
Exponential Integrals for Quantum and Statistical Mechanics 

 

Symbols of primary interest: 

 (n): the Gamma Function 

 G(n): the Family of Gaussian Integrals 

 Sinc(x) = sin(x)/x and ( sin(x)/x)2 Integrals   

Definitions 
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     dx
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Tools of the Trade 

 Parameter Calculus to extend integral results 

 (x): Table and Plot for 1 < x < 2

 Regularizing Functions to promote convergence - sin(x)/x 

 Quantum Harmonic Oscillator integrals 

Appendix 

 The Stirling Approximation  1
12! 2 (1n x

nn n e n  )  

  

 

Integrals of exponentials arise in statistical physics and in quantum calculations 

involving the hydrogen atom and harmonic oscillators.  The definitions and a few 

properties of two special exponential integrals are presented next section, and then 

some results directly applicable to the hydrogen atom problem and to harmonic 

oscillators are provided.  There are more powerful methods for evaluating integrals in 

quantum mechanics that are based on the concepts of complete sets of orthogonal 

functions and recursion relations. Make the extra effort to embrace these methods 

when you encounter them. The final two integrals to be presented are of the {sink} 

function sinc(x) and its square. These integrals appear in the treatment of time-

dependent perturbation and transitions in quantum mechanics. 

Contact: tank@alumni.rice.edu 



 

 

 

A extended table of integrals can be found later in this handout just before the problems. 

Table of Integrals 

0
( 1) s us u e

     du                (s + 1) = s (s)            (n + 1) = n! 

2
1

2
0

1
2( ) ( ) ( )n u nG n u e du

              1
2( )                 (1) = 0! = 1 

Some specialized results appear in the extended integral table 
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The Gamma Function: (s + 1) is defined as: 

0
( 1) s xs x e

     dx  

and the Gaussian integral is defined as: 

2

0
( ) n xG n x e dx

    

Using integration by parts,  

1

00 0
( 1) ( ) (for 0s x s x s xs x e dx x e s x e dx s s s

              )  

It follows that (0) = 1, that (1) = 1 and that the Gamma Function obeys the 

recursive relation: 

(s + 1) = s (s)    (for s > 0) 
 

For the special case that n is a non-negative integer, and recalling that (1) = 1. 
 

(n + 1) =  n ! 
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Using the change of variable (u = x 2; du = 2 x dx), the Gaussian integrals can be 

expressed in terms of the Gamma Function. For example: 

2 1/ 2

0 0
1 1

2 2(0) ( )x uG e dx u e du
        1

2  

 2

0 0

1
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2
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2 2( ) ( )n x u
n

nG n x e dx u e du
  


      

 

The value (1/2) can be found by evaluating the square of G(0). 

  2 2 2/ 2 22

0 0 0 0
1 1

4 2(0) (1 () )x y rG e dx e dy e r dr d



               2  

In the first two integrals, x and y are dummy variables and so any label may be chosen 

for them.  The choice of x and y suggests that the product of the integrals be 

represented as the integral of e-r2 over the first quadrant of the x-y plane where r2 = x2 

+ y2.  The angular integration yields a factor of /2, and the radial integral is just G(1) 

which is /2 (1) by the rule above.  Finally, G(0) = 2
  so  (1/2) =  .   

 

Important Exercise: Consider the integral 
2n xx e dx

 

 . Sketch the integrand for n = 

0, 1, 2 and 3. Review the definition of G(n) carefully. Express I(n) = 
2n xx e dx

 

  in 

terms of  gamma functions for n odd and for n even. 
 

 

Applications of G(n) and (s):

Expectation value integrals for the hydrogen atom problem involve angular 

integrations followed by radial integrals of the form: 

0 1 1
!1 ( 1)n r r

n n
nnr e e dr 

   

  

   
      

 
 

   

The Boltzmann distribution function from statistical physics is a Gaussian leading to 

integrals of the form: 
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where the recursion relation is used repeatedly until (1) = 1 or 1
2( )    is reached. 

For odd powers,  2 22 1
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   . The harmonic oscillator 

problems involve integrals from - to  so that only the integrals with even powers of 

x survive.  

 

         

2 22

0

1 1 1 1 1
2 2 2 2

1
2

2 1

2 1 2 1

2 1
2

2

1
2 2

1 1

( )

... ...

n a x
n

n n

n
nn
a

a a
n n

G
a

x e dx



 


 



2



 




   






 

The factor    1 1
21 ...n   2 indicates that the recursion relation for the Gamma Function 

is to be used repeatedly until the factor 1/2 is reached. If n = 0 or 1, the results are: 

0

2 2 (0)

2
a x G

e dx
a a

                 
1

2 2
3 30

2 2 1(2) ( )

2 4
a x G

x e dx
a a 3a
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2

2
xe dx        ;          

0

22 31 1
2 2 2 ...n xx e dx n n     2

du

 

Recommendation: Each of the sample applications has lead to an integral specialized 

to certain application. The recommended method to attack exponential integrals is to 

use change of variable to convert the integral of interest to one of the bare forms: 

0
( 1) s us u e

                  
2

1
2

0

1
2( ) ( ) ( )n u nG n u e du

               

In the process, all the dimensioned constants will be factored out of the integral 

leaving the integral itself dimensionless. Always do follow this approach. Do not use 

pre-digested integrals like: 
0 1

!n r r
n

nr e e dr 

 

  

 
 




 .  

Gaussian integral change of variable example: 

The goal is to transform the integral into standard Gaussian G(n) forms. 

The nut to crack:  
2[ ]2 x ax e   

 dx . Clearly, u = ½ [x – a].  x = -½ u + a; dx =  -½ du
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22 [ ] 3 / 2 1/ 2 2½ 0x ax e dx a   
    


      

 

Exercise: Why does  vanish? How is the relation (n +1) = n (n) used? 
2uu e du

 


 

Gaussian Integrals and Completing the Square: 

Consider the integral:   2 2/2 2 2 42 a
b

aa xa x bx be dx e e
  

 

   dx

du

. The exponent has been 

rewritten by completing the square. Define: u = a x - b/2a. After changing variables, 

. 
2 22 2/ 1 / 1

0

2 2 2 24 42u a a ua x bx b be dx e e a du e a e
        

 

    
22 2/ 1 /

0

2 2 2 24 42 a ua x bx b b
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    a  

This technique is used for a quantum mechanics problem about the time development 

of wave packets. 

Tools of the Trade 

PARAMETER CALCULUS & REGULARIZING FUNCTIONS 

THE GAMMA FUNCTION RECURSION RELATION 

THE GAMMA FUNCTION AND FACTORIAL 

THE INTEGRAL OF THE SINC FUNCTION 

THE INTEGRAL OF SINC-SQUARED 

MIXING METHODS 
3

0 1x

x dx

e

 


   

2/16/2010 Physics Handout Series.Tank: Definite Exp Integrals DEI-5 



 

 

The integral of an even function over an even range is twice the integral over the 

positive half. The integral of an odd function over an even range is zero. 

2 20

0

n x n x n x2

x e dx x e dx x e dx
  

 
    

2

  Use u =  - x 

 2 2 20 )

0 0
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[ ( ) ( ) ( ) ( ) ] 2 [ ( )]
L L
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x

f x f x f x f x dx f x dx         

 

THE GAMMA FUNCTION RECURSION RELATION 

An alternative approach to developing the recursion relation for the Gamma function 

(n) is to insert a parameter into the defining integral and then to differentiate (and 

sometimes integrate) with respect to it. 

1 1

0 0

1 1
( , ) ( )ax us s

s s
a a

s a x e dx u e du s
           

Compute the negative of the derivative with respect to the parameter a.

   1
10 0

1
10

1

1 1

( , ) ( 1)

( ) ( )[ ]

s ax s ax

s u

s

s s

a

a a
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d d
s a x e dx x e dx s
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d d

u e du s s
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 s
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Comparing for a = 1, the recursion relation follows:  (s+1) = s (s). The evaluation 

is anchored by noting that (1) = 1. Hence (n+1) = n! for n an integer. The recursion 

relation was derived without assuming that s was an integer so it can be used to make 

unit steps between non-integer values. The process is anchored by picking values of 

(s) for 1 s 2 from a plot, from the table or by numerically evaluating the integral.  
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Plot[Gamma[s],{s,1,2}, GridLines -> 

{Table[.95+i*.05,{i,21}],Table[.88+j*.005,{j,25}]}] 

Tabulated Values for (x)

(1.0) 1.0000 

 

(1.1) .9514 

 

(1.2) .9182 

 

(1.3) .8975 

 

(1.4) .8873 

 (1.5) / 2 

 

(1.6) .8935 

 

(1.7) .9086 

 

(1.8) .9314 

 

(1.9) .9618 

  

Relation of (z) for positive and negative arguments:  ( )
( )sin( )

z
z z z





  


 

Note that (z) is undefined for non-positive integer arguments. These points are 

designated as poles of the Gamma.

 

 

THE GAMMA FUNCTION AND FACTORIAL 

If 1 1

0 0

1 1
( , ) ( )ax us s

s s
a a

s a x e dx u e du s
          then 

0

1(1, ) ax
aa e dx

     . Taking a few 

derivatives   10

1
( 1, ) (1, )axs

n n

n n

n
d d

n a x e dx a
da da a a

  !n


        
  . Note that n is now 
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restricted to integer values as it counts the times that the derivative operation has been 

applied. Setting a = 1 and with n restricted to positive integers, it follows that (n+1) 

= n!. The value is (1) =1 is used to extend the definition of factorial by setting (1) = 

0! =1.  

( 1) ( )

( 1) ! integers

s s s s

n n n

    
    

 

(Note the recursion relation was developed without restriction and that s can be non-integer.) 

 

Large Argument Limits:       Stirling’s Formula: 1
12! 2 (1x x )xx x e x   

ln(n!)  n ln(n) – n 

  6
12 1

( ) sinh
810

z

z
z

z z
z e z

  
    

 


 

REGULARIZATION AND THE INTEGRAL OF THE SINC FUNCTION 

The rather simple definite integral is undefined.  
0

cos( )kx dx




0

sin( )cos( )
x

kx
kkx dx




  

One can attempt to regulate the integral by inserting a factor that slowly decays to 

render a convergent integral. 

  2 2
0 0

1
2cos( ) ikx ax ikx axax a

k akx e dx e e dx
    


        

The result for should be the limit of the expression above as a approaches 

zero if it is to make any sense at all. The limit yields = 0. This result may 

seem reasonable, but the correct answer remains: the integral fails to converge, and the 

value is undefined. Nonetheless, the integral above provides the basis for evaluating 

two integrals of interest using regularization and integration with respect to a 

parameter.  

0
cos( )kx dx





0
cos( )kx dx
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Consider  
0

sin( )kx
x dx



 . A trick using integration with respect to a parameter follows by 

noting that 
1

0

sin( )cos( ) kx
xkx dk   and that  

2 2

1 1

0 0 0 0

sin( )cos( ) ax axkx a
x k akx e dx dk e dx dk

 


              

The last integral is actually rather familiar. Setting u = k/a,  

22 2

1 1/ 1

0 0 0
1sin( ) 1

1 tan ( )
aaxkx a

ax uk ae dx dk du
 


            

Now, the limit a approaches zero is well-defined. 

1 1

0 0

1
2

sin( ) tan ( ) tan ( )
a

kx
ax dx Limit 



  


       

The trick is to generate the inverse power of x by integrating with respect to a 

parameter. Can this method be extended? 

 

THE INTEGRAL OF SINC-SQUARED 

Consider  
0

2sin( )kx
x dx

  
  . One guesses that integration twice with respect to k is in 

order. To find the starting point try differentiated [sin(kx)]2 twice with respect to k.  

  2
sin( ) 2 sin( ) cos( ) sin(2 )

d
kx k kx kx k kx

dk
   

    
2

2
2

2
sin( ) sin(2 ) 2 cos(2 )

d d
kx k kx k kx

dk dk
   

In order to reverse the process, nested parameter integrations are needed. 
11 1

0 0 0 0

2

22 2
cos(2 ) 1 cos(2 )

4 4
sin(2 ) sin ( )

2 2
cos(2 ' ) '

k kx x
x x

kx x
x x

k x dk dk dk                 

Note that this value is one-half the desired integrand, and pay attention to the nesting 

and use of dummy integration variables. 

 

Starting point: 
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2 cos(2 ' ) ' 2 '

k kax ax axkx a
x a k

e dx k x e dk dk e dx dk dk
   


                        

This first integration is just another inverse tangent. Use u = 2k’/a. 

 
1 2 / 1 2/1 1

0 0 0 0 0

2

2 2
sin( ) 1 2

1 ( )
tan ( ) tan ( )

k a aaxkx k ax u
ae dx du dk dk u d

  


   u                  

 

What is the integral of tan-1(u)? Let’s work through this one. Clearly, one could begin 

with 

   1 1 1 1
2

tan ( ) tan ( ) tan ( ) tan ( )
1

d d
u u u u u u

du du u
      


u

 

Next, the last term must be eliminated. We get one over something when we take the 

derivative of ln(something). 

 2
2

2
1

ln 1 u
u

d
u

du 
     

The path to contentment is now clear. 

 1 21
2tan ( ) ( ) ln[1 ] tan ( )

d
u u u

du
    1 u  

 

This final integration becomes: 

   2/ 2 /1 1
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2
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sin( ) 2 2 4
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aaxkx a a a ax ae dx u du

               

1 1

0 0
2

2
2

4 2
sin( ) 4tan ( ) ( ) ln[1 ( )] tan ( )kx

x aa
aadx Limit 



  



            

0

2

2
sin( )kx

x dx   
  

  

 

In the interest of full disclosure, the limiting form of the log term is to be 

examined.  
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The techniques of regularization and parameter calculus have been demonstrated and 

have provided the values of some useful definite integrals. The effort required was 

significant, but the rewards will justify that effort. The exponential integrals are the 

keys to many calculations that arise in quantum mechanics. The sinc(x) integrals are 

used for representations of the Dirac delta function, and they appear in the treatment 

of time dependent perturbation theory. The theory permits one to calculate transition 

rates between quantum states. 

 

Table II: Extended Integral Table 

 Table of Integrals including some special cases 

0
( 1) s us u e

     du                (s + 1) = s (s)            (n + 1) = n! 

2
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2
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     … m,n > 0 
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' sin( ) cos( )
sin( ') '

t
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e bt dt

r b

 


  

 
2 20

' cos( ) sin( )
cos( ') '

t
r t

r t e r b t b bt r
e bt dt

r b

 


  

Riemann Zeta Function 

0 0
1 1

1 11 1
( )

( ) ( ) 1k k

x

x
s k s s e

s k e x dx x
s s


  

 




               

   s dx
e

  

Error Function and Complementary Error Function 
2

0

2
( ) 1 ( )

x uerf x e du erfc x


    

2 20
for ( 0)

cos

d
a b

a b a b

  

  

 
  

/ 2

2 2 2 20 sin cos | |

d

a b a



b

 
 


  

Complete Elliptic Integral of the First Kind (small k) 
2 2

/ 2 2 4

2 20

1 1 3
( ) 1 ...

2 2 2 41 sin

d
K k k k

k

  


                  
  

Complete Elliptic Integral of the Second Kind  (small k) 

/2 2 2 2 4

0

1 3
( ) 1 sin 1 ...

2 4 64
E k k d k k

             

 

Mixing Methods:  Consider the integral  
3

0 1x

x dx

e
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Rewriting:  
3 3

13

0 0 0
1

1 1

x
x x

x x

x dx x e dx
x e e

e e

    


        dx  

Expanding: 

13 3

0 0
0

3 3
40 0

1 1

1

1

x x x nx

n

nx u

n n

x e e dx x e e dx

x e dx u e d
n

    



   

 

        

 

 

   u

 

Make identifications: 3
4 0

1

1
(4) ; (4) 3!u

n

u e du
n


  



      

The symbol (4) is the Riemann zeta of 4. Our most basic tool for evaluating sums is 

to use Fourier series. Given: f(x) =  x ( - x) for the interval [0, ], x ( - x) = 

2
1

cos(2 )

6 m

m x

m

  



 . Using the Parseval relation: 

   2

40
1

1 11( ) 236 30m

x x dx
m

  


 



     

Solving for the factor of interest: (4) = 
4

1

1

90m m

 



  leading to 
3

0 1x

x dx

e

 


  
.

Quantum Integrals: Sample Calculations 

 

Normalization Integrals for the Quantum Harmonic Oscillator: Checking the 

normalization of the second excited state of a quantum harmonics oscillator. 
2 21/ 2

1/ 2 1/ 4
2 2 / 2

2 )(8( ) (4 2) xu x x e 
     

Normalization Condition: Show that:   *( ) ( ) 1n nu x u x dx



  

2 22 2 2
2 2
*

)(8( ) ( ) (4 2) xu x u x dx x e dx
 

  

 
    

 

Note that x has the dimensions of length so  has the dimension of inverse-length. 

Choose the dimensionless variable w = x.  

dw = dx    or dx = d
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2 2 2 2 22 2 4 2
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1 1(4 2) (2 2 ½ )w w ww e dw w e w e e dw
 

   

 
     w  

Use: 
2 22 2

0

2 1
22 2 (2 )m w m w mw e dw w e dw G m
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2 2 2

5 3
2 2

3
2

4 2
2 2

)

)

*
)

(

(

(

½)

1

1

2 ( ) 2 ( ) ½ (½)

2( )(½) (½) 2(½) (½) ½ (½) 1

1( ) ( ) (2 2 ½ )w w wu x u x dx w e w e e dw









    

 



     

      

   



 

Used: (x + 1) = x (x) and (½) =   so: (3/2)=(1+½)=½(½)=½  

 

Find the expectation value of x2 in the first excited state of a quantum harmonics 

oscillator. 
2 21/ 2

1/ 2 1/ 4
/ 2

1 )(2( ) (2 ) xu x x e 
    

1|x2|1 = 
2 2 2 2

2
1 1

/2 2 /2

*

(2 )

( )( ) ( )

(2 ) (2 )x x

u x x u x dx

x e x x e 
  




  





 dx

 

This integral can be completed using the same methods that crushed the normalization 

integral above. Just to add spice, it is assumed that the wavefunction has not been 

properly normalized or . In this case, one must divide by the 

normalization integral. 

2 2 / 2
1( ) xu x A xe 

1|x2|1 = 
2 4

2 2

2 2

2 2

2
1 1

1 1

*

*

( )( ) ( )

( ) ( )

x

x

A

A

u x x u x dx x e dx

u x u x dx x e dx





  
 

  
 

 
 



Choose the dimensionless variable w = x to reach the form for G(n). 

dw = dx    or dx = d

1|x2|1 = 
4 4

2 2

2 2 2

2 2 2

x w

x w dw

x e dx w e d

x e dx w e
















w
  
 
  
 

 
 

 

1|x2|1 = 
3 34 1

2 2 2
32 1

2 2

3
2

2 (4)

2 (2)

( ) ( )
( ) ( )

G

G
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It is almost easier to compute the answer without normalizing the wavefunction than it 

is to do it using the normalized form. The constant  has dimensions of inverse-length 

so the answer has the dimensions of (length)2 as expected.


Appendix: 

The Stirling Approximation: 

Integration by parts identifies  as n!. We will study  just to 

emphasize that z is treated as a continuous variable. The plot shows that the integrand 

0

n tt e dt
  0

z tt e dt
 

n =170; Plot[tn  Exp[-t],{t,0,300}, PlotRange  All] 

is very large in a small region with 

the peak value occurring for t = z. 

The integral is re-written as: 

( ln( )) ( )

0 0
! t z t f tz e dt e

      dt  

The function f(t) has its maximum at 

t = z and can be expanded in a 

Taylor’s series about that value. 

f(t) = z – z ln(z) + 1/2z (t – z)2 - 1/3z2 (t – z)3 + 1/4z3 (t – z)4 - … 

Proceeding in small steps, a new variable is defined,  = z-½ (t – z). 

f(t)  g() = z – z ln(z) + 1/2 2 - 1/3 z
-½  3 + 1/4 z

-1  4 - … 

With this change of variable, the limits are – z to + , and dt  z½ d.
2 2( ) ½ { ln( ) ½ ...} ½ ½ { ½ ...}! g z z z z z

z z z
z e z d e z d z e e  d  

          

  
       

As the integrand is sharply peaked about  = 0, the lower limit can be set to - without 

harm. A final change of variable u = 2-½  is made so d = 2½ du.
½ 3 1 42 1 1

3 4( 2 ) ( 2 )½! 2 { z u z uz z uz z e e e e d
    


  } u  
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The large z limit is desired. In this limit the small argument expansions of the 

exponential factors in braces can be used. Expanding to consistently to order z-1, 

2½ ½ 3 1 6 11 1 1
3 18 4! 2 [1 ( 2 ) ( 2 ) ][1 ( 2 ) ]z z uz z e e z u z u z u d

     


    4 u  

2½ ½ 3 14 4
3 9! [ 2 { } 2 {z z uz z e e z u z u u du

    


   6 4 ]

du

 

We use our standard exponential integral relations: 

0
( 1) s us u e

           (s + 1) = s (s)     (n + 1) = n!      1
2( )      

   
2

1
2

0

1
2( ) ( ) ( )n u nG n u e du

                   
2

1
2( ) for even

0 for odd
n u

n n
u e du

n

 







       

 

 
 

½ 1 7 54
9 2 2

½ 1 5 3 34 1 1
9 2 2 2 2 2

! 2 (½) 2 { ( ) ( )

2 (½) 1 {

z z

z z

z z e z

z e z

  

  

    

   
 

 ½ 1
12! 2 1z z

zz z e     

                                                1
12! 2 1z z

zz z e z            (for large z) 

 

Problems 

1.)  Compute the values of (2.5), (0.5), (5) and (3.8).  Use the tabulated values as 

necessary. 

2.)  The spatial parts of the hydrogen atom wave functions have the form:

  

( , , ) ( ) ( , )n m n mu r R r Y       

The full time-dependent eigenfunction is ( , ) ( , , ) ni t
n mr t u r e     


. The ( , )mY    

are the spherical harmonics, the QM eigenfunctions of angular momentum.  They 

satisfy the orthogonality relation: 
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/ / / /

2 *

0 0
( , ) ( , )sin

m mmY Y d d
 

 
m

              

1

0mn

if m n

if m n



  

   The Kronecker Delta Notation 

Compute the expectation value of the potential energy for the hydrogen atom 1s 

ground state u100 and for the 2p0 state u210. What to values or concepts are 

represented by the symbol e in this problem? What does a0 represent? 

The expectation value of V:  *( ) ( ) ( ) ( )nlm nlmnlm
all space

V r u r V r u r dV 
   

2

04
( )

e

r
V r

 
   ; 100 1/ 2 3/ 2 3/ 2 3/ 2

0 0 0

0 0 0
00

/ / /1 2 1 2

4
( , )( , , ) r a r a r a

a a a
u Yr e e e

 
         

   210 1/ 2 1/ 23/ 2 3/ 2
0 00 0

0 0
10

/2 /21 1

32 24
( , )( , , ) cosr a r ar r

a aa a
u Yr e e


       

   
   

   

Note that 
2

0 0

27.2
4

e
electron volts

a 
 .   V100 = -27.2 eV and V210 = - 6.8 eV 

 

3.) Compute:      22 42 4
81 729

x / 9x x x e
 


    dx  

 

4.) The lowest three states for a quantum harmonic oscillator have the spatial 

wavefunctions: 
2 21/ 2

1/ 4
/ 2

0 ( ) xu x e 


 ; 
2 21/ 2

1/ 2 1/ 4
/ 2

1 )(2( ) (2 ) xu x x e 
    and 

2 21/ 2

1/ 2 1/ 4
2 2 / 2

2 )(8( ) (4 2) xu x x e 
    . Show that these wavefunctions are normalized. 

Show that u0 and u2 are orthogonal. 

Normalized:               *( ) ( ) 1n nu x u x dx



  

Orthogonal: *( ) ( ) 0 forn mu x u x dx m n



   

The operator for a coordinate q is just that coordinate q. The operator for the 

momentum conjugate to the coordinate is: ˆq qp i 
   . S  represents the expectation 
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value of S computed as * ˆ( ) ( , ) ( )n nn xS u x S x i u x dx n S
    n  

5.)  Compute <x>, <p>, <x2>, <p2>, <x>, <p>and <(x)2> <(p)2> for each state in 

problem 5.    Show that: <(x)2 > = <x2> -<x>2 given x = x -<x>.

 

6.) Calculate 2 0ˆu x u  and 2 0ˆu p u  using the harmonic oscillator states in problem 4.      

 

7.) Calculate x̂   and p̂   for the states  1
0 12

( , ) ( , ) ( , )A x t x t x t     and 

 1
0 12

( , ) ( , ) ( , )B x t x t i x t     based on the time dependent harmonic oscillator 

states n(x,t)= 
1

2 0[ ]
( )n

i n t
u x e

  . At what frequency do these matrix elements 

oscillate?

 

8.) Calculate x̂   and p̂   for the states  1
1 22

( , ) ( , ) ( , )C x t x t x t     and 

 1
1 22

( , ) ( , ) ( , )D x t x t i x t     based on the time dependent harmonic oscillator 

states n(x,t)= 
1

2 0[ ]
( )n

i n t
u x e

  . At what frequency do these matrix elements 

oscillate? Compare the results of this problem to those of the previous problem.

 

9.)  The spatial parts of the hydrogen atom wave functions have the form:

  

( , , ) ( ) ( , )n m n mu r R r Y       

The ( , )mY    are the spherical harmonics, the QM eigenfunctions of angular 

momentum.  They satisfy the orthogonality relation: 

/ / / /

2 *

0 0
( , ) ( , )sin

m mmY Y d d
 

 
m

              

Compute the expectation value of r for the hydrogen atom ground state u100 and for 

the 2p0 state u210. 
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100 1/ 2 3/ 2 3/ 2 3/ 2
0 0 0

0 0 0
00

/ / /1 2 1 2

4
( , )( , , ) r a r a r a

a a a
u Yr e e e

 
         

   210 1/ 2 1/ 23/ 2 3/ 2
0 00 0

0 0
10

/2 /21 1

32 24
( , )( , , ) cosr a r ar r

a aa a
u Yr e e


       

   
   

   

 

10.) It happens that the functions below are a Fourier transform pair. 

2 2

0 0 1 1 1
( ) ( )

0 2 2
a aat

for t a i
U t U

e for t a i a


  

            
 



 

Show that: 
2

1 a i

a i a 2


 




 
. Take the inverse Fourier transform to show that: 

2 2 2 2

1 1

2 2

cos( ) sin( )
( )a

a t t
U t d d

a a 

   
 

 

 
 

    

Setting z = /a and using symmetry to reset the limits.  

2 2 2 20 0

1 1cos( ) sin( )
( )

1a

a z t t
U t dz d

z a 

  


 
 

    

Taking the limit that a vanishes: 

0 2 20 0 0

1 1 1 1

2

1 sin( ) sin(
( )

1a

t t
U t dz d d

z  

)  
 

  

    
    

Use 0 0

1 1

2

sin( )
(1)a

x
U d

x



    x  to evaluate 
0

sin( )x
dx

x



 . 

 

11.) The technique used to compute G(0) can be generalized to show that: 

   
/2 2 1 2 1

0

( ) ( )
cos sin

2 ( )
d

      
 

   


    … , > 0 

Show that . Study the product: 
22 1

0
( ) 2 m xm x e

     dx
2 22 1 2 1

0 0
2 2m x n yx e dx y e d y

      . 

Convert the product to a double integral in polar coordinates. 

 

12.) Use the result above to evaluate:  
/ 2

0
cos

k
d


   and  

/ 2

0
sin

k
d


  .  
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Show that    
/2 /22

0 0 4cos ½ 1 cos 2d d
         . Using 

   
/ 2 2 1 2 1

0

( ) ( )
cos sin

2 ( )

m n m n
d

m n


     


  ,  

3 1 1 1 1/2 2 2 2 2 2 2

0

( ) ( ) ( ) ( )
cos

2 (2) 2 (1!) 4
d

      
  

 . 

Conclude that it just works as long as m,n > 0. 

 

13.) Evaluate the integral  by expressing the sin in terms of complex 

exponentials.   Answer: 

0

' sin( ') '
t r te b t dt

 
2 20

' sin( ') '
t r te b t dt

sin( ) cos( )r te r b t b bt b

r b

 


dt

dt

  

 

14.) Evaluate the integral  by integrating by parts twice. Set the trig 

function to du each time. Solve the final relation to find . 

0

' sin( ') '
t r te b t

0

' sin( ') '
t r te b t

 

15.) Show that 2
50

22 1
5sin(4 ) sinh(x ee x dx e

        . 

16.)   Use  2 2/2 2 2 242 a
b

aa xa x bx b b
ae dx e e dx e   

 

   
2/ 4a

2

 to solve the wave packet 

problem.  

a.) The wavefunction (x) = . Find the magnitude of the 

normalization constant N by requiring that:

2
0( )o a x xik xN e e 

*( ) ) 1x x dx 



  . 

b.) Compute the Fourier transform: (2 ) )ikxx e dx k  
 


    . 

Recall that different powers of 2 appear in the various forms of the Fourier transform.

c.) Use (x) to compute <x>, <x2> and <(x)2>. 

d.) Use (k) to compute <k>, <k2> and <(k)2>. Note that you may need to divide by 

the normalization integral as the Fourier transform may not be designed to deliver a 

unity normalized (k). 
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1

*( ) ) * *( ) ){ }k k k k dk k k dk   
 

 


        

e.) What is the uncertainty product k x for the function(x)?

Answers:  2

1/ 2

2| | aN 


 , 
1/ 4

/
2

2 2[( ) (4 )] ( )1 2
)

2
o o ok k a i k k xk

a
ee


       

 
,  2

2 2
1 1
4 4, ,o o a ax x  , 

 2 2 2, ,o ok k a a ,  k x = 1/2. !!! not checked !!! 

 

17.) Blackbody Radiation: The following integral arises in the study of blackbody 

radiation. 
3

13

0 0

3 2 3 3

0 0
1

1
1

1 ...

q q
q

q q q q

n

q dq
q dq e e

e

q dq e e e e q dq e

   

     



    

       

 

  nq

 

Show that this integral is equal to 4

1

6!
n

n





 . This sum can be evaluated using Parseval’s 

equality as introduced in the Fourier series handout. 

 

18.) a.) Use  Stirling’s Formula: 1
12! 2 (1x x )xx x e x   to increase the accuracy of the 

approximation ln(n!)  n ln(n) – n to the order ln(n!)  n ln(n) – n + c ln(n). That is: 

Determine the value of the constant c.   b.) Complete the table below. 

n n! ln(n!) n ln(n) – n n ln(n) – n + c ln(n) 

6 720 6.57925   

15 1.307_ x 1012 27.8993   

40 8.159_ x 1047  107.555  

100 9.33_ x 10157   363.739 

 

 18.) Assuming the relations  

0
( 1) n xn x e dx

     !n                (n + 1) = n (n) 
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2
1

2
0

1
2( ) ( ) ( )n x nG n x e dx

            1
2( )           (1) = 1

show that: 

 
2

22

0

2 1(2 )!
! 2

x
n a

nn
n

ax e dx 
  

       and     
2

22 1

0

2 2!
2

x
n a nnx e dx a

    

 

19.) Show that: 
2

0 0

4
3ˆ ˆ( )( )sin ( )A r B r d d A B

        
  

.  

ˆˆ ˆˆ sin cos sin sin cosr i j k                Hint: Use  

20.) It has been shown that:
2/2 2 2 4aa x bx b

ae dx e 



   . Make a similar evaluation of  

22 [ ]x ax e d  

 x . 

 
Complete Elliptic Integral of the First Kind (small k) 

21.) Show that Complete Elliptic Integral of the First Kind, 

 
2 2

/ 2 2 4

2 20

1 1 3
( ) 1 ...

2 2 2 41 sin

d
K k k k

k

  


                 
   for small k. 

As a first step, use the result  
1/2

2

0
2

( )
sin 1

( )

k
k

k
d for

k

 
 


k  

  to compute  

 
/2 2

0

( ½) (2 1)!! (½) (2 1)!!
sin

2 ( ) 2 ( !) 2 2 ( !) 2

m

m m

m m m
d

m m m m

    
    

  
  

 
/2 2

10

(1 ½) (1) (½)
sin

2 (1) 2(1!) 2 4
d

    
  

  
  

 
/2 4

20

(2 ½) (4 1)!! (½) 3
sin

2(2) (2) 2 ( 2!) 2 16
d

    
   

 
   

2
/2 2

2 20
1

[2 1]!!
( ) 1

2 [2 ]!!1 sin

m

m

d m
K k k

mk

  






  
    

    
   could be OK  

 

22.) Show that Complete Elliptic Integral of the Second Kind, 
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/2 2 2 2 4

0

1 3
( ) 1 sin 1 ...

2 4 64
E k k d k k

             for small k. 

You may use the result  
1/2

2

0
2

( )
sin 1

( )

k
k

k
d for

k

 
 


k  

 . See the previous 

problem. 

2
/2 2 2

0
1

2[2 1]!!
( ) 1 sin 1

2 [2 ]!! (2m

mm k
E k k d

m m

  


 1)
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