with bandwidth f must support risetimes (t’s) as 

fast as 1/(f ). A high definition television picture has more pixels per frame and hence 

contains information that varies more rapidly than the information necessary for the 
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standard NTSC broadcasts. The result is that tHDTV < tNTSC  so that HDTV > NTSC. 

HDTV broadcasts require more bandwidth than do NTSC broadcasts. (Digital 

encoding offers some economies as compared to analog.) A popular infrared laser (the 

YAG laser) emits near infrared light with a wavelength around 1.064 m with a gain 

width of about 30 GHz allowing it to generate output pulses as short as 30 ps. To get 

shorter pulses, a laser with a greater bandwidth must be used. A narrow gain 

bandwidth laser is suitable only for long pulses or CW operation. On the flip side, if 

the emission of a laser has a bandwidth of , then that emission has temporal 

variations that occur in as little time as -1.   

 

Exercise: Use 
2 2

t ia

a
u  
 
  

 and complete the evaluation of the Fourier transform of 

the Gaussian.

 

Exercise: We are interested in integrals of the form: . Consider 
2(0.5)( / ) i tt ae e 





 dt

2 2 ][ t bt cae




  dt .  Show that a2 t2 + bt  + c = [ at + (b/2a)]
2 + [c - (b/2a)

2].  Show that:  

2 22 ] 1

2 2

2 2[
b b

a at bt c
c c

a ue dt a e e du e
a


  
   


      
      
  

  


 

 
 

     

 

Exercise: Compute the product of the full width of  between its e-2 of 
20.5( / )t ae

maximum value points and the full width of its transform between the e-2 points of the 

transform. Based on you result, propose a value for the product  t.  These 

identifications of the full widths  and t are somewhat arbitrary. Compare your 

result with that found using the quantum mechanics conventions above.
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Exercise: Use the changes of variable: r2 = u2 +v2 and  z = r2 to compute 
2ue du 

 


  as the square root of . 2 2 22

0 0

u v re du e dv d e r dr



    
 

   
 

Mathematica 5.2 Syntax                  ` is to the left of the 1 key 

<<Calculus`FourierTransform`              loads the Fourier package                          

UnitStep[x]                                                  = 0 for x < 0; = 1 for x > 1 

FourierTransform[expr(t),  t , w)]               ----- Fourier transform of expr(t). 

InverseFourierTransform[expr(w),  w , t)]  ----- inverse transform of expr(w). 

Mathematica 6 Syntax 

<<Calculus`FourierTransform`            not required; Fourier transform library is 

preloaded 

<<FourierSeries`     New load command needed to load the Fourier 

series library 

 

Some Properties of the Fourier Transform: 

These properties are to be discussed in the spatial domain. In this case k is the spatial 

frequency that might be given in radians per meter. In photography, the more common 

frequency specification is line pairs per millimeter. You should restate each of the 

properties in temporal (time-frequency) terminology. 

1 1( ) ( ) ( ) ( )
2 2

ikx ikxf x f k e dk f k f x
 

 


 

                
    e dx  

 

A. Relation to Dirac Delta:  

 

   ( ')

'

( ')

1 1
22

1 1
2 2

( ) ( ) ( ) ( ') '

( ) ( ') ' ( ')ik x x

ikx ikx ikx

ik x xdke

f x f k e dk f x f x e dx e dk

f x f x dx x x e



 






  


  
 

 



           

 
   

 

 

   

  

 



dk
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The functions 1
2( )k

ikxx e   are orthogonal with respect to the inner product 

, and they are complete basis if all k from negative infinity to 

positive infinity are included in the set. The statement that the set is a complete basis 

means that all well-behaved functions can be faithfully represented as a linear 

combination of members of the set. 

( ( ))* ( )g x f x dx




 1
2

( ) ( ) ikxf x f k e


dk




 
  

    

The linear combination becomes an integral. The Fourier transform is the function 

representing the expansion coefficients in that linear combination of the Fourier 

basis functions. 

It also follows that:   ( )1
2( ) i k xk e dx





     by a change of variables.  

 

The representations of the Dirac delta below should be added to you library of useful 

facts.  

  ( )1
2( ) i k xk e





    dx    ;        ( ')1
2( ') ik x xx x e





   dk  

They can be used to establish the Parseval Equalities which are property C below. 

 

B. Symmetry Property for Real Functions.    ( ) ( )*f k f k    

 * *

*

*

1 1
2 2

1
2

1
2

1
2

( )

*

( ) ( ) ( ) ( )

( )* ( ) ( )

( ) as ( ) and

ikx ikx

ikx ikx

ikx f x

f k f x e dx f k f x

f k f x e dx f x e dx

f x e dx f x dx dx

 







 
 

 

 
 

 






               

                    

        

   

 

 

 

 



 



e dx

 

The last step follows because f(x) and dx are real.  Hence: ( ) ( )*f k f k    for real 
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functions f(x). The symmetry property for real functions is important. The symmetry 

property for purely imaginary functions is somewhat less useful. ( ) ( )*f k f k     for 

pure imaginary functions f(x). 

 

C. Plancherel’s theorem, a generalized Parseval's relation:  

 

By our convention, a relation between an inner product of two entities and the sum of the product of 

their corresponding expansion coefficients for an expansion in an orthogonal basis is a Parseval’s 

relation. Here the inner product is , the expansion set is the functions eikx and ( ( ))* ( )g x f x dx



the sum is an integral, a sum over a continuous parameter. The Parseval relation for the Fourier 

transform expansion is called Plancherel’s theorem. Our first Parseval’s relation was the one for 

ordinary vectors: cos x x y y z zA B AB A B 
 

A B A B    . 

 

Given: 1 1( ) ( ) ( ) ( ) ikx

2 2
ikxx f k e dk f k e dx

 

   
     

   f x
 





        f  

and:    1 1( ) ( ) ( ) ( ) i xg x e dx
 





    

( )f k dk

2 2
i xg x g e d g

 

           
     . 

Parseval Equality: ( ( ))* ( ) ( ( ))*g x f x dx g k
 

 
   

 ( ) ikx

 

 

Using:      1
( ) 2 ( ) ( ) 2

S Sikxf x f k e dk f k 
 

 

 

      f x e dx   

General Parseval Equality: 

 2 1
2( ( ))* ( ) ( ( ))* ( )Sg x f x dx g k f k dk  

 
    

 

This equality states that the inner product of two functions can be computed directly 
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using the definition  or alternatively in terms of the expansion 

coefficients for those functions in terms of a complete basis set. The application of 

Fourier methods to the diffraction of light provides a concrete interpretation of this 

equality. 

( ( ))* ( )g x f x dx




 

Parseval’s equality followed by replacing both functions in the inner product with 
their Fourier transforms representations. Use distinct frequency variable labels; the 
label used for f(x) should be distinct from that used in the Fourier representation of 
g(x). The factors are re-ordered, and the spatial integral is executed first to generate a 
frequency delta function. 
 

D. Linear Phase Shift Translates the Transform:  

0
0( ) ( ) ( ) ( )ik xg x f x e g k f k k     

If the original function f(x) is multiplied by a linearly varying phase eiax, the Fourier 

Transform is translated in k-space by a in the +k sense. This property is nice as a 

formal property, and it has a cool realization in the diffraction pattern of a blazed 

grating. 
 

If the original function is translated, the transform is multiplied by a linear phase 

factor.  

( ) ( ) ( ) ( ) ikbg x f x b g k f k e     . 

This paired behavior between uniform translations and multiplication by a linearly 

varying phase is expected because the Fourier transform and its inverse are almost 

identical. 

 

The analogous results for the temporal transforms are: 

0

0( ) ( ) ( ) ( )i tg t f t e g f        and  ( ) ( ) ( ) ( ) i bg t f t b g f e        
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E. Convolution: ( ) ( ') ( ') ' ( ') ( ') 'f g x f x g x x dx g x f x x dx
 

 
      

   Please note that other sources place a different symbol between the functions to designate a convolution. 

A star is a popular alternative to the floating circle used here.  

   In a sense, a convolution represents smearing of function by another. Each point value of the function f(x) 

is spread or blurred over the width of the function g(x), and then everything is summed to get the result. 

 

The Fourier transform of a convolution of two functions is the product of their 

Fourier transforms. 
~

2{ ( )} ( ) ( )f g k f k g k    
 

Convolution process is best understood by studying an example. The smearing 

function is chosen to be the Gaussian Exp[- 4 x2] and the other function is to be 

[sin(10 x)/(10 sin(x))]
2, the intensity function describing  the diffraction pattern for ten 

equally spaced narrow slits. Both functions are plotted in the left panel below. The 

convolution represents taking each point value of the ten slit pattern and smearing it 

with the Gaussian. Point by point the slit function is Gaussian smeared, and the 

result is summed with the Gaussian smears of all the previous points to build up the 

convolution. Stare at the right panel image until you believe it represents the point by 

point smearing and summing of the slit pattern. Stare at the right panel again. 

Convince yourself that it also represents the Gaussian smeared point by point using 

the ten slit pattern as the smearing function.  The function f smeared using g is 

identical to the function g smeared using  f as is reflected by the two representations 

of the convolution. The representations can be shown to be equal by using a change 

of integration variable. 

( ) ( ') ( ') ' ( ') ( ') 'f g x f x g x x dx g x f x x dx
 

 
      

Plots of the Gaussian smear Exp[- 4 x2] and the ten  

slit diffraction pattern [sin(10 x)/(10 sin(x))]2. 
Plots of the convolution of the Gaussian smear  

Exp[- 4 x2] and the ten slit diffraction pattern. 
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Plot[{(Sin[10 x]/(10 Sin[x]))^2, Exp[-4  x^2]},  

            {x,-1,13},PlotRange -> All] 
Plot[NIntegrate[ 10 Exp[-4  u^2] (Sin[10 (x-u)]/ 

(10 Sin[x - u]))^2,{u,-2,2}],{x,-1,13}, PlotRangeAll] 

 

Far-field (i.e. Fraunhofer) diffraction amplitudes in optics are mathematically the 

Fourier transform of the function representing the transmitted amplitude at the 

aperture.  For example, a ten-slit pattern of identical finite width slits is the 

convolution of the finite slit with the array, the ten narrow slits. Therefore the 

diffraction pattern for ten finite-width slits is the product of the pattern for the single 

finite-width slit and the pattern for ten narrow slits. More is it to be made of this 

point later. For now, believe that convolutions and Fourier transforms have some 

fantastic applications.  

 

Summary: The Fourier transform of a convolution of two functions if the product of 

their Fourier transforms: 
~

2{ ( )} ( ) ( )f g k f k g k   .     (Assumes S = ½) 

 

Autocorrelation integrals have a similar property.     (See auto-coherence in 

optics.) 

*( ) ( ') ( ' ) 'A x f x f x x dx



   

Note that an autocorrelation is similar to the inner product of a function with itself. It 

differs in that the function at x is compared to the function at x + x’ rather than for 
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the same argument value. The inner product gauges the degree to which the two 

functions wiggle in the same pattern. The auto-correlation gauges the degree to 

which a function’s local wiggle pattern persists as the argument changes. The 

Fourier transform of a functions autocorrelation is the product of that function’s 

Fourier transform with its complex conjugate. 

2*
~~

*2 2{ ( )} { ( ') ( ' ) '} ( ) ( ) ( ) ||A x f x f x x dx f k f k f k 



       

Auto- and cross-correlations are treated in the problem section. 

 

F. Scaling: If the original function is spread linearly by a factor M, its Fourier 

transform is narrowed by that same factor (spread by a factor of M -1).  

 

Suppose that the function f(x) is one for |x| < 1 and equal to zero otherwise; then 

f ( 
x/3) is equal to one for |x| < 3. Dividing the argument of a function by M has the 

effect of spreading that function by a factor of M along the abscissa without 

changing its amplitude (range along the ordinate). 

 ( ) ( )
~
x

Mf M f Mk   

Assume M > 1. f(x/M) is wider than f (x) and ( )f Mk  is narrower than ( )f k . 
 

An example of this scaling is provided by the Gaussian and its transform. 

 2 2

2
( / ) ( ) /4( ) ( )x a k aaf x e f k e     

Simply replace a by M. A standard application to single slit diffraction is the 

observation that the diffraction pattern of the slit gets broader as the slit gets 

narrower. 

 

G. Linear Operation: The Fourier transform of a linear combination of functions is 

that same linear combination of their Fourier transforms.  
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 ( ) ( ) ( ) ( )
~

a f x b g x a f k b g k     

 

H. Large k Behavior: In the limit of large k, the magnitude of the Fourier transform 

of a well-behaved function vanishes no faster than |k|-n if the function and its 

derivatives have their first discontinuity in order n-1. The rectangular pulse is 

discontinuous (its 0th order derivative is discontinuous), and its transform vanishes as 

|k|-1 as |k| becomes large. A discontinuous function has its first discontinuity for the 

derivative of order zero. (n - 1 = 0) The transform vanishes as: |k|-1. The Gaussian is 

continuous and has continuous derivatives through infinite order. The transform of a 

Gaussian vanishes faster than any inverse power of |k| for large |k|. The property 

discussed in this paragraph should be considered in terms of functions over the 

domain of all complex numbers. That is: the analytic properties of the functions as 

functions of a complex variable must be considered. 

 

I. Uncertainty:  t  ½ or k x  ½    The Fourier transform of a 'narrow' 

function is has a minimum width that increases as the width of the function 

increases. Rapid variations in a function require that there be high frequencies to 

accurately represent those variations.  



J. Derivative Property: The Fourier transform of the derivative of a function is i k 

times the Fourier transform of the function if both are well-defined. 

   
~

1 1
2 2

( ) ( ) ; ( )ikx ikxdf

dx

dff k f x e dx k
dx 

 
 

 

 
    

 
   e dx  

     
~

( )1 1 1
2 2 2

( ) ( )ikxikx ikxdf
f x e ik

dx

dfk e dx f x
dx  






 
 

 

 
     

 
   e dx  
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or    
~

( )1 1
2 2

( ) ( )ikx ikxdf
ik ik f k

dx

dfk e dx f x e dx
dx 

 
 

 

 
  

 
     

If the function and its derivatives in a differential equation are replaced by their 

Fourier representations, the differential equation becomes and algebraic equation to 

be satisfied by the Fourier transform. The inverse Fourier transform of the solution 

to that equation is then the solution to the differential equation. 

 

K. Symmetric and Anti-symmetric functions:  Separate the function f(x) into its 

even and odd components: ( ) ( ) ( )evenoddf x f x f x  . Using the definition, it follows 

that: 

   1 1
2 2

( ) ( ) ( ) cos( ) sin( )ikxf k f x e dx f x kx i 

 


 

          kx dx  

for f(x) even:  
0

1
2

( ) 2 ( ) cos( )f k f x



kx dx
  
 
  

   

for f(x) odd:  
0

1
2

( ) 2 ( ) sin( )f k i f x kx



dx
  
 
  

   

The forms in braces are cosine and sine transforms. They are not to be considered 

further. 

 

 

Fourier methods appear difficult and are extremely mysterious on first encounter.  Pay 

the price.  The rewards for mastering Fourier methods are enormous and cool.  In the 

time domain, the Fourier transform identifies the frequency content of a function of 

time.  Modern SONAR and passive acoustic monitoring systems depend on examining 

the received signal transformed into frequency space.  Many systems are identified by 

their tonal patterns, distinct frequency combinations, in their acoustic emissions.  In 

quantum mechanics, the spatial Fourier transform of the wave function reveals its 
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plane-wave or momentum content.  In optics, the spatial Fourier transform of the wave 

amplitude at an aperture predicts the Fraunhofer diffraction pattern of that aperture. 

Scaling up to radar wavelengths, the spatial Fourier transform of an antenna predicts 

the far-field radiation pattern of that antenna.  This result also applies to hydrophone 

arrays in acoustics.  There are problems that appear to defy solution in the time 

domain that yield results freely when transformed to the (Fourier) frequency domain.  

 

Sample Calculation FT4: The translation and linear phase properties are to be 

exercised to develop the Fourier transform of 
0

0

2
2

1/ 2

( )
21( ) i t

t t
a eg t a e 



 
 
 





  
 

  from the 

earlier result that 
2

2

1/ 2
21( )

t
af t a e

 



  
 



   has the transform 

2 2
1/ 2 2( )

a
af e




  
 


  
 

 .  

CAUTION: This problem was changed in the middle of the calculation. It needs to be repeated as it is probable that 

one or more signs are incorrect. (Report errors to tank@usna.edu.) 

The temporal relations are:  

0

0( ) ( ) ( ) ( )i tg t f t e g f        and  ( ) ( ) ( ) ( ) i bg t f t b g f e       . 

Start with 0

2
2

1/ 2

( )
21( ) i t

t
a eh t a e 



 
 
 


  

 
  and apply 0

0( ) ( ) ( ) ( )i tg t f t e g f       . 

0
2 2

1/ 2
)

2
(

( )
a

ah e
 


 

  
 




  
 

  

Next, the translation property ( ) ( ) ( ) ( ) i bg t f t b g f e        is applied with b = to. 

That yields the Fourier transform of 
0

0 0 )

2
2

0 0
1/ 2

1( ) ( )i tG t e g t a



 (

( )
2 i t t

t t
a ee 

 
 
 


 


  
 

  . 

0

0

2 2

1/ 2
)

2
(

( ) i t
a

a eG e 
 


 

  
 




  
 

  

Finally, the linearity property is invoked.          ( ) ( ) ( ) ( )
~

a f x b g x a f k b g k   
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0 0

0 0 00 0 0 )

2 2 2 2

1/ 2 1/ 2 (
) )

2 2
( (

( ) ( )i t i t i t i t
a a

a ae e e eg G e e  
   

  
   

       
   

 
 

 
      
   

  0   

Thus
0

0

2
2

1/ 2

( )
21( ) i t

t t
a eg t a e 



 
 
 





  
 

  
0

0 0)

2 2

1/ 2 (
)

2
(

( ) i t
a

a eg e  
 


 

  
 





  
 

 . 

 

Mega-Application: Fourier Transforms Applied to Fraunhofer Diffraction  

 ( *** The following is a placeholder for a future development. It needs major revisions!) 

 

In the Huygens’s construction, each point on an optical wavefront is a source point for 

an expanding spherical wave biased toward 'forward' propagation. Subsequent wave 

fronts are predicted by finding surfaces on which these waves add in phase. One 

approximate mathematical model for this procedure is a scalar approximation, the 

Fresnel-Kirchhoff integral. 

(X,Y)

(x,y)

ro

r

x

y Y

X

z

D
 

Aperture Plane                                                           Diffraction Plane 

 

The coordinates (x, y) are for the aperture plane and (X, Y) are for the diffraction 

plane. The field amplitude in the diffraction plane is UP(X, Y). 

0( )
( , )

0

( , ) (2) ( , )
4

i kr t
i x y

P

ik e
U X Y A x y e dx dy

r






  

   
 

  

 

The Grand Aperture Function: A(x, y) = UA(x, y)S(x, y) t(x, y) ei(x, y)  

where: 

 UA(x, y): The incident amplitude at the aperture. 
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 S(x, y): The shape function; 1 if (x,y) open, 0 if closed. 

 t(x, y): The fractional amplitude transmission coefficient at (x,y). 

 (x,y): The phase shift at the point (x,y) due to the aperture. 

 

The factor 
0( )

0

i kr te

r



 represents a spherical wave, the factor (2) is the obliquity factor 

(the bias toward the forward direction) that is approximately two in the forward 

direction, k = 2 /, and (x, y) is the path length difference between points in the 

aperture to the point of interest in the diffraction plane.

More precisely (x, y) = r - ro = 2 2( ) (D X x Y y    2)  and ro = 2 2D X Y  2 . The 

binomial theorem yields a few terms in the expansion: 

(x, y) = r - ro = 2 2 2)( ) (D X x Y y         
 0 0 0

2 2

2r
x y

X Yr rx y


    + … 

For small D, the diffraction pattern is complicated, and it changes shape as D 

increases. For larger D, the terms in x, y) that are quadratic and higher in x and y 

becomes small compared to ¼ . In this Fraunhofer limit, the curvature of the 

wavefront is negligible and the diffraction pattern spreads geometrically. The pattern 

is fixed, but its transverse dimensions grow in direct proportion to D for increasing D. 

In this geometric or Fraunhofer limit:

0

0 0

( )

0

( , ) (2) ( , )
4

X Yi kr t i k x k y
r r

P

ik e
U X Y A x y e dx dy

r





    
    . 

The amplitude in the diffraction plane is just some constants and a phase factor times 

the Fourier transform of the aperture function A(x, y). UP(X, Y) ~ 
0 0
,kX kY

r rA   
 . The 
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overall phase factor is not an issue as it is the intensity of the light rather than its 

amplitude that is directly observable.1 

IP(X, Y) ~ |UP(X, Y)|2 ~ | 
0 0
,kX kY

r rA   
  |2 

As the pattern is spreading geometrically, 
0 0
,kX kY

r rA   
  can be interpreted as the 

amplitude diffracted in the direction specified by 
0

X
r  and 

0

Y
r . This identification can 

be made more concrete by recalling that a plane wave is focused to a 'point' in the 

focal plane of a lens. In the canonical configuration, that aperture is the focal length f 

before the lens and the patterns are observed on the focal plane f after the lens. In this 

case, the relative phases of amplitude at point on the focal plane are corrected and are 

those computed using the 2D Fourier transform. 

 

A.) Relation to Dirac Delta: For an incident plane wave, the amplitude at the 

aperture is  

0 0
[( , ) ]x y z

A
i k x k y k zik rU x y E e E e   

 
   for all x, y. 

which has a diffraction pattern proportional to: 

0( , ) ) )P x
kX kY
D DU x y E k k      y

                                          

   for all x, y. 

This result is more transparent if one thinks about the pattern in the focal plane of an 

ideal lens. (Set D = f)  An incident plane wave is focused to a point on the focal 

plane of the lens. In fact, the wave amplitude at each point on the focal plane is the 

amplitude of the corresponding plane-wave component of the light incident on the 

lens. The 2-D Fourier transform is the decomposition of the light into plane-

wave components, and each of these components maps to a point on the focal 

plane of the lens. Without the lens, the delta function means that each plane wave 

component of the light leaving the aperture is observed in the far-field traveling with 

 
1 Optical frequencies are of order 5 x 1014 Hz while the fastest detectors have a response time of a picosecond. Optical 
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its unique precisely defined direction. (We have been discussing the behavior of a 

plane wave with infinite transverse extent. A finite "plane wave" is a sum of many 

infinite plane waves. Hence a finite plane wave with finite transverse extent focuses 

to a smeared spot. See uncertainty.)  

 

B.) Symmetry Property for Real Functions.    UP(X,Y)* = UP(-X,-Y) 

     An aperture function is real if it does not introduce phase shifts ((x,y) = 0) and 

the incident wave UA has the same phase everywhere across the aperture (for 

example in the case of a normally incident plane wave). For real aperture functions, 

the diffraction intensity pattern has inversion symmetry IP(X,Y)* ~ |UP(X,Y)*|2 = 

|UP(-X,-Y)|2 ~ IP(-X,-Y). The Fraunhofer intensity patterns from real apertures are 

expected to have all the symmetries of the aperture plus inversion symmetry. 

 

C.) Parseval's Equality:  Conservation of Energy. The integral of IA(x, y) the 

intensity at the aperture over the aperture plane is equal to the integral of IP(X, Y) ,the 

intensity in the diffraction plane, over the area of the diffraction plane. It is 

equivalent to: 
2 2

( , ) ( , )P

Aperture Diffraction
plane

A x y dx dy U X Y dX dY   

 

D.) Linear Phase Shift Translates Theorem: Multiplication of the amplitude at the 

aperture by a linearly varying phase translates the diffraction pattern as expected 

from geometric optics. 

UA   UA ei k x sin   UP   UP(X - D sin) 

                                                                                                                                             

detectors cannot follow the amplitude of the waves; they must square law (intensity) detect the wave. 
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Diffraction Pattern of an Aperture 

 

4f Configuration for Fourier Optics  
Figure from Answers.com; Fourier Optics 

The first lens forms the Fourier transform in its focal plane, and the second lens Fourier 
transforms the wave amplitude a second time which differs by a sign from the inverse 
transform. The result is an inverted image. The re-inverted image is studied as various 
components of the transform are blocked in the transform plane to identify the 
contribution that the components make to the image. 
 
At the object side, the image depicts the object’s wave as the sum of plane waves. Each 
plane wave represents one Fourier component of the object’s eave amplitude in the 
object plane. The action of a lens is to focus each incident plane wave to a ‘point’ in its 
focal plane. Waves emanating from each point in the focal plane strike the second lens 
which increases their convergence to the extent that they leave the lens as plane 
waves. In geometric optics rays from a point in the focal plane form a bungle of parallel 
rays after the lens, and the ray from the point and through the lens center in not 
deflected which defines the direction of the bundle of parallel rays. The slope of each 
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ray bundle is the negative of the slope of its originator parallel ray bundle as it left the 
object. The overall result is that the wave in the final focal plane is inverted relative to 
the object. 
 
The object plan is one focal length before the first lens; the lenses are separated by the 
sum of the focal lengths of the lens; and the final image is formed one focal length after 
the final lens. When both lenses have the same focal lens, the configuration is identified 
as a 4f system. 
 
They open arrangement allows on to manipulate the pattern be blocking (or perhaps 
phase shifting) point in the Fourier transform plane. The second lens then re-transforms 
the wave to displace an image missing the blocked Fourier components. One can then 
identify the role of the various Fourier components. 

    

  
The upper left image is of a small piece of screen formed using a 4f lens system. The 
next image is of the diffraction pattern of that screen in the transform plane. An 
adjustable slit was used to block most of the horizontal arms of the diffraction pattern 
thereby blocking the Fourier components required for rapid variations in the horizontal 
direction yielding the image on the upper right. The images of the vertical screen wires 
blur. When the slit was narrowed further to pass only the vertical flare, the reconstructed 
image became that on the lower left which contains no information about horizontal 
variations. The slit was replaced by a wire to block just the central (low frequency) part 
of the transform. The result was the lower right image which contains information about 
the high frequency (rapid change) character, but without the low frequency average 
character. 
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The linear phase factor can be realized by using an incident plane wave with non-

normal incidence. It can also be achieved by placing a wedge prism over the 

aperture. The blazing of a grating effectively provides a linear phase factor that 

translates (or directs) the diffracted light into a particular diffraction order. Without 

blazing, the zero order diffraction is the most intense. Unfortunately, there is no 

dispersion (wavelength separation) in this order. Proper blazing can concentrate the 

diffracted energy in the higher orders with proportionately higher wavelength 

discrimination.  

 

D.) Translation Becomes a Linear Phase Shift Theorem: In machine vision, a 

burr on a needle may be more easily identified as a fault by examining the Fourier 

transform image. If the needle is misplaced, machine recognition could be difficult, 

but the Fourier view has only a linear phase which does not appear in the intensity 

(magnitude squared of the Fourier transform). 

 

 

E.) Convolution: An aperture of identical sub-apertures can be represented as the 

convolution of the sub-aperture function centered on the origin with an array 

function which is the sum of delta functions that locate the centers of each sub-

aperture in the full aperture. Consider g(x)  ( = 1 if |x| < ½ a; 0 otherwise) and its 

convolution with f(x) = (x-b) +(x) +(x+b). Sketch g(x) and the convolution of 

g(x) with f(x). By the theorem, the diffraction amplitude due to the full aperture is the 

amplitude due to the centered sub-aperture times the amplitude that would be due to 

an array of point openings arranged according to the array function. Intensities 

follow by squaring amplitudes. Hence the diffraction pattern of an array of identical 

sub-apertures is the pattern due to the array modulated (multiplied) by the pattern of 
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the sub-aperture. The sub-aperture is necessarily smaller than the full aperture so its 

diffraction pattern is large compared to the array pattern.  The slowly varying 

aperture pattern modulates the more rapidly varying array pattern. What does this 

say about the diffraction pattern of N identical slits of width a equally spaced along a 

line with separation b? 

 The convolution theorem may be used in the reverse direction as well. Because 

the Fourier transform of a Fourier transform is the essentially the origin function, we 

can consider the aperture function and the Fraunhofer diffraction pattern to be 

Fourier transforms of one another. The grand aperture function is in the form of a 

product. In a simple case A(x,y) = UA(x,y) S(x,y). The expected diffraction is the 

convolution of the diffraction pattern (Fourier transform) of UA(x,y) considering a 

fully open aperture and the Fourier transform of the shape function. For example, 

consider UA to be an infinite plane wave that may not be normally incident. This 

incident wave would transform to a delta function at some point X*,Y* on the focal 

plane. Let the shape function be a circular opening. The aperture transforms to an 

Airy disk/ring pattern centered about the intersection of the optical axis of the 

transform lens with the focal plane. As the radius of the circular opening is 

decreased, the linear dimensions of the Airy pattern increase by the same factor. 

Thus the diffraction pattern is the convolution of a centered Airy pattern with a delta 

function at X*,Y* which just translates the Airy disk to the new center position 

X*,Y*. The effect of the limiting circular opening is to spread (technical term is fuzz 

out) the point focus of the plane wave into Airy pattern. Decreasing the size of the 

opening will increase the spreading. In the case of a more complicated incident 

wave, the pattern that could be represented as the sum of delta functions, and closing 

down a circular aperture would cause the focal plane pattern to spread point by point 

causing the loss of sharpness and detail. If a rectangular limiting opening was used, 

the spreading would be of the form sinc2(X) sinc2(Y) rather than an Airy disk.  
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Convolution of an A with hexagonal and rectangular arrays. The aperture shape is 

an A. The black blocking letter on a transmitting slide gives a pattern equivalent to an  

A opening on a blocking background plus a bright central peak according to Babinet’s 

principle. The leftmost image is for a random array of As. The central image is for a 

hexagonal array of As., and the rightmost image is for a rectangular array of As. 

 

Exercise: Discuss the convolution property and Babinet’s principle in the context of the 

images above.  

 

F.) Scaling: If an aperture is uniformly scaled down by a factor M in one linear 

direction, then the diffraction pattern will spread uniformly in that same dimension 

by the factor M. Narrow slits have wide diffraction patterns! Note: It is permissible 

to scale x and y independently.  

 

G.) Linear Operation:  Superposition. The aperture can be partitioned into 

several parts. The net diffracted amplitude will be the sum of the amplitudes due to 

the individual parts. The amplitude must be squared to find the intensity, and 

interference is expected among the contributions from the various segments. 

Babinet's Principle of complimentary screens is a special case of linearity. An 

aperture that consists of small openings that transmit the incident radiation is 

complimentary to an aperture that that transmits the radiation except for that in the 

areas that are open in the first aperture where it totally blocks the radiation. The sums 
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of the diffracted amplitudes from the two correspond to transmitting the complete 

incident wave which would have diffracted energy only in the forward direction. In 

the off-axis direction, the diffracted amplitudes of the two apertures (screens) sum to 

zero. Hence their squares (intensities) are identical except in the forward direction.  

 

H. Large k Behavior: An aperture with a hard edge, a transmission coefficient that 

drop discontinuously to zero, leads to a grand aperture function A(x, y) that is 

discontinuous and, as a result, leads to a Fourier transform that vanishes only slowly 

as k becomes large. Large k means that the energy is being diffracted far from the 

center or at large angles - usually a waste. Apodizing is a procedure in which the 

transition from transmitting to blocking is smoothed thereby eliminating or reducing 

the discontinuities in the derivatives of the aperture function A(x,y) and thereby 

decreasing the energy diffracted out of the central region of diffraction pattern. 

 

I. Smearing and Uncertainty:  The spatial uncertainty relations are kx x  ½ and 

ky y  ½. If the x extent if the aperture is limited to x, then there is a spread in the 

kx content of the Fourier transform of kx  1/2 x = kY/D, and the Fourier pattern will 

be spread in angle by X/D = 1/(2 k x) . Equivalently X  D( /x). A narrow aperture 

leads to a broad diffraction pattern. In the same manner, a lens focuses a plane wave to 

a spot with a radius of about f ( /d) or the focal length times the wavelength divided 

by the lens diameter. The ratio of the focal length to the lens diameter is called the f-

number f/# of the lens. The smallest focal spot that can be formed by a lens is about its 

f/# times . 

 

Group velocity and the Fourier transform: 
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Consider a wave pulse g(x) = f(x) eikox traveling in the +x direction at time t = 0 that is 

an envelope function f(x) times the plane wave eikox . The Fourier transform of the 

function g(x) = f(x) eikox is

( )g k

0( )f k k . 

1
( ) ( )

2
ikxf k f x e


 


  dx  

0 0( )
0

1 1
( ) ( ) ( ) ( )

2 2
ik x i k k xikxg k f x e e dx f x e dx f k k

 
   

 
       

The Fourier transform expands f(x) as a sum of pure spatial frequency components 

 1
2

ikxe  

At a time t, a component such as the one above will have developed into 

 [ ]1
2

ki kx te 


  

where k = (k), the value of  as dictated by the Schrödinger equation. One can 

invert the transform after adding the time dependence to find g(x, t):1 

( )1 1
( ) ( ) ; ( , ) ( )

2 2
ki kx tikxg x g k e dx g x t g k e dx

 
 

 

      

ASSUME that the envelope function g(x) varies slowly over a distance o = 2/ko
. The 

function g(x) can be represented in terms of spatial frequencies near ko. Expand (k). 
2

2
0 0

2
0 0 0

1
2( ) ( ) ( )

k k

d d
dk dk

k k k k k       ...

0k

 

Next assume that the first two terms are adequate to faithfully represent (k). 

0( ) ( )Gk v k       where  0( )k 0    and    
0

G k

d
dkv   

Recalling the inverse transform, 

                                           

1 This is analogous to expanding a QM wave function using the spatial energy eigenfunctions, ( , 0) ( )
n n

x a u x   , 

and then adding the time dependence term-by-term to find: ( , ) ( )
n n

ni t
x t a u x e

   . 
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1
( ) ( )

2
ikxg x g k e dk





    

and re-summing the time developed components, we find the shape and position of the 

wave for time t. 

   0 0 0 0
0

[ ] [ ]1 1
( , ) ( ) ( )

2 2
G Gi kx t v t k k i kx t v t k k

g x t g k e dk f k k e dk
 

 
 

 

           

 0 0 0
0

( )( )1
( , ) ( )

2
Gi k x t i k k x v tg x t e f k k e dk








      

With the change of variable  = k – ko, 

   0 0 0 0( )1
( , ) ( ) ( )

2
G

G

i k x t i k x ti x v tg x t e f e d f x v t e
 






        

 0 0( , ) ( ) i k x t
Gg x t f x v t e    

The result is the time-dependent representative plane wave modulated by an envelope 

function with fixed shape and width that translates at speed vG. 

1.) The pulse envelope translates at the group velocity (or group speed, 
0k

d
dk
 ) vG with 

its envelope shape undistorted.  

 

2.) The factor  0 0i k x te   shows that the wave crests inside the envelope propagate at the 

phase velocity, 
0kk

 .  

In quantum mechanics, a free particle has energy E = 
2 2

2
k
m

  and frequency 
2

2k
k
m   . The 

phase velocity is 2 2
k pk

mk m
   or half the classical particle velocity. The probability lump 

translates at the group velocity kd pk
m mdk

    which agrees with the classical particle 

velocity.  

For an animated example, go to: 
 http://usna.edu/Users/physics/tank/TankMovies/MovieGuide.htm  
Select:  PlaneWaveAndPackets and PacketSpreadCompareNoFrmLbl.gif 
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As you view the animation, use your finger tip to follow one wave crest. Notice that 

the wave packet translates faster than does any one of the wave crests.  

 

Conclusion: For a wave packet, the group velocity is analogous to the classical 

velocity of a particle described by the wave packet. 

 

Some pulses require a broad range of frequencies for their representation. In such 

cases, the term 
2

2
0

2
0

1
2 (

k

d
dk

k k  )  must be included, and it leads to distortions of the 

pulse shape. The distortions expected most often are spreading and the degradation of 

sharp features. 

 

*** recompute the first figure below. 

Wave packet example requiring quadratic terms  pulse distortion

Initial pulse with sharp features Later time, spread, less sharp 
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For cases in which the Taylor’s series expansion of (k) does not converge rapidly, 

the pulse shapes will always distort, and the concept of a group velocity 
d

/dk is of no 

value. If one finds that 
d

/dk > c, the group velocity (first order expansion) 

approximation is failing rather than Special Relativity.  



 

The Laplace Transform 

 

Pierre Laplace: French physicist and mathematician who put the final capstone on 

mathematical astronomy by summarizing and extending the work of his 

predecessors in his five volume Mécanique Céleste (Celestial Mechanics) (1799-

1825). This work was important because it translated the geometrical study of 

mechanics used by Newton to one based on calculus, known as physical 

mechanics. He studied the Laplace transform, although Heaviside developed the 

techniques fully. He proposed that the solar system had formed from a rotating 

solar nebula with rings breaking off and forming the planets. Laplace believed the 

universe to be completely deterministic. 

Eric W. Weisstein 
 http://scienceworld.wolfram.com/biography/Laplace.html, a Wolfram site 

 

Laplace transforms are based on Fourier transforms and provide a technique to solve 
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some inhomogeneous differential equations. The Laplace transform has the Bromwich 

(a.k.a. Fourier-Mellin) integral as its inverse transform, but it is not used during a first 

exposure to Laplace transforms. Rather a table of transforms is generated and the 

inverse (or reverse) is accomplished by finding matching pieces in that table of 

forward transforms. That is: Laplace transforms are to be considered as operational 

mathematics. Learn the rules, turn the crank, find the result, and avoid thinking about 

the details. Postpone the studying the relationship of the Laplace transform to the 

Fourier transform and the computation of inverse transforms using the contour 

integration of complex analysis until your second encounter with Laplace transforms.  

 

The Laplace transforms sometimes take the form of a rational function with a 

polynomial in the denominator. A study of the singularities of these forms provides 

resonant response information to sinusoidal driving terms for mechanical and 

electronic systems 

 

In our operational approach, a few Laplace transforms are to be computed, several 

theorems about the properties of the transforms are to be stated and perhaps two 

sample solutions of differential equations are to be presented. To apply Laplace 

transform techniques successfully, you must have an extensive table of transforms, 

exposure to a larger set of sample solutions and practice executing the technique. 

Regard this introduction only as a basis to recognize when the techniques might be 

effective. Study the treatment in one or more engineering mathematics texts if you 

need to employ Laplace transforms. The inversion by matching step, in particular, 

requires skill, familiarity and luck. 

 

4/7/2010 Handout.Tank: Integral Transforms IT-37 



The Unit Step function vanishes for a negative argument and is equal to one 

for a positive argument. It has several optional names including the Heaviside 

function  and several symbolic representations including u(t) and (t). 

 
www.geocities.com/neveyaakov/ 

electro_science/heaviside.html] 

Oliver W. Heaviside was English electrical engineer who 

adapted complex numbers to the study of electrical circuits. 

He developed techniques for applying Laplace transforms to 

the solution of differential equations. In addition, he 

reformulated Maxwell's field equations in terms of electric 

and magnetic forces and energy flux. In 1902 Heaviside 

correctly predicted the existence of the ionosphere, an 

electrically conducting layer in the atmosphere, by means of 

which radio signals are transmitted around the earth's 

curvature.  

 

 

In his text, Wylie uses the Fourier transform of the unit step function to 

motivate the Laplace transform as follows. 

0

0 0 1 cos( ) sin( )
( ) ( )

1 0 2

for t t i t
u t u

for t i

 


  
        

  

The function u(t) is not square integrable, and the Fourier transform is not 

defined. If one regulates the behavior by adding a decaying exponential 

convergence factor e-at, the behavior improves. 

2 2

0 0 1 1 1
( ) ( )

0 2 2
a aat

for t a i
U t U

e for t a i a


  

            
 



 

In the general case, for each function f(t), the auxiliary function F(t) is 

considered. 

0 0
( )

( ) 0at

for t
F t

f t e for t


  
 

Applying the Fourier transform prescription with S = 0,  
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' ' ' (

0 0 0
( ) ( ') ' ( ') ' ( ') 'i t at i t a i tg F t e dt f t e e dt f t e dt 

          ) '  

( )1
2( ) ( ) a i tf t g e 
 d 

  


   

Using the change of variable:  s =a – i, it follows that: 

0
( ) ( ) stg s f t e dt

   

The Laplace Transform

1
2( ) ( )

a i

a i

st
if t g s

 

 
  e ds 

Bromwich Integral

The evaluation of the inverse transform requires the full power of complex 

variables and complex integrations along paths. Rather than computing the 

inverses, inverses are to be found by matching pieces found in tables of 

forward transforms. 

 

Table LT1: Laplace Transforms             (f(t)  f(t) u(t) where u(t) is the Heaviside function) 
 

f(t), 
t>0 

 

 

method 
 

 

L[f(t)]=g(s) 

 

1 or 
u(t) 0 0

( )
stst e
sg s e dt

 
   1

s  

tn 
0 0

1( ) n nst sg s t e dt n t e dt
      t  1

!
n
n

s   

e-at 
0 0

( )( )
( )( )

s a ts a t e
s ag s e dt

   
   or apply  shift theorem to u(t) 1

( )s a  

 
i te   

0 0

( )( )
( )( )

s i ts i t e
s ig s e dt




   
    1

( )s i  

cos(t)    1 1
2 2

1 1
( ) ( )cos( ) ( )i t i t

s i s it e e g s 
  

 
           2 2( )

s
s   

sin(t)    1 1
2 2

1 1
( ) ( )sin( ) ( )i t i t

i i s i s it e e g s 
  

 
           2 2( )s


  

cosh(bt)    1 1
2 2

1 1
( ) ( )cosh( ) ( )bt bt

s b s bbt e e g s
 

           2 2( )
s

s b  

sinh(bt)    1 1
2 2

1 1
( ) ( )sinh( ) ( )bt bt

s b s bbt e e g s
 

           2 2( )
b

s b  

   

(t – t0) 0
00

( ) ( ) t sstg s t t e dt e
     0t se  
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Mathematica Syntax                                       UnitStep[x] = u(x) 

LaplaceTransform[expr(t),  t , s)]              -----  Laplace transform 

of expr(t). 

InverseLaplaceTransform[expr(s),  s , t)]  ----- inverse transform of 

expr(s). 

 

 

Properties of Laplace Transforms: 

 

Linearity: The Laplace transform of a linear combination of functions is that same 

linear combination of the Laplace transforms of the functions. 

L[a f1(t) + b f2(t)] = a L[ f1(t)] + b L[ f2(t)] 

This property follows from the linearity of the integration. Linearity should always be 

noted when applicable, and, in the case of Laplace transforms, it is crucial in the 

matching to find an inverse process. 

 

The well-behaved criteria for functions to be Laplace transformed that they be 

piecewise regular functions bounded by eMt for all t > T for some M and T. In some 

cases continuity through some order of the derivatives is needed.   

 

Transform of the Derivative:     L[f /(t) ] = s L[ f(t)] - f( 0+) 

The Laplace transform of the derivative of a function is s times the Laplace transform 

of the function minus the limiting value of the function as its argument approaches 

zero from positive values. This property follows from the definition and integration by 

parts. 

/

00 0
( ) ( ) ( ) ( )stst sg s f t e dt f t e s f t e dt

      t  
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That is: The process of taking a derivative is replaced by the algebraic operations of 

multiplication and addition. The solution of differential equations is replaced by the 

solution of algebraic equations followed by transform inversions. 

 

The derivative relation can be used recursively to yield: 

L[f [n](t) ] = sn L[ f(t)] – sn-1 f( 0+) - sn-2 f [1]( 0+) - sn-3 f [2]( 0+) -  … - f [n-1]( 0+) 

 

Transform of an Integral:     L[ ( ') '
t

a
f t dt  ] = s-1 L[ f(t)] + s-1  

0
( ') '

a
f t dt  

Integration of the function is equivalent to division by the independent variable plus a 

boundary term. The proof of this property is postponed to the problem section. 

 

The Shifting Property #1: L[e-at f (t) ] =  L[ f(t)]s + a  = g(s + a)  where g(s) = L[ f(t)] 

   
0 0

( )( ) ( ) ( ) ( )at
a

s a tstg s e f t e dt f t e dt g s a
         

 

Shifting Property #2: L[ f (t - a) u(t - a)] =  e-as L[ f(t)]  = e-as g(s)  where g(s) = L[ 

f(t)] 

The proof follows from the definition and a change of variable. Note that the unit step 

function ensures that the integration runs from zero to infinity. 

 

Convolution Property: 
0

( ) ( ) ( )
t

f g t f g t d       L[ ( )f g t ] = L[f(t)] L[g(t)]

 

Application LT1: Solution of an Inhomogeneous Differential Equation: 

A simple harmonic oscillator is initially at rest at its equilibrium position. At t = 0, a 

constant unit force is applied. Find the response of the oscillator for t > 0.     [m = 1; k  

= 4; Fo = 1] 
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2
[2]

2
4 ( ) 4 (

d y
)y u t y y u t

dt
      

Using the linearity property, the differential equation is transformed into an algebraic 

equation for the Laplace transform of the response y(t).  

L[ y[2](t)] + 4 L[ y(t)] = L[ u(t)] 

The final transform L[ u(t)] is found in the table and is s-1. Using the derivative 

property and the initial conditions y(0) = 0 and y[1](0) = 0, the DE becomes: 

s2 L[ y(t)] – s y( 0+) – y[1]( 0+) + 4 L[ y(t)] = (s2 + 4) L[ y(t)] =L[ u(t)] = s-1 

Solving, L[ y(t)]  = s-1 (s2 + 4)-1 or: 

y(t) = L -1[s-1 (s2 + 4)-1] 

An approach to inverting the transform is to be presented to illustrate the use of the 

integral property. A more common alternative is presented at the end of Application 

LT3.  

 Now the magic of inversion by matching begins.  First the piece (s2 + 4)-1 is matched. 

L -1[(s2 + 4)-1] = (1/2) sin( 2 t ) 

The   factor s-1 appeared in the integral property: 

L[ ( ') '
t

a
f t dt  ] = s-1 L[ f(t)] + s-1  

0
( ') '

a
f t dt  

s-1 L[ f(t)] = s-1  
0

( ') '
a

f t dt - L[ ( ') '
t

a
f t dt  ] 

s-1 L[(1/2) sin( 2 t ))] =  [s-1 (s2 + 4)-1] so, setting a = 0: 

y(t) =    
0

1 1
2 4sin(2 ') ' 1 cos(2 )

t
t dt t           y/(t) = y[1](t) =  1

2 sin(2 )t  

The oscillator executes simple harmonic motion about its new equilibrium position y = 

+ 1/4. It was at rest at time zero and so has a limiting velocity as time approaches zero 

from positive values of zero because the force applied and hence the mass’s 

acceleration are finite. As the acceleration is defined, the velocity is a continuous 

function of time. 
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Application LT2: Solution of an Inhomogeneous Differential Equation: 

A simple harmonic oscillator is initially at rest at its equilibrium position. For t > 0, a 

decaying force e-rt is applied. Find the response of the oscillator for t > 0.     [ m = 1; k  

= 4; Fo = 1] 
2

[2]
2

4 ( ) 4 ( ) rtd y
y F t y y F t e

dt
       

First, the transform of the decaying exponential is located in the table. L[e-rt ] = 1
s r , a 

result that follows from the transform of u(t) and shift property #1. 

s2 L[ y(t)] - s y( 0+) - y[1]( 0+) + 4 L[ y(t)] = (s2 + 4) L[ y(t)] =L[ F(t)] = 1
s r  

L[ y(t)]  = (s + r)-1 (s2 + 4)-1 

The plan is to shift out of this problem. 

L 
2

1 1
[ ( )]

4
y t

s r s
        

 L 
2

1 1
[ ( )]

( ) 4
rte y t

s s r s
               

1  L  1
2 sin(2 )rte t    

   
1

2 2
' 2 sin(2 ) 2cos(2

( ) sin(2 ') '
8 2

t

o

rt
rt rt e r t t

e y t e t dt
r

)
  

 
  

The integral is straight forward after sin(2 t) is expressed in terms of  e it and e -it. It 

is treated in two problems in the Integration/Definite Integrals handout.

2

2 sin(2 ) 2cos(
( )

8 2

rte r t t
y t

r

2 )  



 

The solution found in application LT1 is easily understood and can be found without 

Laplace transforms. Could you have found the solution to application LT2 by another 

method? 

 

Use the Mathematica code below to verify that y(t) is a solution to the equation and  

that y(0) and y/(0) are zero. Set r = 0.25 and Plot[y[t],{t,0,50}]. Discuss the behavior. 

Change r and repeat. 

Mathematica Verification 

Integrate[Exp[r t] Sin[ 2 t]/2,{t,0,T}]    
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y[t_] = (2 Exp[- r t] -2 Cos[2 t] + r Sin[2 t])/(8+2 r^2) 

dy[t_] = D[y[t],t]    

ddy[t_] = D[D[y[t],t],t]  

FullSimplify[ddy[t] + 4 y[t]] 

r = 0.25; Plot[y[t],{t,0,50}]  

 

Application LT3: Driven second Order ODE with constant coefficients: 
 

y[2](t) + b y[1](t) + c y(t) = d F(t) 

{s2 L[y(t)] + s y(0) +  y[1](0)} + b { s L[y(t)] +  y(0) } + c L[y(t)] = d L[F(t)] 

{s2 + b s+ c } L[y(t)] = d L[F(t)] + s y(0) + (b y(0) + y[1](0)) 

L[y(t)] = [d L[F(t)] + s y(0) + (b y(0) + y[1](0))] * [s2 + b s + c ]-1 

Consider a particular example. 
2

2
3 2 2 td y dy

y e
dt dt

    

b = -3;    c = 2;  d = 2;  y(0) = 2;  y[1](0) = 1;   F(t) = e-t; L[F(t)] = (s+ 1)-1 

L    
         

1

2

1 1
( )

3 2 1 2 1 1 2 1

s A B C
y t

s s s s s s s s


    

       
 

Review partial fractions (RHB, p.18); they can be useful in untangling Laplace transforms. 

The requirements are: 

A ( s2 - 3 s + 2) + B (s2 - 1) + C (s2 - s - 2) = 2 s2 -3 s - 3   or 

A + B + C = 2;          - 3 A - C = - 3;           2 A - B - 2 C = - 3 

Solving, it follows that:  A = 1/3 ;   B = - 1/3 ;    C = 2 

 

From the tables, L -1[(s + 1)-1] = e-t ; L -1[(s - 2)-1] = e2t; L -1[(s - 1)-1] = et.  Hence, 

  y(t) = 1/3 e
-t -  1/3 e

2t + 2 et  .  

 

Returning to Application:  LT2: 
2

2
4 rtd y

y e
dt

   with homogeneous initial conditions. 
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b = 0;    c = 4;  d = 1;  y(0) = 0;  y[1](0) = 0;   F(t) = e-r t; L[F(t)] = (s + r)-1 

 L    
         

1

2

1
( )

4 2 2 2

s r A B C
y t

s s r s i s i s r s i s


    

       2i
 

The requirements are: 

A ( s2 + 4) + B (s2 + [r + 2i] s + 2 r i) + C (s2 + [r -2i] s - 2 r i) = 1   or 

A + B + C = 0;         [r +2i] B   + [r -2i] C = 0;         4 A + 2 r i B - 2 i r C = 1 

After some effort,  
   2 2 2

2 2
; ;

8 2 2 8 2 2 8 2

r i r i
A B C

r i r i r

2  
  

  
  

L -1[(s - r)-1] = ert ; L -1[(s - 2i)-1] = e+i2t; L -1[(s + 2i)-1] = e-i2t 

   2 2 2

2 22 2 2
( )   

8 2 2 8 2 2 8 2
rt it itr i r i

y t e e e
r i r i r

    
  

  
 

2

2 sin(2 ) 2cos(2
( )  

8 2

rte r t t
y t

r

)  



 

There are multiple paths that lead to the answer. Inverting Laplace transforms by 

manipulating and matching is an art that requires practice and luck. Prepare by 

working through the details of a long list of examples. 

Additional Integral Transforms 

 

Fourier Bessel or Hankel Transform     

0

0

( ) ( ) ( )

( ) ( ) ( )

m

m

g k f x J kx x dx

f x g k J kx k











 dk
 

Mellin Transform 

1

0

1
2

( ) ( )

( ) ( )

z

i z

ii

z t f t dt

f t t





 

 

 







 z dz
 

Hilbert Transform 
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( )1

( )1

( )

( )

f x dx
x y

g y dy
y x

g y

f x P

P






















 

 

 

 

 

 

Tools of the Trade: 
 

Converting Sums to Integrals 

It is said that an integral is a sum of little pieces, but some precision is required before 

the statement becomes useful.  Beginning with a function f(t) and a sequence of values 

for t = {t1,t2,t3, ….,tN},  the sum 
1

( )
i N

i
i

f t



  does not represent the integral ( )

t

t
f t dt




  even 

if a great many closely spaced values of t are used.  Nothing has been included in the 

sum to represent dt.  One requires 
1

i N

i

( )i if t t




   where     1
1

2i it t   

i

1it   is the average 

interval between sequential values of t values at ti. For well-behaved cases, the 

expression 
1

( )
i N

i
i

f t t




  approaches the Riemann sum definition of an integral as the t-

axis is chopped up more and more finely. As illustrated below, in the limit t  goes to 

zero, the sum 
1

( )
i N

i
i

if t





( )
t

t

t  approaches the area under the curve between t< and t>.  That 

is: it represents f t





t

dt  provided the sequence of sums converges, and life is good.  

The theory of integration is not the topic of this passage.  The goal is simply to remind 

you that the  must be factored out of each term that is being summed in order to 

identify the integrand. 
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f(t)

t

t1 t2 ti tN

t

t< t>

f(t1)
f(ti)

f(tN)

t

tk

f(tk)

area =  f(tk) t

 

 
 

Problems 

1.) The convolution of two functions is: ( ) ( ') ( ') 'f g x f x g x x dx



  . 

     Show that ( ') ( ') ' ( ') ( ') 'f x g x x dx g x f x x dx
 

 
    . 

 

2.) Parseval’s equality, , follows by replacing both 

functions in the inner product with their Fourier transform representations using 

, and then interchanging the orders of integration to complete the x 

integration first. Show the steps in this development. (It is assumed that k and  were 

chosen as the distinct Fourier dummy variable labels for the functions f and g. Property 

A of the Fourier transform provides the relation between the x integral and the Dirac 

delta.)  

( ( ))* ( ) ( ( ))* ( )g x f x dx g k f k dk
 

 
  

( )and ( )g f  k

1 1( ) ( ) ; ( ) ( )
2 2

ikx i xf x f k e dk g x g
 

 

 

                
      e d  

 
 

3.) Show that the Fourier transform of the convolution of two functions is the product of 
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their Fourier transforms.     
~

( ) 2 ( ) ( )f g k f k g k
    where  may be ½ but can be other 

values depending on the precise definition chosen for the convolution and the 

apportionment of the 2 in the definition of the Fourier transform and its inverse.
 

4.) Compute the Fourier transform of the continuous piecewise smooth function: 

1 1

( ) 1 0 1

0 | |

x for x

f x x for x

for x

0

1

   
  
 

  

Sketch the function. What is the lowest order in which a derivative of this function is 

discontinuous? What does property H predict about the Fourier transform of this 

function?                                        2
1 cos( )2( ) k

k
f k 

  

Answer : 
2

1 cos( )2 k

k



 


 for S = ½;  How can (1 – cos[k]) be rewritten? 

The S = 0 choice answer is    2
2 2 2

2 1 cos( ) 4
sin kk

k k


  

5.) The Fourier transform of the somewhat smooth function below is 1
! 1

(1 )2 n
n

i k 
: 

0 0
( )

0n x

for x
f x

x e for x


  
 

Sketch the function. What is the lowest order in which a derivative of this function is 

discontinuous? What does property H predict about the Fourier transform of this 

function? Compute the Fourier transform for the case n = 1.  
 

6.) Find the Fourier transform of the continuous piecewise smooth function: 

. | |( ) ; 0a xf x e real a 

Sketch the function. What is the lowest order in which a derivative of this function is 

discontinuous? What does the property H predict about the Fourier transform of this 

function?  
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Answer:
2 2

2

2 (

a

a k  )
 

 

7.) Compute the Fourier Transform of
2 2( ) /21( ) ot i tf t e e 

 

  .  Verify that the 

product of the temporal width of the function  and the spectral width of the transform 

 is of order 1. The technique of choice is to complete the square in the exponent 

and use change of variable. 
22

22 2[ ]t tibt ib 


         ???     

      Compare with problem 20.  

 
 

8.) An amplitude modulated signal is of the form ( ) ( )cos( )f t A t t   where  is the 

carrier frequency ( >> ) and A(t) is an amplitude modulation function that carries 

the information in the signal. Show that:  1
2 ( ) (f A( ) )A   
     

( )A

. Suppose 

that the signal A(t) has frequency components spread from - signal
 to + signal. The 

point is that if you wish to encode information with frequency spread  signal on a 

carrier wave at frequency , you need the bandwidth from  - signal to  + signal to 

carry the signal. For A(t) corresponding to rapid variations,   must include 

amplitudes for high frequencies meaning that a large bandwidth is required to transmit 

the signal. We normally describe the required band of frequencies as:  - signal to  + 

 signal.
 

9.) Compute the Fourier transform of the Dirac delta function (t – t0). Discuss its 

behavior for large || in the context of property H.
 

10.) Compute the Laplace transform of t2. 
 

11.) Compute the Laplace transform of sin( t).
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12.) Prove that L[ ( ') '
t

a
f t dt  ] = s-1 L[ f(t)] + s-1  

0
( ') '

a
f t dt . Use the defining integral 

for the Laplace transform and integration by parts. 
 

13.) Iterate the derivative property of the Laplace transform to show that: 

L[f [2](t) ] = s2 L[ f(t)] – s f( 0+) -  f [1]( 0+) 
 

14.) A partial fraction problem arose during one of the Laplace transform applications. 

         
1

2 2 2 2

A B C

s r s i s i s r s i s i
  

     
 

Find the values of the complex constants A, B and C. The equation is equivalent to: 

A( s - 2i) ( s + 2i) + B ( s + r) ( s + 2i) + C ( s + r) ( s + 2i) = 1 

The coefficient of s2 should vanish as should the coefficient of s. The constant term 

should be 1.  Partial Answer:
 2

2

2 8 2

r i
C

i r

 



 

15.) Solve the following DE using Laplace transform methods. Interpret the answer. 

0
0

0
( ) with ( ) and ( )

0

V for tdi
L Ri E t i t i E t

for tdt



 

     
 

That is E(t) = V0 [u(t) - u(t - )]. 

a.) Compute L[E(t)]. You should do the using the table and the theorems and by 

direct computation. 

b.) Transform the equation and find L[i(t)]. Group the terms to represent the 

response to the change at t = 0, the response to the change at t =  and the 

homogeneous solution piece. 

Answer:      
0 0

0( ) 1 ( ) 1
tR R

L Lt tV V
R Ri t e u t e i e

             
R

L  

c.) Interpret the terms in the expression for i(t). Explain the role of the unit step 

function in the second term. 
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16.) Compute the Laplace transform of  
1 0

( )
1t

for t
f t

e for t

1 
  

.  The definition of ft) can 

be rewritten as f(t) = [u(t) – u(t – 1)] + e [u(t – 1) e(t – 1)].  

a.) Using the table and shift property #2, show that L[f(t)] = s-1 – s-1 e-s + e { e-s/(s –

1)}. Explain the use of each resource and property. 

b.) Show that the result also follows from direct calculation   -- 
0

( ) stf t e dt
  . 

(1 ) ( )
1

0 0 1
1

11 1
( )

1 1

s t ss s
st st t st e e e e

f t e dt e dt e e dt
s s s s

    
    

     
     

17.) The auto-correlation of a function f(x) is defined as: 

*( ) ( ') ( ' ) 'A x f x f x x



  dx  

Note that an autocorrelation is similar to the inner product of a function with itself. It 

differs in that the function at x is compared to the function at x + x’ rather than for the 

same argument value. The inner product gauges the degree to which the two functions 

wiggle in the same pattern. The auto-correlation gauges the degree to which a function’s 

local wiggle pattern persists as the argument changes. Show that the Fourier transform 

of a functions autocorrelation is the product of that function’s Fourier transform with its 

complex conjugate. 

2*
~

~
* |{ ( )} { ( ') ( ' ) '} ( ) ( ) ( ) |A x f x f x x dx f k f k f k




       

18.) The cross-correlation of two function f(x) and g(x) is defined as: 

*( ) ( ') ( ' ) 'C x f x g x x dx



   

Express the Fourier transform of the cross-correlation of the functions in terms of the 

Fourier transforms of the individual functions.  A fairly direct solution follows if you 

replace f(x) and g(x) by their equivalent Fourier integrals. Next interchange the orders of 

integration and use the delta function property.                    ? 
~

{ ( )}C x 
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19.) Compute the Fourier Transform of
2 2

0( ) /21( ) ot t i tf t e e 

 

   . * Problem 

changed since spring 2006.* Verify that the product of the temporal width of the 

function  and the spectral width of the transform  is of order 1. Compare with the 

result that the Gaussian  1/ 2

2
2

1 2
t

a
a e


 transforms to  1/ 2 2( ) /2aa e 


 .  Discuss the 

result in terms of the translation or the linear phase property of the Fourier transform. 

The temporal function 
2 2/21 te 

 
 has been translated from t = 0 to t = to (which leads 

to a linear phase times the transform of 
2 2/21( ) tf t e 

 
 ) and then the temporal 

function is multiplied by a linear phase which translates the transform from a result 

centered on  = 0 to one centered on  = o. 
 

20.) Compute the Fourier Transform of
2 2

02( ) /( ) ot t i ti tf t e e e     . Use the quantum 

conventions to compute the uncertainty product  t for the function. Search for: 

“Following conventions adopted in Quantum Mechanics”. 

Use the properties to start with e-(t/)^2. multiply by a linear phase and then 

translate by to to reproduce the result. 

 

21.) A standard trigonometric Fourier series for a function f(x) with period L has the 

form:     0 0
1 1

( ) 1 cos sinm m
m m

0f x c a mk x b mk x
 

 

        where ko = 2/L. 

a.) Show that this can be cast in the form: 

0 0(0)
0

1

( ) ½( ) ½( )imk x imk x imk xi
m m m m m

m m

f x c e a ib e a ib e e
 



 

       0



 

This result justifies the form of the complex Fourier series, . 0imk x
m

m

e
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b.) Show that 0 0
/ 21

/ 2
( ) ( )

L imk x ink x
mnL

L e e dx  


 . 

c.) Pre-multiply  by 0( ) imk x
m

m

f x e




  0(e )ipk x   and use the orthogonality relation 

developed in part b to project out the coefficient p.

 

22. Sample Calculation SC4 used the linear phase property and then used the 

translation property to compute the Fourier transform of 

0

0

2
2

1/ 2

( )
21( ) i t

t t
a eg t a e 



 
 
 





  
 

 . Repeat the problem using the translation property 

first and the linear phase property second. 

 

 

23. Sample Calculation SC4 used the linear phase and linear phase properties to 

compute the Fourier transform of 
0

0

2
2

1/ 2

( )
21( ) ik x

x x
a eg x a e

 
 
 




  
 

 . 

 

24. Compute the Fourier transform of 
0

0

2
2

1/ 2

( )
21( ) ik x

x x
a eg x a e

 
 
 




  
 

  directly using 

the defining equation for and using the completing the square in the exponent method. 

 

25. Consider the Laplace transform [(s + a) (s + b)]-1. 

a.) Use partial fractions to reach a form that can be inverted using tables. Invert it. 

b.) Use the convolution theorem
0

( ) ( ) ( )
t

f g t f g t d       L[ ( )f g t ] = L[f(t)] 

L[g(t)]

to invert the Laplace transform. 
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c.) The inverse of a Laplace transform can be computed directly using the Bromwich 

integral 

1( ) (2 ) ( )
C

tzf t i f z e    dz  where ( )f z  is L[g(t)]s=z. The contour consists of a straight path 

up parallel to the imaginary axis which is to the right of all the poles of ( )f z  and 

which is closed by a large circular arc closing on the left to enclose all those poles. Do 

so. 

 

25. Consider the Laplace transform [(s2 +1) (s – 1)]-1. 

a.) Use partial fractions to reach a form that can be inverted using tables. Invert it. 

b.) Use the convolution theorem
0

( ) ( ) ( )
t

f g t f g t d       L[ ( )f g t ] = L[f(t)] 

L[g(t)]

to invert the Laplace transform. 

c.) The inverse of a Laplace transform can be computed directly using complex 

integration methods and the Bromwich integral 1( ) (2 ) ( )
C

tzf t i f z e dz    where ( )f z  is 

L[f(t)]s=z. The contour consists of a straight path up parallel to the imaginary axis 

which is to the right of all the poles of ( )f z  and which is closed by a large circular arc 

closing on the left to enclose all those poles. Do so. Note: The arc closing to the left 

does not contribute so long as t  > 0. For t > 0, the contour must be closed on the right 

leading to a result of 0. The t > 0 case is all that is of direct interest. 

 

 

26.) The inverse of a Laplace transform can be computed directly using complex 

integration methods and the Bromwich integral 1( ) (2 ) ( )
C

tzf t i f z e dz    where ( )f z  is 

L[f(t)]s=z. The contour consists of a straight path up parallel to the imaginary axis and 

to the right of all the poles of ( )f z  and which is closed by a large circular arc closing 
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on the left thus enclosing all the poles of ( )f z . Compute the inverse Laplace 

transforms of: a.) (s – k)-1  b.) (s – k)-2  c.) (s – a)-1(s – b)-1 d.) s (s2 + k2)-1 e.) k (s2 + 

k2)-1 

Answers: ekt, t ekt, (a – b)-1 [e-bt – e-at], cos(kt), sin(kt) 

The arc closing to the left does not contribute so long as t  > 0. For t > 0, the contour 

must be closed on the right leading to a result of 0. The t > 0 case is all that is of direct 

interest. 

27.) The expression  2( ) exm
m

px i m xL






 
f  

   can be represented as an 

integral by noting that m between terms is just 1. That is: 

   2( )exp2( ) expm
m

m A m i m x dmLf x i m 







xL

          
 

Note that A(m) is a continuous function with the property that A(m) = m.

In order that the integral form be proven accurate, it must be shown that the integrand 

changes by an infinitesimal amount for a change of dm = 1.  

a.) Show that exp[im(2/L)x]  1 as L  . 

b.) Apply the change of variable k = (2/L)  m in the integral to show that the standard 

expression for the Fourier transform is recovered. 

Note that 2( )L( )f k L A m
 A(m).
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4/7/2010 Handout.Tank: Integral Transforms IT-55 



 

3.  K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics 

and Engineering, 2nd Ed., Cambridge, Cambridge UK (2002). 

 

4.   Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers, 

University Science Books, Sausalito, CA (2003). 

 

Spectrometers and Convolution 

 

 

 

Model In Mathematica: 

The actual spectral line pattern 

Diffraction limited transfer  

Slit to Slit convolution 

Diffraction * slit- to –slit 

Full * spectrum 
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AUTOFOCUS  optimize high k part of FT 

 

Hartley transform 

From Wikipedia, the free encyclopedia 
Jump to: navigation, search 

In mathematics, the Hartley transform is an integral transform closely related to the 
Fourier transform, but which transforms real-valued functions to real-valued 
functions. It was proposed as an alternative to the Fourier transform by R. V. L. 
Hartley in 1942, and is one of many known Fourier-related transforms. Compared to 
the Fourier transform, the Hartley transform has the advantages of transforming real 
functions to real functions (as opposed to requiring complex numbers) and of being its 
own inverse. 

The discrete version of the transform, the Discrete Hartley transform, was introduced 
by R. N. Bracewell in 1983. 

The two-dimensional Hartley transform can be computed by an analog optical process 
similar to an optical Fourier transform, with the proposed advantage that only its 
amplitude and sign need to be determined rather than its complex phase (Villasenor, 
1994). However, optical Hartley transforms do not seem to have seen widespread use. 

Contents 

[hide] 

 1 Definition  

o 1.1 Inverse transform  

o 1.2 Conventions  

 2 Relation to Fourier transform

 3 Properties  

o 3.1 cas  

 4 References  

[edit] 
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Definition 

The Hartley transform of a function f(t) is defined by: 

 

where ω can in applications be an angular frequency and 

 

is the cosine-and-sine or Hartley kernel. In engineering terms, this transform takes a 
signal (function) from the time-domain to the Hartley spectral domain (frequency 
domain). 

[edit] 

Inverse transform 

The Hartley transform has the convenient property of being its own inverse (an 
involution): 

 

[edit] 

Conventions 

The above is in accord with Hartley's original definition, but (as with the Fourier 
transform) various minor details are matters of convention and can be changed 
without altering the essential properties: 

 Instead of using the same transform for forward and inverse, one can remove 

the from the forward transform and use 1 / 2π for the inverse—or, 
indeed, any pair of normalizations whose product is 1 / 2π. (Such asymmetrical 
normalizations are sometimes found in both purely mathematical and 
engineering contexts.)  

 One can also use 2πνt instead of ωt (i.e., frequency instead of angular 

frequency), in which case the coefficient is omitted entirely.  

 One can use cos−sin instead of cos+sin as the kernel.  

[edit] 
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Relation to Fourier transform 

This transform differs from the classic Fourier transform in the 
choice of the kernel. In the Fourier transform, we have the exponential kernel: 

where i is the imaginary unit. 

The two transforms are closely related, however, and the Fourier transform (assuming 

it uses the same normalization convention) can be computed from the Hartley 
transform via: 

 

That is, the real and imaginary parts of the Fourier transform are simply given by the 
even and odd parts of the Hartley transform, respectively. 

Conversely, for real-valued functions f(t), the Hartley transform is given from the 
Fourier transform's real and imaginary parts: 

 

where and denote the real and imaginary parts of the complex Fourier transform. 

[edit] 

Properties 

One can see immediately from the definition that the Hartley transform is a real linear 
operator, and is symmetric (and Hermitian). From the symmetric and self-inverse 
properties, it follows that the transform is a unitary operator (indeed, orthogonal). 

There is also an analogue of the convolution theorem for the Hartley transform. If two 
functions x(t) and y(t) have Hartley transforms X(ω) and Y(ω), respectively, then their 
convolution z(t) = x * y has the Hartley transform: 

Similar to the Fourier transform, the Hartley transform of an even/odd function is 
even/odd, respectively. 

[edit] 

4/7/2010 Handout.Tank: Integral Transforms IT-59 

http://en.wikipedia.org/wiki/Imaginary_number
http://en.wikipedia.org/wiki/Even_and_odd_functions
http://en.wikipedia.org/w/index.php?title=Hartley_transform&action=edit&section=5
http://en.wikipedia.org/wiki/Linear_operator
http://en.wikipedia.org/wiki/Linear_operator
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Hermitian
http://en.wikipedia.org/wiki/Unitary_operator
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Convolution_theorem
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/w/index.php?title=Hartley_transform&action=edit&section=6


cas 

The properties of the cas function follow directly from trigonometry, and its definition 

as a phase-shifted trigonometric function . For example, it 
has an angle-addition identity of: 

 

Additionally: 

 

and its derivative is given by: 

 

[edit] 

References 
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	Fourier Series
	FullSimplify[ddy[t] + 4 y[t]]
	r = 0.25; Plot[y[t],{t,0,50}] 
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