Exponential Integrals for Quantum and Statistical Mechanics

Symbols of primary interest:

I'(n): the Gamma Function

G(n): the Family of Gaussian Integrals

Sinc(x) = ¥"¥/ and (*"®/,)? Integrals
Definitions

I(s+1) = j: x e dx G(n)= j: x"e™ dx = (%) [(24d)
Tools of the Trade

Parameter Calculus to extend integral results

I'(x): Table and Plot for 1 <x <2

Regularizing Functions to promote convergence - *"®/,

Quantum Harmonic Oscillator integrals
Appendix
The Stirling Approximation n!~n"e™+2zn 1+ %,,)

Integrals of exponentials arise in statistical physics and in quantum calculations
involving the hydrogen atom and harmonic oscillators. The definitions and a few
properties of two special exponential integrals are presented next section, and then
some results directly applicable to the hydrogen atom problem and to harmonic
oscillators are provided. There are more powerful methods for evaluating integrals in
guantum mechanics that are based on the concepts of complete sets of orthogonal
functions and recursion relations. Make the extra effort to embrace these methods
when you encounter them. The final two integrals to be presented are of the {sink}
function sinc(x) and its square. These integrals appear in the treatment of time-

dependent perturbation and transitions in quantum mechanics.

Contact: tank@alumni.rice.edu



A extended table of integrals can be found later in this handout just before the problems.

Table of Integrals
I(s+1) =L use ™V du ['(s+1)=sT(s) r'(n+1)=n!
G(n) = j u"e™ du = () M(REL r(%)=~r r()=0!=
Some specialized results appear in the extended integral table

I”/Z[cos 0]2"71 [sin H]ZH do = L)rv) e 1y v>0
0 2T (u+v)

IR [0 -

2
© 2,2 © - aX—b 2 2 2 2
J' g2 X2 b dx:J' o (ax-bg,] gV gy _ T f b4

The Gamma Function: I'(s + 1) is defined as:
['(s+1)= I: x* e dx
and the Gaussian integral is defined as:
G(n) = J': X" e dx
Using integration by parts,

F(s+1):J‘:xse’de:— s sle*dx =sT(s) (fors>0)

It follows that I'(0) = 1, that I'(1) = 1 and that the Gamma Function obeys the
recursive relation:

I'(s+1)=sI(s) (fors>0)
For the special case that n is a non-negative integer, and recalling that I"'(1) = 1.

I'h+1)=n!
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Using the change of variable (u = x 2; du = 2x dx), the Gaussian integrals can be

expressed in terms of the Gamma Function. For example:

GO)=[ e dx=% u™ e du=1HT(})

n

G(n) = j x"e™ dx = }gj ul?) ¢ “du =)
The value I'(1/,) can be found by evaluating the square of G(0).

(GO =[ e dx [ e dy=]"["e rardo=7r@)=[ %I (%) ]
In the first two integrals, x and y are dummy variables and so any label may be chosen
for them. The choice of x and y suggests that the product of the integrals be

represented as the integral of e-I? over the first quadrant of the x-y plane where r2 = x2
+ y2. The angular integration yields a factor of 7/, and the radial integral is just G(1)

which is 1/, (1) by the rule above. Finally, G(0) = 74 so T'(l,) = V.

Important Exercise: Consider the integral [~ x"e™ dx. Sketch the integrand for n =

0, 1, 2 and 3. Review the definition of G(n) carefully. Express 1(n) = jz x"e ™ dx in
terms of gamma functions for n odd and for n even.

Applications of G(n) and I'(s):
Expectation value integrals for the hydrogen atom problem involve angular
integrations followed by radial integrals of the form:

I: e e’ dr= [(n+1)=—2"

[a+ ﬂ}nﬂ [a+ ﬁ}nﬂ
The Boltzmann distribution function from statistical physics is a Gaussian leading to
integrals of the form:
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*® on ,-a’x? G(n s _ [(n
e o= S8 - 20 (o] R4 ) -
where the recursion relation is used repeatedly until I'(1) = 1 or I'(%) =+/z is reached.

G(2n+1)  T'(n+y

o2~ 32T 73 nl__. The harmonic oscillator

For odd powers, ["x*"*e " dx=

problems involve integrals from -oo to oo so that only the integrals with even powers of

X survive.

Lw x2n g gy = G2n) _ Tint)

a2n+l T 2 g2ntl

2 %n+1[n 1+}/] [y]r(%) 2\/;1+1[n 1+}/] [y]
The factor [n-1+%] ... [%] indicates that the recursion relation for the Gamma Function

IS to be used repeatedly until the factor 1/, is reached. If n = 0 or 1, the results are:

j:eazxzdxzﬂzﬁ [ ™ dx - G _rt+#) _ Jr

a 2a a 2a® 44t

[Fea=mg [ e dx= (4 )(n-H)(n-3%) - (%)
Recommendation: Each of the sample applications has lead to an integral specialized

to certain application. The recommended method to attack exponential integrals is to

use change of variable to convert the integral of interest to one of the bare forms:
I'(s+1) =jo°°u5 eV du G(n) =j0 u"e ™ du = () [(24d)

In the process, all the dimensioned constants will be factored out of the integral
leaving the integral itself dimensionless. Always do follow this approach. Do not use

pre-digested integrals like: [ "r"e e"dr=—2
0 [a+p

Jn+l :

Gaussian integral change of variable example:

The goal is to transform the integral into standard Gaussian G(n) forms.

The nut to crack: [ x2e*D-a dx. Clearly, u=2"% [x—a]. x=2"u+a;dx= A du

—0
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" x2e Al gy = 3% f [A*u+al2e™ du=A" .[_OO [Au? + 24 *ua+a2]e™ du

N ﬂ/J'jo [Au?]e™* du +/1‘1/2J'_oo [24*aule™" du +/1‘1/2f [a*]e™"" du

=2722G(2)+ 0 + AY%a22G(0) =2 ¥2I(3/2)+ 0 + A 22> T(1/ 2)
=[O/ 2) A%+ 0 + A7’ T(1/2) |=[ %A%+ 0 + 272" |[(L/ 2)

j"; Xe T dx=[1A%2+ 0 + 2% |Vr

Exercise: Why does I_w ue™* du vanish? How is the relation ['(n +1) = n I'(n) used?

Gaussian Integrals and Completing the Square:
; ; . [© .-a?x2+bx © ‘(ax_%a)z -b?/4a?
Consider the integral: j e dx = j e e dx . The exponent has been
rewritten by completing the square. Define: u =ax - b/2;,1. After changing variables,
J‘_°° efa2 x2+hx dx = J‘_°° eV’ efb2/4a2 aldu = 2€7b2/4a2 a—l-[ow eV du.
J'_°° efa2x2+bx dx = 287132/4512 a—lJ'OOO eV du = \/ﬁé efb2/4a2

This technique is used for a quantum mechanics problem about the time development

of wave packets.

Tools of the Trade
PARAMETER CALCULUS & REGULARIZING FUNCTIONS
THE GAMMA FUNCTION RECURSION RELATION
THE GAMMA FUNCTION AND FACTORIAL
THE INTEGRAL OF THE SINC FUNCTION
THE INTEGRAL OF SINC-SQUARED

ooX3dX_7r4

MIXING METHODS IO o190
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The integral of an even function over an even range is twice the integral over the

positive half. The integral of an odd function over an even range is zero.

Ijo x" e dx =Iic x"e ™ dx+ I: x"eX dx Useu= -x
Ijo X" e dx ='|.:(—1)n u"e™ du+ I: x"e™ dx = [1+ (—1)“’] J.: X" e dx
[ [fogg 00+ Fun (0T X = [ [ (0 £ (OTAX+ [ [ () + o (0] e

[ o 00+ £ (0] X = [ [ o (-0 + o (I (-U) + [ [ (X) + Ty (0]
= IOL [( fodd (X) + fodd (_X)) +( feven (X) + feven (_X) )] dx =2 .[OL[ feven (X)] dx

THE GAMMA FUNCTION RECURSION RELATION
An alternative approach to developing the recursion relation for the Gamma function
I'(n) is to insert a parameter into the defining integral and then to differentiate (and

sometimes integrate) with respect to it.
_[* 51 - _i ® 51 _-u _i
I(s,a)=| x"'e dx_asjou e du=—T(s)

Compute the negative of the derivative with respect to the parameter a.

Srea) [ a)- [rea e

a

dri e o4 d(1 s
—a[a—sjo u 1e dU]:—a(a—s F(S)]:HF(S)

a
Comparing for a = 1, the recursion relation follows: I'(s+1) =sI'(s). The evaluation
Is anchored by noting that I'(1) = 1. Hence I'(n+1) = n! for n an integer. The recursion

relation was derived without assuming that s was an integer so it can be used to make

unit steps between non-integer values. The process is anchored by picking values of

I'(s) for 1 <s <2 from a plot, from the table or by numerically evaluating the integral.
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PlotfGamma]s],{s,1,2}, GridLines ->
{Table[.95+i*.05,{i,21}], Table[.88+j*.005,{j,25}]}]
Tabulated Values for I'(x)

r(1.0)=1.0000 | r(1.1)=.9514 | r(1.2)=.9182 | I(1.3)=.8975 | I(1.4)=.8873

r@5)=+z/2 | T'(@6)=8935 | I(l7)=.9086 | I(L8)=.9314 [(1.9)=.9618

-

Relation of I'(z) for positive and negative arguments: T'(-z) = T @)sinGeD)
T

Note that I'(z) is undefined for non-positive integer arguments. These points are

designated as poles of the Gamma.

THE GAMMA FUNCTION AND FACTORIAL

Ve 1™ s1,-u 1 *®-ax H
Ifl“(s,a):j0 x*'e dx=a—s_[0 uste du=a—sl“(s)then F(l,a):foe dx =% . Taking a few

.. % n n I .
derivatives I'(n+1, a):J' x e ¥ dx= d (Fr@a))= d (lj:%. Note that n is now
0 da" da"la) a"*
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restricted to integer values as it counts the times that the derivative operation has been
applied. Setting a = 1 and with n restricted to positive integers, it follows that I'(n+1)
=n!. The value is T'(1) =1 is used to extend the definition of factorial by setting I'(1) =

0! =1.

I'(s+1)=sI(s) Vs
I'(n+1)=n!Vneintegers

(Note the recursion relation was developed without restriction and that s can be non-integer.)

Large Argument Limits: Stirling’s Formula: x!~ x*e™v2zx (1+ ¥5,)

In(n!) ~niIn(n) —n
I'(z) ~ \/?E\/zsinh(%ﬁwlzsl

REGULARIZATION AND THE INTEGRAL OF THE SINC FUNCTION

The rather simple definite integral j:cos(kx) dx is undefined.

.[: cos(kx) dx = Sinl((kx)

X=00

One can attempt to regulate the integral by inserting a factor that slowly decays to

render a convergent integral.
J‘: cos(kx) e dx = ( %)J‘:[e‘kx‘ax +e ™ Jdx =2
The result for j:cos(kx) dx should be the limit of the expression above as a approaches

zero if it is to make any sense at all. The limit yields jowcos(kx) dx= 0. This result may

seem reasonable, but the correct answer remains: the integral fails to converge, and the
value is undefined. Nonetheless, the integral above provides the basis for evaluating
two integrals of interest using regularization and integration with respect to a

parameter.
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Consider J':%X"X) dx . A trick using integration with respect to a parameter follows by

noting that jolcos(kx) dk = 3% and that

Jol Iy costioge ™ dx |k = [ ¢ e = ax [ .2 o
The last integral is actually rather familiar. Setting u = k/a,
o sin(kx) _ax _ 1 _ 1/a . _
IO 2L e dx —jo [Waaz]dk = J'o [ﬁ}du = tan (%)
Now, the limit a approaches zero is well-defined.
j:%XkX) dx = Limit[ tan () ] = tan”* (=) = %4

The trick is to generate the inverse power of x by integrating with respect to a

parameter. Can this method be extended?

THE INTEGRAL OF SINC-SQUARED
] [ sin(kx) 2 ) ] ) ] . .
Consider jo [T} dx. One guesses that integration twice with respect to k is in
order. To find the starting point try differentiated [sin(kx)]* twice with respect to k.
%([sin(kx)]z) = 2kssin(kx) cos(kx) = k sin(2kx)

2

d . d . 2
W([s.n(|<x)]2):&(ksm(zkx))zzk cos(2kx)

In order to reverse the process, nested parameter integrations are needed.

1k : o, ] sin(2kx) _ —cos(2kq)["_ 1-cos(2x) _ sin?(x)
J.o [.[0 cos(2kx) dk }dk _J.o [TJ dk = 42 |0 T 4x2 T 2x2

Note that this value is one-half the desired integrand, and pay attention to the nesting

and use of dummy integration variables.

Starting point:
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ZI: cos(2kx) e ® dx = I: [e‘m“’“ + e“ZkX‘aX] dx =[a_—12ik + ﬁ] =2 [ﬁ}

J': [%X"X)T e dx= 2[:“;“: cos(2k 'x) e~ dk ] dk}2 e dx= ZEUOkmdk }dk

This first integration is just another inverse tangent. Use u = 2k’/a.

Jo [ e o= [ ) e o= [ ran o Jok= (30 [t 0]

What is the integral of tan™(u)? Let’s work through this one. Clearly, one could begin
with

;—u(u tan’l(u)) =tan™"(u) +u:—u( tan’l(u)) =tan""(u) + Lo

Next, the last term must be eliminated. We get one over something when we take the
derivative of In(something).

d
E(In[uuz]):%

The path to contentment is now clear.

dd—u(utanl(u)—(%) In[L+u?]) = tan " (u)

This final integration becomes:

2/a

j:[sing(kX)T e ™ dx=(35)[ [tan(u)]du=(3)[u tan‘l(u)—(}g)|n[1+uz]]§'a
J‘:[sing(kx)T e dx=(3) [ [tan(u) Jdu = (35)[ (34 tan* (30) ~ (5 In[L+ ()]

I [0 o= g a0~ G (1] = o) =%

J; [0 ax=r

In the interest of full disclosure, the limiting form of the log term is to be
examined.
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- I+ (41
it @)= | Y o

iy (- 2)

= Limit| /22~ 27 Limit{%}o
a—0 —a a—0 2+a A

The techniques of regularization and parameter calculus have been demonstrated and
have provided the values of some useful definite integrals. The effort required was
significant, but the rewards will justify that effort. The exponential integrals are the
keys to many calculations that arise in quantum mechanics. The sinc(x) integrals are
used for representations of the Dirac delta function, and they appear in the treatment
of time dependent perturbation theory. The theory permits one to calculate transition
rates between quantum states.

Table I1: Extended Integral Table

Table of Integrals including some special cases

M(s+1)=["u*e™ du I(s+1)=sT(s) I'(n+1)=n!
G(n)=["u"e™ du= (%) T (%) I =z r@)=0'=
j() - dr—m F(n+1)=#

j:Xn o gy - G(M) _ T _ (21 (%ﬂj:

I: x2" e 2% gy = G(2n) _I'(n+y)

a2n+l T2 g2n+l

J' X2n+l —a%x? dx G(2n+1) (n+1) n!
0 T g2m2 T g2ni2 T g g2n+2

7l2 2u-1 1 . 2v-1 _M A%
J'O [coso]"" [sin 6] dg_zr(,quv) v 1y V>0
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jiﬂ]x(x—) dx=x Ii[ﬂ]x(x—)}z dx=rx

2
© 2.2 w —[ax=b 2,442 2,442
j p @ X +bx dx :J‘ e ( Za) efb /4a dx = \/ﬁé efb /4a

s y 3 k+1 1 [ k+1
J. lz[cose]k dH:I lz[sine]k dog= FEHIG) N7 ) for k >—-1
0 0 2T (5+1) kT'(%)

I'(m)'(n)

..mn>0
2 T'(m+n)

jol X" (1 x)" dx =j0”/2 [cos6]™" [cos6] " do =

e" {rsin(bt)—bcos(bt)} +b
r’ +b?

e" {rcos(bt) +bsin(bt)} -
r’ +b?

e sin(bt)dt'=

jte”' cos(bt')dt' =
0 _

Riemann Zeta Function

S “[ X —ks | y5-1 _ 1 o e s—1
£(s)= Zk @ (Ze ]x dX_F(s)IO(l—e‘XjX dx

Error Function and Complementary Error Function

X —u? _
du =1-erfc(x)

s

[ 499 7 tor(a>b=0)

a+bcosf® /a2 —_p?

jmz de .z
o a’sin“@+b’cos’@ |ab|

erf (x) =

Complete Elliptic Integral of the First Kind (small k)

l2 pd 1Y , [ 1%3 ? 4
K(k) = J. m 2{ +(§j k +(2*4J k +}

Complete Elliptic Integral of the Second Kind (small k)

E(k) = J. ?sin® @ dezg{l—%kz—ik‘#..}

64

« X dx 7

Mixing Methods: Consider the i 1 90
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Rewriting: j X dx IO Xlsf:_fxzj:x e [1-e*] dx

[ xe [1-e]" dx=[xe” (ie‘”} dx

n=0

Expanding:

00

- ij: x> e™ dx :2%]0%3 e du

n=1 n=1 N

4

Make identifications: 3" —-=¢(4) ; (4)=[/ve* du=3

n=1
The symbol (4) is the Riemann zeta of 4. Our most basic tool for evaluating sums is

to use Fourier series. Given: f(x) = x (n - x) for the interval [0, =], X (7 - X) =

2

o cs2mx) ysing the Parseval relation:
m=1
4 1 72_4
_ x*dx
Solving for the factor of interest: {(4) = Z—:— leading toj 1=90"

Quantum Integrals: Sample Calculations

Normalization Integrals for the Quantum Harmonic Oscillator: Checking the

normalization of the second excited state of a guantum harmonics oscillator.
uz(x) — al%gl/zﬂlm) (4a2 X 2) @ 24279

Normalization Condition: Show that: f u (x)u, (x)dx =1
J‘_w U, (X) U, (x) dx = Y su7) f (4a® X2 -2)%e ¥ dx
Note that x has the dimensions of length so o has the dimension of inverse-length.
Choose the dimensionless variable w = ax.

dw=adx ordx=o'dw
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%ﬁ) J—oo (4W2 _2)2 e " dw= }(/ﬁ) ,[_w (2 whe ™ —2wle ™" +1/2e‘W2)dW

Use: [~ w*™e " dw= 2.[: w2"e™" dw = 2G(2m) = ['(20)

[ u00u00dx= Y [* @uwie™ —2wee™ +35e™ )dw
= ¥ 22T (%) - 2T (3) + T (%)]
= Y o [2(A) AT () ~ 2 ()T (%) + % T (#)] = %f) —1

Used: T'(x + 1) = x ['(x) and T'(%2) = vz s0: T(3l,)=(1+%)=Yal (V2)=Ye/z

Find the expectation value of x? in the first excited state of a quantum harmonics

oscillator. u,(x) =" (2 gy ax) L.

ALY = [ ur (0 (<) uy (x)
=% ) fw(Za X)e X2 %2 (2 o x) =" ¥*12(x
This integral can be completed using the same methods that crushed the normalization
integral above. Just to add spice, it is assumed that the wavefunction has not been
properly normalized or u,(x) =Axe /2, In this case, one must divide by the

normalization integral.

o0

W) (x)u, () dx AP [T x e dx
A1) = J_wwl(*)( u (x)dx_| lj_ww -
J_ uy () u ()dx  |AF j_ X2 e @ dx

Choose the dimensionless variable w = ax to reach the form for G(n).

dw=adx ordx=o'dw

, a” j " xte e dx “wte ™ dw

AL = —=2 = ;
a” ) X2e ¥ X dx ] w?e ™ dw
_ - ZG(4) -2 1_‘(ﬂ) —2§F(§) 3 2

1X21 - 2 _ 2/ _ 2-\27_3
b= e e~ Ty~ ) 2°
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It is almost easier to compute the answer without normalizing the wavefunction than it

Is to do it using the normalized form. The constant o has dimensions of inverse-length

so the answer has the dimensions of (length)? as expected.

Appendix:
The Stirling Approximation:

Integration by parts identifies J:t“ e 'dt as nl. We will study J:tz e 'dt justto

emphasize that z is treated as a continuous variable. The plot shows that the integrand

Is very large in a small region with

[ z!:j e (2 gt = _[ e 'O dt
0 0

2.0 %1070 g [
[ [ the peak value occurring for t = z.
5410305 [ [ . . .
R [ The integral is re-written as:
ane b |I I',
Lox 107 | | |
04 ; | |

5.0%107% | |

The function f(t) has its maximum at

e e s = 7 and can be expanded ina

n =170; Plot[t" Exp[-t],{t,0,300}, PlotRange — All] Taylor’s series about that value.

f)=z—-z2In@) + 1o, (t—2)° - Voo (t=2)° + are (L= 2)" - ...
Proceeding in small steps, a new variable is defined, t = 2™ (t - 2).
ft) >g(t)=z-zIn@) + 1, t*- Y3223+, 202t - L

With this change of variable, the limits are — z to + oo, and dt — z” d.

71 J‘ @ a9 77d7 = J‘ « e—{z—zln(z)+1/zr2—...} 77dr = 77+* e—zJ‘ ® e—{+1/2f2—...} dr
A z -7

As the integrand is sharply peaked about T = 0, the lower limit can be set to -oo without

harm. A final change of variable u = 2 t is made so dt = 2” du.

v o m 3 g1 4
71~ 77" ¢ Zﬁj gV et g KT TV gy
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The large z limit is desired. In this limit the small argument expansions of the

exponential factors in braces can be used. Expanding to consistently to order z*,

21x e 2[ | e Lt p2 (V) + sz (V2u) T - Kz (V2u) T du
z\~ 77 e‘ZJ‘_w eV [V2 + 27 {4 U’} +2 27{%u’ —u*]du

We use our standard exponential integral relations:

Ms+)=["uedu T(s+1)=sI(s) T(h+1)=n! rE)=Jr

0 2 . , el
G(m = ["ue™ du= ()L [ e au :{r( 41 for neven

0 fornodd

2lx 27" e (V2T () +V22 {41 (5) -T(%) |
=77t N2 T() (L2 {55 15~ )

2\~ 77" e 27 (1+%2,)

2lx 27 e N2z (14 Y2,) (for large 2)

Problems
1.) Compute the values of I'(2.5), I'(0.5), I'(5) and I'(3.8). Use the tabulated values as
necessary.

2.) The spatial parts of the hydrogen atom wave functions have the form:
l"Infm (rl 9’ ¢) = Rn( (r) Y(m (91 ¢)

The full time-dependent eigenfunction is W(F,t)=u_, (r,0,¢)e ''. The Y, (6,9)

n‘m
are the spherical harmonics, the QM eigenfunctions of angular momentum. They
satisfy the orthogonality relation:
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7 Y ©.8)] Y(@.9)sinododg=5,, 5,

) '_f =" The Kronecker Delta Notation
0if m=n

mn

Compute the expectation value of the potential energy for the hydrogen atom 1s
ground state uo9 and for the 2p, state u,10. What to values or concepts are
represented by the symbol e in this problem? What does a, represent?

The expectation value of V: (v (r)) = j u, (F)V(ru,, (F) dVv

all space

2

—e . 1 _r/
VO =gy 0= € =

A )

a’? NIV

_ 1 r| ,-r/2a, _ 1 r-ri2a,
Upo (1,6, 9) —m(a—oJ e COSQ—W—Zag/Z(gj € Y10 (6. 9)

e2

dreya,

Note that =27.2 electron volts. Vigo =-27.2 eV and V,;0=- 6.8 eV

5) Compute: [ [ x+(34 + (] "6

4.) The lowest three states for a quantum harmonic oscillator have the spatial
wavefunctions: u,(x) =« &2 u,(x) = e ey (22 X) e *2 and
Uy (X) = @7 e iy (A0 X* —2)e "% Show that these wavefunctions are normalized.
Show that uy and u, are orthogonal.
Normalized: f;u:(x)un(x) dx =1
Orthogonal: Ij:ou:(x)um(x) dx=0 for m=n

The operator for a coordinate q is just that coordinate g. The operator for the

momentum conjugate to the coordinate is: p, =-in 9,. (S) represents the expectation
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value of S computed as (S), = [u;(x) S(x,~ih4)u,(x) dx=(n|S|n)

5.) Compute <x>, <p>, <x*>, <p®>, <Ax>, <Ap>and <(Ax)*> <(Ap)*> for each state in

problem 5. Show that; <(Ax)?> = <x*> -<x>° given AX = X -<x>.

6.) Calculate (u,|%|u,) and (u,|p|u,) using the harmonic oscillator states in problem 4.

7.) Calculate (y |%|y ) and (w|p|y) for the states v, (x,t) =L [w, (x,t) +y,(x,t)] and
e (x,1) =% [w, (X, 1) +i v, (x,1)] based on the time dependent harmonic oscillator

states yu(x,t) = u (x)e " At what frequency do these matrix elements

oscillate?

8.) Calculate (v |%|y ) and (w|p|y) for the states y (x,t) = L[y, (x.t) +w,(x1)] and
o (%) = %[y (x, 1) +i w,(x1)] based on the time dependent harmonic oscillator

states ya(x,t) = u (x)e "t At what frequency do these matrix elements

oscillate? Compare the results of this problem to those of the previous problem.

9.) The spatial parts of the hydrogen atom wave functions have the form:
Ui (1,6,0) =R, (1) Y, (6,9)
The Y, (6,¢) are the spherical harmonics, the QM eigenfunctions of angular
momentum. They satisfy the orthogonality relation:
[ 7Y @8] Yinl@.9)sinododg=5,, 5,

Compute the expectation value of r for the hydrogen atom ground state u;qo and for
the 2p, state uyyo.
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1 _r/ 2y 1 2 7/
uloo(r’0’¢):”1,2 e ray _ el = r/ay Y (g ¢)

Z & C ar A

r| - 1 r) -
Upo (1, 6,9) _()w[a—oj e"'*% cos g = W—Zm[gj e "% Y, (0,9)

10.) It happens that the functions below are a Fourier transform pair.

UL (1) = 0 fort<0 0. ()= ( 1 j_ 1 (a—ia)j
2 e fort>0 J2z\a+io) J2r\a%+a?
. 1 a+io
Show that: = . Take the inverse Fourier transform to show that:

a—iw a’+aw®’

Ua(t)=i J- a cos(a)t)OI 1 jw @ Sln(a)t)d
27 Y a’+w 27 Y= a’+?
Setting z = w/a and using symmetry to reset the limits.

1 = cos(azt) 1 @ sm(a)t)
Ua(t)_; IO 17 +2° dz+; J-O a’ + o’ do
Taking the limit that a vanishes:

dz+i J'wsm(wt)dami +i jwsm(a)t)dw
0 2 z 90 w

1
U, @t)=
r

Use U, ()== +1 [ SING) 4 1o evaluate j SING) gy
2 7 90 X X

11.) The technique used to compute G(0) can be generalized to show that:

72 2u-l . 2v-1 r I
IO [cos@]™ " [sind] d0=% e 1, v>0

Show that F(m):j:ZXZml ~“dx . Study the product: j 2 X2 g dxj 2y eV dy.

Convert the product to a double integral in polar coordinates.

12.) Use the result above to evaluate: ["[cos6]* d and ["[sin6]* d6 .
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Show that [“[cos6] do =% [1+cos26] d6 =7, . Using

J”/Z[COS e]szl [Sin G]Zn—l do = M I”/Z[COS 9]2 do = I'G)T(%) _ HIT(3)T(%) _r
0 2T (m+n) o 2T(2) 2 (1) 4°

Conclude that it just works as long as m,n > 0.

13.) Evaluate the integral j;e”' sin(bt’)dt' by expressing the sin in terms of complex

e" {rsin(bt)—bcos(bt)} +b
r’ +b?

exponentials. Answer: I;e”' sin(bt)dt' =

14.) Evaluate the integral j;e”' sin(bt’)dt' by integrating by parts twice. Set the trig

function to du each time. Solve the final relation to find L:e”' sin(bt’)dt".

15.) Show that I:ezx sin(4 x) dx :—%: ~2 ¢” sinh(z) ~-106.9.

. »  {ax-bs Y
16) Use [  e® X dx=["e (D2a] b21ast g _ g 6021357 10 solve the wave packet
problem.

a.) The wavefunction y(x) = N e ¢ Find the magnitude of the

normalization constant N by requiring that: jw w*(X) w(x)dx =1.

b.) Compute the Fourier transform: (2r) I:W(X) e dx = g(k).
Recall that different powers of 2z appear in the various forms of the Fourier transform.
c.) Use y(x) to compute <x>, <x*> and <(Ax)>>.
d.) Use (k) to compute <k>, <k*> and <(Ak)*>. Note that you may need to divide by
the normalization integral as the Fourier transform may not be designed to deliver a

unity normalized ¢(K).
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(O={[" p*(k) k pydk}* Uiczs*(k) ¢(k)olk}_1

e.) What is the uncertainty product Ak Ax for the functiony(x)?

12 PN
Answers: | N |=( IZLaZ) , ¢(k):2—(?j glk-ko)*/(4a%)] q-ilk ko)Xo’ {Xoafor}ﬁaz’%aZ}’

1
T

{ko,ko2 +a2,a2}, AK AX = /5. 11 not checked 11!

17.) Blackbody Radiation: The following integral arises in the study of blackbody
radiation.

o0 3 o0 —
0 2‘1 f?l_ :.[o q3 dqeiq [1_eiq] l -

= [ a*dge[1+e+e™ +e* +.. = [ "q’dg ie_nq
n=1

Show that this integral is equal to G!i n™*. This sum can be evaluated using Parseval’s

n=1

equality as introduced in the Fourier series handout.

18.) a.) Use Stirling’s Formula: x!~ x*e™+/2zx (1+4>5,) to increase the accuracy of the

approximation In(n!) = n In(n) — n to the order In(n!) = n In(n) — n + ¢ In(n). That is:

Determine the value of the constant c. b.) Complete the table below.

n n! In(n!) nin(n) -n nin(n) —n+ciIn(n)
6 720 6.57925

15 1.307_x 10% 27.8993

40 8.159 x 10% 107.555

100 9.33_x 10"’ 363.739

18.) Assuming the relations

r'(n+1) :J': x"e ™ dx=n! I'n+1)=nTI(n)
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G(n)=["x"e dx= (%) (24 T =+ T@Q)=1
show that:

- 2n+1 © _x2
IO x> e e dx = Jr (Zn)'(%) and IO X2 e A dx = ”7' a2n+?

n!

19.) Show that: jj (A-F)(B-F)sing do dg=4Z (A-B).

Hint: Use f =sin&cosgi +sin@sing | +cosok
20.) It has been shown that: [* e @ **Xdx= V74 e®/**_Make a similar evaluation of

© 2
J. x? e 2l gx |

Complete Elliptic Integral of the First Kind (small k)

21.) Show that Complete Elliptic Integral of the First Kind,

l2 T 1Y , [ 1%3
K(k) = f W 2{+(§jk (2*4j }forsmallk

] a2, . \/7 (k+1)
As a first step, use the result jo [sing] do= for k > -1 to compute

kT'(%)
j”’z[sine]zm de_\/;l"(m+1/2) Jr@Em-DuTE)  z@m-pN
0 ~o2mI(m)  2(mH 2  2(m) 2"

Inlz[sing]z dez\/; I(1+%) :ﬁ(l) rts) =
0 2 T'(1) 2 28 4

Iﬂlz[siner dez\/;r(2+1/z) Jr@-)uTE%) 3z

2)T(2)  2(21) 22 16
2 7|, &fm-1quY .,
Kk)=] W 2[“”12_1[ i j k ] could be OK

22.) Show that Complete Elliptic Integral of the Second Kind,
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E(K) = j 25in2 @ dH_E{l—%kz—G—ikH..} for small k.

Kk+1
You may use the resul'[j0 lz[sin 0] do :\/;k%ék;) for k> -1. See the previous
2

problem.

= ([2m—1]1)" k2"
£ = [ i-k7sin0 do-= [ z( . J (Zm_l)}
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