
Introduction to Linear Transformations 

    Add problems that rotate line to a direction, use z and then rotate back. Work on 

the x=y=z line. Show similarity works for rotations. 

Recommended as prerequisites 

 Vector Space handout    

 V represents a general vector 

 Eigenvalue handout 

Concepts of primary interest: 

 Passive transformations vs. active operations 

 Rotations 

 Orthogonal transformations and real spaces 

 Unitary transformations and complex spaces 

 Similarity transformations - special case of congruent 

 Diagonalizing symmetric and Hermitian matrices 

 Transformation of scalars, vectors and matrices 

 Scalars: Magnitudes of vectors, determinants,…  

Sample calculations:  

 Sequences of rotations 

 Computing the form of  that diagonalizes a matrix  

Function of a matrix – substitute matrix into 

            power series expansion for the function 

Tools of the trade: 

 Cyclic relations:   z()  x()    y()  z() … 

**ADD  terms for maps injective surjective bijective 

BEWARE: This handout treats the restricted case of 

Cartesian tensors. See references 8 and 9 for a more 

general treatment. It also concentrates on rotations at the 

expense of general transformations. 

Contact: tank@alumni.rice.edu 



 

   Physical phenomena can involve relations between vector quantities that are not 

parallel.  One such case is the relation between the electric field E


 applied to a 

molecule and the electric (dipole) polarization p


 of that molecule. This relation 

requires a matrix representation: 

11 12 13

21 22 23

31 32 33

x x

y

z z

E p

E p

E p

  
  
  

   
       
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
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

          [LT.1]

The symbol  represents the polarizability of the molecule.  The matrix character of  

arises because, for some shapes, the molecules do not polarize with equal ease in all 

directions.  For example, if a molecule is cigar shaped, charge can move along the 

cigar more freely than across it.  Hence if the field is applied at  relative to the long 

axis, the average direction for the polarization might be expected to lie between the 

direction of the field and that of the long axis of the cigar, a relation more complex 

than simple proportionality.   

045

p


E


 

Prolate ellipsoidal molecules in an applied uniform electric field 

This relationship is a linear mapping from the space of the E


’s into the space of 

the p


’s; both are three dimensional vector spaces.  In the language of functions, the 

relation above is a function with domain, the space of E


’s, and range, the space of 

p


’s.  This function could be more general involving second as well as first powers of 

4/7/2010 Physics Handout Series.Tank:  Linear Transformations 2 



the E’s, a case of interest for strong applied fields such as those associated with a 

tightly focused laser beam.  For now, developments are to be restricted to the simpler 

cases of linear mappings from one vector space to another for this introduction. 

 The domain for the mapping is the space , and its target is another space  or 

perhaps a subspace of .  That is: the function maps the space  into the space .  A 

mapping associates every single element in the domain with a single element in the 

target.  More than one element in the domain can be associated with (mapped into) a 

particular element in the target, but a single element in the domain may not be mapped 

into multiple elements in the target.  The actual set of elements in the target that are 

linked to elements in the domain is the range of the mapping.  For a linear mapping, 

the elements in  are mapped into a subspace of .  (Recall that the full space  is 

itself a subset of  in this context. A subspace is a vector space, and every element in 

the subspace is also an element of the original space.) 

 For the space of three dimensional displacements, a rotation of 300 about the z axis 

maps each vector into exactly one vector. Projection into the x-y plane maps ‘several’ 

vectors into each vector in the target. The range of the x-y plane projection is itself a 

vector space – in this case, a space of lower dimension.  

 

 For a linear process L ,  L [ 1a v b v 2 ] = a L [ 1v ] + b L [ 2v ] for a,b   , the 

field for the vector spaces.  That is: a linear transformation preserves addition and 

scalar multiplication.  The sum of two vectors is mapped into the sum of the mappings 

of the two vectors.  A multiple of a vector is mapped into that same multiple of the 

mapping of the vector.  It appears that  might be an equivalent copy of .   Clearly, 

the 0  element of  must map to the zero element of  as it is the 0 multiple of any 

vector.  One might consider the mapping of a three dimensional space into a two 

dimensional space.  Projecting three-dimensional positions onto the x-y plane is one 

example. (x,y,z) (x,y,0).  The   0  element of  maps to the  0  element of , but so 
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do many others. Every vector in the entire one-dimensional subspace (0, 0, z) of .  

The set of elements mapped to the zero-vector in the target space is the kernel of the 

mapping.  The dimension of  is equal to the dimension of its image in  under the 

mapping plus the dimension of the kernel of the transformation. 

 Other complications arise if the dimension of  is less than the dimension of .  

In this case,  is mapped into a proper subspace of .  A basis set for  is mapped 

into a spanning set for the image of  in   under the mapping indicating that the 

image of  can have at most the dimension of the original space . (The projection 

example shows that it can have a smaller dimension.) 

In any case, the image of  in  under a linear mapping is a subspace of . 

 

Exercise: Consider the mapping of  (x,y)  (x,y,z) defined by (x,y)  (x,y,x-y).  Show  

that the target (x,y,x-y) is a two dimension subspace of (x,y,z) where x,y,z are any real 

numbers.  Choose any basis set for (x,y).  Show that its image under the linear 

transformation is a basis set for the image of the full space (x,y) under the 

transformation. 

A space can never be mapped to a range of higher dimension than that of the domain 

by a linear mapping. 

 

 Further limiting the scope, only mappings for which the kernel contains only the 

zero element are to be considered.  In this case each element of the initial space is 

mapped into a distinct element of the target space.  The mapping defines a one-to-one 

relation between elements in the domain and range spaces and therefore has an inverse 

mapping matching the same element pairs in the reverse sense.. 

 Rotations are a great example.  One could grab a physical problem and rotate is by 

 about the z-axis.  Each vector in the space would be mapped into another vector by 

the rotation, and only the zero (null) vector would be mapped into the zero vector.  
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This radical an intrusion into a physical problem is not always advisable.  The 

problem is to be studied, not disturbed.  A mapping corresponding to changing the 

physical situation is an active mapping whereas one in which the observer changes the 

reference coordinate system without altering the physical situation is a passive 

transformation.1 In an active mapping, one might rotate a wheel and its surroundings 

by + 15 degrees about the z-axis. The corresponding passive transformation leaves the 

physical objects untouched and rotates the coordinate axes by - 15 degrees about the z-

axis. Adopting a new reference system with rotated axes, making a coordinate 

transformation, is equivalent to changing the set of basis vectors used to represent the 

space.  

 Physics, as nature presents it, comes without coordinate systems; they are added 

by the observer, and the particular choice is somewhat arbitrary.  Coordinate 

transformations provide translations from the description of one observer using one 

coordinate system choice into the terms of another observer who chooses to use a 

different coordinate system. Rotations and vector behavior are particularly rich 

examples to illustrate transformation properties and to motivate further studies. 
 

The nature of physical vectors:  (The discussion that follows is not complete.  It 

only introduces some concepts for initial consideration.)  For the applications in 

physics, one crucial addition, a special transformation property is required to 

supplement the requirements of an abstract mathematical vector space.   A collection 

of entities can be a physical vector only if its representation transforms under a 

rotation of coordinates (observer) in the same manner as does the representation of a 

                                           
1 The terms active transformation and passive transformation are more standard than the active operation or mapping and 

the passive transformation that are used in this handout in which a transformation is assumed to be passive. A mapping 

of a space into the same space is an operation (performed by an operator). The operator acts on a vector returns another 

vector in the same space. A transformation translates between the representations of a vector as computed using distinct 

basis sets for the same space. A transformation, in our terminology, does not change the vector. 
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spatial displacement, the prototype for a physical vector. Observer is to be 

synonymous with the reference frame or coordinate system used by that observer.  

The postulate is that the laws of physics are to be invariant under rotations of axes 

about the origin.  Physical laws are to be expressed in terms of scalars, vectors and 

other things (tensors of rank 2, … [scalars are tensors of rank zero and vectors are tensors of rank one, a 

tensors of rank two is like a matrix]) to which undergraduates need not be seriously exposed.  

Scalars have the simplest transformation rule; they stay the same.  All observers report 

the same value for a scalar entity such as mass or temperature.  Next consider a vector 

relation, Newton’s second law, netF m a
 

.  The mass is a scalar and so is identical 

according to all observers and is said to be an invariant.  Each vector has a 

representation, its three components as determined by an observer. Clearly 

transformations such as rotations scramble the components of the vectors as reported 

by the different observers. Newton’s law remains valid component by component only 

if, as the data is transformed from one observer’s view to another, all the vectors have 

their components scrambled according to the same set of rules so that equalities are 

preserved.  All the vectors transform together. They change in unison.  Hence:  A 

collection of entities is a physical vector only if its collection of components 

transforms under a rotation (of the coordinates axes) according to the same rules as do 

the components of a displacement, our reference model for a physical vector. 

Rotations of coordinate axes with a fixed common origin plus inversions are the 

classes of coordinate transformation relevant to this discussion.1  

A collection of quantities is a physical vector only if they obey the transformation rule 

[LT.8].  

                                           
1 If you wish to know more, read the first chapter of Classical Dynamics of Particles and Systems by J. B. Marion and 

S. T. Thornton. A shorter discussion can be found in the mechanics text by Taylor. It includes the generalization to 

space-time vectors. 
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Not all physical vectors are in the same space. Forces do not have the same dimension 

as accelerations. Adding a force to an acceleration makes no sense. There could be a 

space of accelerations and a space of forces. 

 

A problem might involve two interacting particles with the goal being to express the force exerted on 

particle two by particle one.  Limiting the problem to some simple classical models (one might consider 

the case of two particles coupled together by an ideal spring), the result could be expressed as  21 1 2,F r r
  

.  

In the trivial case in which both particles are at rest, both 1r


 and 2r


 change if the observer changes 

position. Clearly nothing should have changed with regard to the interaction between the particles, and it 

becomes clear the force should not be a function of their individual positions, 1r


 and , but rather one of 2r


2r


- , the displacement from particle one to particle two, a quantity that  is independent of the position of 1r


the observer. Considerations along this line lead to the selection of displacements as the prototype for 

vector behavior. 

 

Rotations about the origin are a particularly fruitful example. As a first look, the 

transformation from an initial reference system to a primed system with axes rotated 

by  about the z-axis relative to the unprimed system is studied. The unprimed 

observer reports: ˆˆ ˆ
x y zA a i a j a k  



ˆ ˆ
x y

. The task is to find the representation according 

to the primed observer: ˆ
zA a i a   



ˆ ˆ

j a k  

ˆ

.  Note: the vector  is a physical entity; 

it does not change as the result of a passive transformation, only its representation 

changes. In the relation: 

A


x y zA a i a 


j a k , the equal sign means that the right-hand 

side is a representation for the physical vector A


.
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 sin

cos sin

sin

cos sin

x

y

x

x x y

y

y y x

a OA RB

a OR AB AD DB

a OC CD DE

OC AD DB

a a a

a OP OQ QP

OQ RB

a a a


 


 

 
   

   

  

  

   

 
  

 

 

With some effort, one finds that  cos sin , sin cos ,x x y y x y za a a a a a a a     z      .  

The trivial transformation for the z-component results because primed observer frame 

was rotated by  about the z-axis of the original unprimed observer. The two z axes 

coincide. 

1 1

2 2

3 3

cos sin 0

sin cos 0

0 0 1

a a
a a
a a

 

 

    
    
    
        





        [LT.2] 

A more automated procedure to develop these rotation matrices is needed.  Projection, 

one of our standard procedures, is the tool of choice for this task.  To simplify the 

notation the subscripts 1, 2, 3 are to be substituted for x, y, z.  Consider a vector v


 

represented in an original ‘fixed’ system and in a primed system rotated about the 

origin relative to the first. It is the representation of the vector v


, its components and 

the coordinate directions that change, not the physical vector v


.  The physical vector 

has a distinct representation in each distinct frame. 

ˆ ˆˆ ˆ ˆ ˆ
x y z x y zv v i v j v k v i v j v k          


and 1 2 3 1 2 3

ˆ ˆˆ ˆ ˆ ˆv v i v j v k v i v j v k          


The x or 1 component in the primed frame is projected out of the sum using the inner 

product and the mutual orthogonality of each set of coordinate directions. 
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   1 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y zi v i v i v j v k i v i v j v k                

           1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi v v i i v i j v i k v i i v i j v i k                        

     1 1 2 3
ˆˆ ˆ ˆ ˆ ˆi v v v i i v i j v i k           

 ˆ




 


1

2

3


 ˆ ˆ jie e

These relations can be collected into a compact matrix form: 

1 1

2 2

3 3

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )

i i i j i k

j i j j j k

k i k j k k

v v
v v
v v

       
         
           





                   [LT.3] 

The transformation can be represented as matrix multiplication: 

1 11 12 13

2 21 22 23

3 31 32 33

v v
v v
v v

  
  
  

    
       
        





  where ij =  

The element mn is  = ˆ ˆnme e  ˆ ˆcos( , )nme e , the cosine of the angle between the m axis in 

the rotated (primed) system and the n axis in the original system. The mth row is the 

direction cosines of the mth primed axis relative to the unprimed axes, and the nth 

column is the direction cosines of the nth unprimed axis relative to the primed system 

axes.  The mechanics text by J. B. Marion and S. T. Thornton is recommended for 

further reading on this point. 

 Consider the transformation of . î

11 11 12 13

21 21 22 23

31 31 32 33

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )ˆ ˆ( ) 1
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ; 0

ˆ ˆ ˆ ˆ ˆ 0ˆ ˆ ˆ( ) ( ) ( ) ( )

1
0
0

i i i j i ki i

j i j i j j j k

k i k i k j k k

   
   
   

                                                              

 



 

The entries in a column are just the components of one of the coordinate directions 

(unit vectors) as measured by the primed observer. Hence, the sum 
1 3i to

imi 

   
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represents the inner product of the  and m unprimed coordinate directions. Therefore 

1 3i to
imi m  



    as those coordinate directions are mutually orthogonal and normalized. 

  
1 3 1 3i to i to

t
im imi m i    

 

        
t 

The inverse transformation -1 is found by interchanging the primed and unprimed 

coordinate directions. 

1 1

2 2

3 3

( ( (

( ( (

( ( (

ˆˆ ˆ ˆ ˆ ˆ) ) )

ˆˆ ˆ ˆ ˆ ˆ) ) )

ˆ ˆ ˆ ˆˆ ˆ) ) )

i i i j i k

j i j j j k

k i k j k k

v v
v v
v v

                                  


 


[LT.4]

It is therefore trivially obvious to the casual observer upon cursory examination that 

the inverse transformation matrix is the transpose of the original transformation 

matrix. Consider the role of each element in the matrix.  Note that the inverse just 

transposes the roles of the coordinate directions in the primed and unprimed systems.  

11 12 13

21 22 23

31 32 33

  
  
  

 
 
  




t = -1  

                      and as  
1,,,3 1,,,3i i

t
mi imi i    m

 

     
t= .            [LT.5] 

Any matrix that has the property  t=  -1 is an orthogonal matrix.  The property of 

determinants that |  t| = | | ensures that | | = 1  for an orthogonal matrix.  The 

matrices that represent rotations are real, orthogonal and have determinant 1. The 

matrices that represent inversions are real orthogonal and have determinant -1.  For 

now, only rotations in real vector spaces are considered.  The transformation matrices 

considered are real and orthogonal.  

 

The term orthogonal matrix is appropriate because the rows of an orthogonal matrix 

are the components of a set of mutually orthogonal vectors. The same can be said 
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about the columns of an orthogonal matrix. 

 

Exercise:  Use the identification ij = ˆ ˆcos( , )i je e  to develop the matrix equation 

appropriate for a rotation of the observer frame by  about the z-axis.      

1 2 3
ˆˆ ˆ ˆ ˆ ˆ{ , , } { , , }i j k e e e  

Compare with: Compare with:     cos sin , sin cos ,x x y y x y za a a a a a a a     z      . 

Repeat to find x() for a rotation of the observer frame by  about the x-axis. 

 

Exercise:  Given the matrix z() that represents a rotation of the observer frame by  

about the z-axis, the inverse should be of the same form but with  replaced by -.  

Show explicitly that the matrix obtained by this replacement is the transpose of the 

original and also is its inverse.

 

Exercise:  The transformation character of a displacement is the prototype for the 

transformation properties of all vectors.    Consider a displacement from the origin 

which is common to the original coordinate system and to the rotated system.  

1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆr x i x j x k x i x j x k           

 

As displacements are vectors, 
j

i j jix x  .  The inverse transformation is: 

1 t
j j

j j j
i i j i j j i jx x x   x       . 

Evaluate m
n

x
x



 
 
 


which has two primes. Use the result compute i

j

x
x

 



 


  with xi = k

k
k i x   .  

The relation between the 's and i

j

x
x

 



 


  is important.  Study it; save it!

 

Note that the transformation rule is based on the rule for the transformation of the components of 

displacements.   All physical vectors must use this same coordinate based rule.   A simple consequence is that 
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a vector must have as many components as the coordinate space has dimensions.   Some of those components 

may be zero in a particular representation (coordinate system), but there are always three components for a 

physical vector in a three dimensional universe.   This statement is not intended to conflict with the practice of 

restricting problems to two (or even one) dimensions with a corresponding reduction in the number of 

components for vectors such as force and velocity. Further, in special relativity, physicists work in a four-

dimensional space-time vector space.   Physical vectors are 4D when considered in (special) relativity and 

must transform according to the same Lorentz transformations that apply to displacements between events  

(space-time intervals). 

 

The problem that brought us here is: 

11 12 13

21 22 23

31 32 33

x x

y

z z

E p

E p

E p

  
  
  

   
       
      

y

 
 
 
  

         or     E


p
 

It is a mapping of one vector space into another.  The vectors are physical vectors 

however so we should examine the changes in representation under a coordinate 

transformation.  Above,  represented a rotation applied to the reference frame.  Here 

 is to represent a rotation or perhaps a more general coordinate transformation.  Each 

vector must transform according to the rule so 

11 12 13

21 22 23

31 32 33

x x

y y

z z

E S S S E

E S S S E

E S S S E

    
       
       

 
 
 






jE                 
j

i i jE S     

Notation Review: the symbols with twiddles above column matrices represent the 

array of values that would be reported by a particular observer. The unprimed 

observer represents the actual physical vector E


as the array of values = E
x

y

z

E

E

E

 
 
 
  





 while 

the primed observer reports =/E
x

y

z

E

E

E

 
  
  





.  
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In the polarization problem,  and E


p


 represent physical vectors which exist 

independent of observers.  has the component representation  according to the 

unprimed observer and  according to the primed observer.  The same relation holds 

for the components of 

E


E

/E

p


 as recorded by the two observers. 

11 12 13

21 22 23

31 32 33

x x

y y

z z

p S S S p

p S S S p

p S S S p

     
           
          

 
 
 

                 1

j
ji ijp S p           p  =  p  

1 1 1
11 12 13

1 1 1
21 22 23

1 1 1
31 32 33

x x

y y

z z

p S S S p

p S S S p

p S S S p

  

  

  

    
        
 


       

 
 
 

                 j
j

i i jp S p           p  = -1 p  

11 12 13

21 22 23

31 32 33

x x

y

z z

E p

E p

E p

  
  
  

   
       
      

y

 
 
 
  

         or     E


p
 

The components of all physical vectors must follow the same transformation rule for a 

change of observer.  What rule do the elements in the  and  , representations of  , 

follow? 

 

Notation Preview: the symbols with twiddles above represent row, column or square 

matrices of the components of a vector or elements of a matrix represent the array of 

values that would be reported by a particular observer. The unprimed observer 

represents the actual physical property  as the array of values  = 
11 12 13

21 22 23

31 32 33

  
  
  

 
 
 
  

 

while the primed observer reports / = 

/ / /
11 12 13
/ / /
21 22 23
/ / /
31 32 33

  
  
  

 
 
 
  

. 
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** The tildas (~) may appear either above or below the symbol. Conclude that this 

notation has not been implemented consistently. The management is working on the 

issue.       x x


, … 

 

We want to find / such that:  

/ / / / /
11 12 13
/ / / / /
21 22 23
/ / / / /
31 32 33

x x

y

z z

E p

E p

E p

  
  
  

 

y

  
 


   


  

 


      

 
 
  

 First, pre-multiply by :    


11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

x x

y y

z z

S S S E S S S p

S S S E S S S p

S S S E S S S p

  
  
  

       
              
              

 
 
 
  

 

 

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

1 0 0

0 1 0

0 0 1

x x

y y

z z

S S S E S S S p

S S S E S S S p

S S S E S S S p

  
  
  

         
                  
                  

 
 
 
  

 

1 1 1
11 12 13 11 12 13 11 12 13 11 12 13 11 12 13

1 1 1
21 22 23 21 22 23 21 22 23 21 22 23 21 22 2

1 1 1
31 32 33 31 32 33 31 32 33 31 32 33

x

y

z

S S S S S S S S S E S S S

S S S S S S S S S E S S S

S S S S S S S S S E

  
  
  

  

  

  

        
                 
                

3

31 32 33

x

y

z

p

p

S S S p

 
 
 
  

 
 
 
  

 

Using:                 

/
11 12 13

/
21 22 23

/
31 32 33

x x

y y

z z

E S S S E

E S S S E

E S S S E

    
        
        

 
 
 

  and  

/
11 12 13

/
21 22 23

/
31 32 33

x x

y y

z z

p S S S p

p S S S p

p S S S p

     
          
         

 
 
 

 

1 1 1 / /
11 12 13 11 12 13 11 12 13

1 1 1 / /
21 22 23 21 22 23 21 22 23

1 1 1 / /
31 32 33 31 32 33 31 32 33

x x

y y

z z

S S S S S S E p

S S S S S S E p

S S S S S S E p

  
  
  

  

  

  

      
 


       


     

 


            

 
 
  

 

So we find: 

/ / /
11 12 13
/ / /
21 22 23
/ / /
31 32 33

  
  
  

 
 
 
  

 = 

1 1 1
11 12 13 11 12 13 11 12 13

1 1 1
21 22 23 21 22 23 21 22 23

1 1 1
31 32 33 31 32 33 31 32 33

S S S S S S

S S S S S S

S S S S S S

  
  
  

  

  

  

    
    
    
         

 

                                                    =      -1.                                  [LT.6] 
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Notation Review: the symbols with twiddles above represent row, column or square 

matrices of the components of a vector or elements of a matrix represent the array of 

values that would be reported by a particular observer. The symbol  is the collection F

of components as measured by an observer for the vector F


 using his (unprimed) set 

of axes while another (primed) observer records the components of the same vector as 

F   relative to his different (primed) set of axes.  

ˆ ˆˆ ˆ ˆ ˆ
x y z x y zF i F j F k F F i F j F k          


 

When to polarizabilty is considered, the unprimed observer represents the actual 

physical property  as the array of values  = 
11 12 13

21 22 23

31 32 33

  
  
  

 
 
 
  

 while the primed 

observer reports  = . 
11 12 13

21 22 23

31 32 33

  
  
  

   
    
    

 

 

The components of all physical vectors must follow the same transformation rule for a 

change of observer.  A more compact derivation of the rules for  follows? 

The relation in the original coordinate system is p E   . The same rule in the new 

system has the form:  / / /p E   . Under our transformation rule for all vectors,  /p  =  

p  and  = /E  .  Combining, E /p  =  E  .  To relate  /p  to , we recall that = /E /E  

.  Inserting E  =  -1 , the equation becomes p =      -1  E .     Comparing with 

p E     =>  =      -1.  The components of the polarizabilty tensor transform by 

pre-multiplication by  and post-multiplication by  -1.  This bizarre process is called a 

similarity transformation.  Remember that term!   
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A general treatment of all possible transformations would be confusing; let’s drop 

back to just rotations for which  = t and review the rules.  The transformation  is 

now restricted to be an orthogonal transformation  leading to the component form of 

the rule: 

/ =      -1 or /

, , ,

t
i j i m m j i m m j i m j m

m m m

                  
  

      

Important Observation #1: Considering  as a matrix, what is the relation between 

the determinants | | and | |?  The determinant of a matrix is a scalar as is the 

magnitude of a vector.  How do we expect scalars to transform? 

 

Important Observation #2:  In classical physics, matrices representing the properties 

of physical entities are expected to be real symmetric matrices (for most cases of 

interest). It is important to note that the real symmetric property of a matrix is 

preserved under a similarity transformation using a real orthogonal matrix (See 

problem 2). =     -1,  is real symmetric if  is real symmetric and  is a 

transformation matrix with real elements. =     -1,  is real symmetric if  is 

real symmetric and  is a transformation matrix with real elements.   

 

Important Observation #3:  Quantum Mechanics requires a vector space with 

complex scalars.  Matrices representing physical entities are expected to be Hermitian 

matrices (aij = aji
*  ). It is important to note that the Hermitian property of a matrix is 

preserved by a similarity transformation using unitary matrices.  One problem for this 

section is to prove that the Hermitian property is preserved by similarity 

transformations using unitary matrices. =     -1 
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Important Observation #4:  The trace of a matrix is defined to be the sum of its 

diagonal elements. Tr[  ]   The trace of a matrix is invariant under i j i j
i j

m

similarity transformation. One problem for this section is to prove this property. The 

trace of a square matrix is a scalar invariant. 

 

Terminology: A matrix transformation of the form 

=     -1 is called a similarity transformation. 

 

Scalars:   Physical entities or fields that can be expressed by a single numerical value 

(with appropriate dimensions) at each point in space  and which have the same value 

according to all observers.  Examples are temperature and mass. 

        T( x, y, z) = T(x, y, z)                             [LT.7] 

The transformation rule for scalars is ‘they are invariant’.  As scalars transform using 

zero powers  of they are designated tensors of rank zero.  

 

Vectors are entities or fields that have as many components as the dimension of the 

universe with these components transforming according to the same rule that is 

followed by displacements are vectors. 

F   =             F F
j

i j jiF                              [LT.8] 

All physical vectors transform using the identical rule. As vectors transform using one 

power of  they are designated tensors of rank one.  

 

Tensors (of rank 2):  Physical entities or fields that have as many components as the 

dimension of the universe raised to the second power with these components 

following the transformation rule are tensors.  
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 =      -1 =      t ;  
, , ,

t
i m m j i m m j i m j m

m m m
ij                   

  

       

As these tensors transform using two factors of  they are designated tensors of rank 

two. (The calculus of tensors includes generalizations of the gradient, curl, divergence 

and so forth; they are not to be mentioned again after the next paragraph.) 

 

Tensors of rank r:  Physical entities or fields that have as many components as the 

dimension of the universe to the r power and that have components which obey the 

transformation rule:  

1 2 1 1 1 2 1 2

1 2

... ....
....

...
r r

r

i i i i j i j i j j j j
j j j

      


r r

                                            [LT.9] 

Scalars are tensors of rank zero.  Vectors are tensors of rank one. 'Tensors' are tensors 

of rank two.  Tensors of all ranks transform using factors of the same 

transformation .  Hence tensors can be multiplied to yield tensors of higher rank 

or contracted (inner product taken) to form tensors of lower rank.  Consider two 

vectors  and ˆˆ ˆ
x y zA A i A j A k  


ˆˆ ˆ

x y zB B i B j B k  


.  The inner product of the two rank 

one tensors is a scalar (rank zero). x x yA B A B A   y zB A B z

 
. The direct product of two 

vectors yields a tensor of rank two. The matrix representations of these operations are:  

  
CONTRACTION

INNER PRODUCT

x y z x

y x x y y

z

A A A B

z zB A B A B A B A B

B

    
       
  

 
 

This (contraction) inner product forms a lower rank tensor. In this case it is a scalar.   

DIRECT PRODUCT     
x y zx x x x y x z

y y x y

z z x z

A A A

y y z

y z z

B B A B A B A

B B A B A B A

B B A B A B A

      
      
     

 

This direct product yields a higher rank tensor called a dyadic. 
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Using the displacement from a common origin as our vector  

1 2 3
ˆ ˆˆ ˆ ˆ ˆr x i y j z k x i x j x k     

  

The inner product contraction is the scalar 

 
1 1 2 2 3 3

x y z x

y r r xx yy xx x x x x x x

z

 
          
  

   

and the direct product is the dyadic. 

   
 1 1 2 3 1 1 1 2 1 3

2 2 1 2

3 3 1 3

2 2 3

2 33

x x x x x x x x x x

x x x x x x x

x x x x x x x

   
      
      

 =  which has elements [ ]ij = xixj. d d

j

It is easy to show that the contraction of two vectors transforms as a scalar.  That is: it 

is an invariant.  

 

Exercise: Using 
3

1
i ij

j

x x


  ,  show that 
3 3

1 1
j j k

j k

r r x x x x
 

k     
. Assume that the ij 

are the elements of the matrix representing an real orthogonal transformation.
 

The direct product  transforms as a rank two tensor.  Or more precisely, the 

representation of the dyadic transforms in accord with the rule for rank two tensors. 

 = d 


d


 -1.   Recall /

j
i j jix x  so:  

/ / /

, ,

1 1

, , ,

j j
m m

t

m m m

im m im m

im m im m im j

ij i j

mj j

d x x x x x x

x x x x d

   

      

  

  

 

  

   
 

 
  

  

 

How does one prove that a quantity transforms properly? The quantity must be 
defined by some prescription. The coordinate dyadic above is the direct product of the 
position vector with itself. That is the unprimed observer assigns the array of values 

ijd


 = xi xj as his representation of . Using the same prescription, but in his terms, the 
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primed observer assigns  = xi xj  as his representation of ijd 


. The quantity is a proper 

tensor if the representations transform canonically d 


 = d


 -1. 

 

It is crucial that physical tensors transform using the same basic transformation  as 

do vectors; they just use more copies of it.  This commonality means it is possible to 

combine vectors to form tensors and to take the inner product of a rank two tensor 

with a vector to yield a vector (contract a vector and a rank two tensor).   

11 12 13 x xE p   

21 22 23

31 32 33

y y

z z

E p

E p

  
  

          
          

         or    
   

E p
 

    i i j j
j

p E   

Summing over the common index between the polarizability tensor and the electric 

field executes a contract or a rank 2 tension or with a rank 1 tensor to yield a rank 1 

tensor.

 

Exercise: One tensor quantity is the quadrupole mom nt of a charge distribution. It e

has elements  

 2

1

3
N

i j ijq x x r   





     

The charges q
 are scalar values. The first term is therefore a scalar times the 

coordinate dyadic xixj which has been shown to transf  properly as a rank two orm

tensor. Show that ij s transform  as a tensor of rank under rotations so that overall  is 

a properly transforming rank two tensor. 

 

 When the term tensor appears without a rank specified, rank two is usually assumed. 

Avoid using the terms tensor of rank zero for scalars and tensor of rank one

 

 for 

ectors as the practice c s tremors, sweats and nightmares.  Substitute the kinder, v ause

gentler term ‘physical matrix’ for a tensor of rank two whenever possible. 
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The gradient of a scalar appears to be a scalar. Does it transform properly?  

x  = [  x  =   x .It follows that Recall that jx
j ji i ij i ij

ix



 .

 

Proof: The gradient of a scalar function transforms as a vector. 

          3 /

1 1 1 1
/ / / ij iji j

j j j j
j j ji i i

f
x x xx x x  

3 3 3/ j jx xf f f f
   

 
 

f   
    

    


     


Compare with the rules that must be obeyed by vectors. /

j
i j jiF F   

The gradient of a scalar function transforms as a vector it is a vector. 

 

Some properties of rotations: 

Rotations (all orthogonal transformations) preserve inner products and hence all 

lar separations.    cos ABA B A B  
 

 lengths and angu

Consider           
3 3

3 3 3 3 3 3
/ / / /

1 1 1 1 , 1 1

, 1 1

cos

i i ij j ik k j k ij ik
i i j k j k i

j k j k j j
j k j

A B A B A B A B

A B A B A B A B

  

 

     

 

   

    

     

 

 

 


Used the rotation (orthogonal transformation) property:   

 

1,

1

i

t   
,,3 1,,,3 1,,,3i i

mi im imi i i 
  

     [   ] m= m  

Sequences of rotations are to be studies. To begin, the matrices representing a few 

rotation

about the three axis      

s are displayed. 

2

0 1 0

( / ,3) 1 0 0

0 0 1


 
   
  

 = z(
/2)
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2

0 0 1

( / , 2) 0 1 0

1 0 0


 

   
  

 about the two axis       = y(
/2) 

2

1 0 0

( / ,1) 0 0 1

0 1 0


 
   
  

  about the one axis       = x(
/2) 

1 0 0

( , 2) 0 1 0

 
 about the two axis          

0 0 1

    
  

= y( ) 

Sequences of Rotations: 

Consider the case of a primed frame rotated by  about the z-axis relative to the 

unprimed frame and a double-primed frame rotated by  about the z-axis relative to 

the primed frame.  The matrix for rota cts on the left of the vector s does 

the subsequent rotation by .

               
1a

tion by  a  a

/
1 1cos sin 0a a     

   
//
1a

/
2 2
/
3 3

sin cos 0

0 0 1

a a
a a

  
    
        



/

// /
2 2
// /
3 3

cos sin 0

sin cos 0

0 0 1

a a
a a

 

 

    
    
    
       

  



Applying the transformations in sequence leads to: 

//
1 1
//
2 2
//
3

cos sin 0 cos sin 0

sin cos 0 sin cos 0

0 0

a a

31 0 0 1   

a


atrix representing the sequence is formed by sequentially multiplying on the left 

in the matrix product.  See problem 1. 
 

a
a a

   

    

      
      
      
     

  

The m

with the matrices for each operation.  Operations applied later appear further to the left 

Consider the sequence  about the one axis followed by  about the two axis.                             

1 0 0 1 0 0 1 0 0      
0 1 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0

          
           
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'In sequence' means that each subsequent operation is represented by multiplication of 

the left side.   

     

y

x

y

z y

x

z
z

x

 

    initial                       after  FIRST                after SECOND 

Exercise:  The matrix representing the sequence of rotations can be read as row one is 

the components of the new x-axis as represented in terms of the original axes. The 

final matrix may als m plate form:           MULTIPLY o be co pared to the tem

SEQUENTIALLY ON THE LEFT. 

NET = SECOND FIRST = 

     
     

ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ

i i i j i k

     

ˆ

ˆ ˆ ˆ ˆˆ ˆ

j i j j j k

k i k j k k

     
 
     
 

 

      

where the final axes are the double primed directions and the original coordinate 

directions are unprimed. Check to see that the result above agrees with these forms. 

 

Contrast the first sequence with the sequence  about the two axis followed by  

about the one axis. 


1 0 0 1 0 0 1 0 0      
0 0 1 1

0 1 0 0 0 1 0 1 0

    0 1 0 0 0 
          

     


 about x }  about y}  =      net rotation   

SECOND FIRST = NET 

       initial                       after  FIRST                after SECOND 
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x

y

z y

z

y

x x

y

z

 

 about y}            about x } 

Demonstrate this behavior by imagining the x, y and z-axis to be rigidly fixed to your 

textbook and executing the rotation sequence.  Repeat imagining that the axis 

directions are fixed in space and only the text is rotated.  In the passive view, the text 

remains fixed in space and the rotations are applied in sequence to the reference axes.  

This view is illustrated above.  Viewed in anyway you wish, the actions of rotations 

do not satisfy a commuting addition and hence cannot be properly represented as 

vectors, but rather require a matrix representation.   

 

Angular velocities and infinitesimal rotations can be represented as vectors for most 

purposes.  The violation of the commutative property is proportional to the square of 

the rotation angle and is therefore negligible for infinitesimal rotations. More is to be 

presented later. 

 

Multiplicity: There are an infinite number of rotation sequences that yield any 

specified reorientation of a set of coordinate axes in spite of the fact that only three 

angles are needed to set the final orientation.  One could take two angles to set the 

direction of the final z-axis and one more to set the orientation about this axis.  The 

accepted convention is somewhat different.  Reorient the axes in three steps. First: 

rotate by  about the z-axis.  Second: rotate by  about the new (or current) x-axis.  

Three: rotate by  about the new (or current) z-axis.  These angles are the Euler (or 

Eulerian) angles.  Be alert to the introduction of Eulerian angles in your study of 
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mechanics.  Memorize every detail of the figures representing the rotations.  The time 

spent will be well spent. 

cos sin 0 1 0 0 cos sin 0

sin cos 0 0 cos sin sin cos 0

0 0 1 0 sin cos 0 0

( , , )

   

     

 

    



    
         
         1






 

Euler’s Prescription:  Call initial direction of the z-axis  and the final direction of the z-axis ˆinitialz

ˆ finalz .  The vector  is perpendicular to both and so lies somewhere in the original x-y ˆ ˆinitial finalz z

plane, perpendicular to .  The first rotation is CCW by  about  to rotate the x -axis ˆinitialz ˆinitialz x̂  

from its initial direction  to the direction of ˆinitialx ˆinitial inteˆ ˆ finalz z rmediatex  .  This  direction ˆintermediatex

is perpendicular to the plane containing  and ˆinitialz ˆ finalz  so a CCW rotation by  can be made that 

sweeps the z-axis from  toˆinitialz ˆ finalz .  As the z-axis is in its final orientation, all that remains is a 

CCW rotation by  to sweep the x and y axes from their intermediate to final orientations.  
 

Conventional Order Alternative: Rotation about z then y and finally z. STAY ALERT. 
 

The Euler angles: Consider a general 

rotation of a rigid body about an axis point. 

Paint on a set of Cartesian axes centered on 

that fixed point. Imagine a circle in the 

horizontal x-y plane that is concentric with 

the origin. It defines a plane and so will have 

a line of intersection with the horizontal plane 

after a general rotation. Begin by rotating the 

axes by  about the current z axis to swing 

the x axis into the 

 line of intersection which is called the line of 

nodes. Rotate by  about that new x axis to 

swing the z axis into its final orientation. 

Finally, rotate by  about the final z direction 

to swing the x and y axes into their final 

 
http://upload.wikimedia.org/wikipedia/commons/8/82/Euler.png 
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orientations.     Map: {,,}  {,,}

 

Determinant: Note that the determinant of each matrix above is +1 and that ( , , )    

is the most general rotation matrix. The determinant of any rotation matrix is 1. 

 

Why would we ever use a rotation? 

Consider an ellipse: 
2 2

2 2
1

x y

a b
   

The major and minor axes are parallel to the x and y-axes and the semi-major and 

semi-minor axis lengths are the larger and smaller of a and b.  A more general ellipse 

has the representation: 

2 2 2 1A x C x y B y             
1

A C xx y

C B y

   
   

   
 

The axes of this ellipse are not parallel to the x and y axes, but rather they lie at some 

angle with respect to them.  Transform to a rotated reference system rotated by  

about the z-axis using the prescription: / =      -1 =      t 

Note that the z-parts are  suppressed to save ink. 



 
1

A C xx y

C B y

       
        

   where  
' '

' '

cos sin cos sin

sin cos sin cos

A CA C

C BC B

   
  

 


     
             

 

cos sin cos sin sin cos

sin cos cos sin sin cos

A C A C A C

C B C B C B

     
    

        
             


 
 

2 2

2 2

1
2

1
2

cos sin sin 2 ( / )( )sin 2 cos 2

( / )( )sin 2 cos 2 sin cos sin 2

A C A B C B A C

C B B A C A B C

    
   

       
           

 

The final form follows after the application of a few trigonometric identities.  

The goal is to zero-out the off-diagonal terms by a choice of . 
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1
2

2
( )( )sin 2 cos 2 0 tan(2 )

C
B A C

A B
      


 

That is it.  The axes of the ellipse are rotated by  relative to the original Cartesian 

axes. With the choice of angle above, the off-diagonal elements are zero and the 

diagonal elements are the eigenvalues of the matrix (for our case, the squares of the 

semi-minor and semi-major axes).  Inverse tangent yields two angle separated by .  

This multiplicity corresponds to choosing one pair of eigen-directions or another 

equivalent pair that follows a rotation by /2.  A proof follows that the three eigen-

directions of a real symmetric (3D) matrix are mutually orthogonal. 

German: Eigenshaft => nature, virtue, feature, quality, property, attribute 

character, characteristic, characteristic quality 
 

 

Exercise: If tan(2) = 0, what is sin(2)? Use these values to find diagonal form of the 

matrix of coefficients.

 

Choosing 2
tan(2 )

C

A B
 




2 2

2 2

cos sin sin 2 0

0 sin cos

A C A B C

C B A B C

  

sin 2  

   


   

  
     

. 

 The values on the diagonal are the eigenvalues of the matrix.

 

Application to moments of inertia: 

 

Moments of inertia for a collection of point masses:  (See the Introduction to 

Eigenvalues handout.) 

2
i j i j i j

masses

I m r x x   


     

Using the mapping: 1 2 3; ;x x x y x z   , for example x72 is the y coordinate of particle 

7. 
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  = 

2 2

2 2

2 2

x

y

z

xx xy xz

yx yy yz
masses

zx zy zz

I I IL y z x

L I I I m y x x z y z

L z x zI I I

     

      


     

  y x z

y x y

    
             
            

  

The sum over the particles uses the particle label (index)  as illustrated.  The 

diagonal elements of the inertia tensor are the familiar moments of inertia about the x, 

y and z-axes, the sum of each mass multiplied by its perpendicular distance from the 

axis squared.   For example: 

 2 2
xx perpendicular

2I m r m y z   
 

     

The off-diagonal elements are called skew moments.   

 

x

y



 

 

m1:  1 kg @ (10m, 5m, 0m) 

 

m2:  1 kg @ (2m, 11m, 0m) 

 

m3:  1 kg @ (-10m, -5m, 0m) 

 

m4:  1 kg @ (-2m, -11m, 0m) 

For this example,  

 =      Desired  
292 144 0

144 208 0

0 0 500

 
  
  

292 144 0

144 208 0

0 0 500

x x

y y

z z

L

 
  
 

     
            
          


 

As you will learn in your intermediate mechanics class, L 
 , the angular m

of the rigid assembly of masses rotating at 

omentum 

 . The assembly can only rotate smoot

(torque-free) if L


 is parallel to

hly 

 . That is: A cla sic eigenvalue problem is to be s
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solved. ( i i iL   
   )  A ng step, the equation is to be divided by 4 kg-

m2.  As a result the values found are one-fourth the eigenvalues of the original 

problem. 

s a simplifyi

4

73 36 0

36 52 0

0 0 125

a a

b b where

c c

 
     

           
          

  

The results of the ellipse example are to be exercised before the classical solution 

method. 

2 2( 36) 72 24
tan(2 )

(73 52) 21 7

C

A B
 

    
 

  

 

This equation can be 'solved' to find the possible angles. 

2 2

72
tan(2 )

21

sin(2 ) 2sin( )cos( )

cos(2 ) cos ( ) sin ( )

   
  

  


       (defines  as -72/21 = -24/7)

 2 22sin( ) cos( ) cos ( ) sin ( )       

 2 2 2 4 2 2 4os ( ) cos ( ) 2sin ( )cos ( ) sin ( )4sin ( ) c             (square) 

 22 2 2 2 2 2 4sin ( ) 1 sin ( ) 2sin ( ) 1 sin ( ) sin ( )4sin ( ) 1                       

 2 4 2 2 44sin ( ) 4sin ( ) 1 4sin ( ) 4sin ( )         

   2 4 2 20 4 1 sin ( ) 4 1 sin ( ) 2         

     
 

2 4 2 4

2

2

4 1 16 2 1 16 2

( )
8 1

    




     



sin  

 
   

2

2

2 2

11 1
sin ( )

2 22 1 2 1




 


   


1


 

Substituting  = - 24/7, 2 1 21 1 7 16 9
sin ( ) ;

2 150 2 50 25 25
        or sin is to be chosen 

from the list  { 4 3
;

5 5
  }.  But wait, the equation was squared during the solution 
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process.  Expect that half the values listed are bogus.  Checking the condition 

24
tan(2 )

7
   , 4

sin and
5

   
3

5
 are found to be the valid pair of values.  These 

values identify angles separated by /2 which correspond to orthogonal eigen-

directions.

 

The inertia tensor is diagonal in a reference frame rotated by an angle 1 = +sin-1(4/5) 

or  

= -sin-1(3/5) about the z-axis.  The = -sin-1(3/5) case is to be examined. 

The eigenvalues for are the diagonal elements calculated for = -sin-1(3/5).  

 2 2cos sin sin 2A B C    =       73 .64 52 .36 36 .96 100      

2 = 2 2sin cos sin 2A B C    =       73 .36 52 .64 36 .96 25      

3 = 125

Armed with the values of , recall that the 's are 4 kg-m2 times these values. 

 = {400, 100, 500} kg-m2. 

x

y

1

2

x’

y’



 

The two angles are shown. They 

locate the two eigen-directions for 

the array of masses. Note that 

eigen-directions reflect the 

symmetry properties of the body. In 

the new coordinate system, the 

masses are 5 meters from one axis 

and ten meters from the other. 

 m1:  1 kg @ (10m, 5m) 

     (10 cossin, -10 sin + 5 
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cos) 

      = ( 8 - 3, -10 (-.6)+ 5(.8)) = (5, 

10) 

            Note: each square is 2 x 2.

 

Exercise:  Use the transformation equations:   (remember  = - sin-1(3/5) ) 

x = x cos + y sin;    y = x (- sin) + y cos;   z = z
to compute the coordinates of the masses in the rotated frame. Compute the moment 

of inertia tensor as observed in the rotated frame using the transformed coordinates.  

Masses are neither vectors nor (rank two) tensors. How do the values of the masses of 

each object as determined by the original observer compare with the values found by 

the observer in the rotated frame? What designation is given to quantities with values 

that are invariant, the same as reported by observers in the primed and unprimed 

frames? 

 

The classical solution of the matrix eigenvalue problem leads to the characteristic 

equation for the scaled eigenvalues, the ’s: 

 2(73 ) (52 ) 36 125 0          

 2 125 2500 125 0         

  (100 ) (25 ) 125 0       

Hence  = {25, 100, 125} and  = {100, 400, 500} kg-m2.   

 

The final task is to determine the directions of the eigenvectors. 

 
 

 

73 36 0 0

36 52 0 0

0 0 125 0

a

b

c






      
            
          
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For = 100 

 
 

 

27 36 0 0

36 48 0 0

0 0 100 0

a

b

c

      
            
         

100ˆ3 4 0
5

a b or e   
ˆ ˆ4 3i j  

For = 25 

 
 

 

48 36 0 0

36 27 0 0

0 0 100 0

a

b

c

     
           
         

25ˆ4 3 0
5

a b or e   
ˆ ˆ3 4i j  

For = 125, the z-direction works. 

 

This first direction corresponds to the x’ axis about which the mass distribution has a 

moment of inertia of 4 kg-m2 or 400 kg-m2.  What angle does this axis make relative 

to the original x-axis?    

 

The collection of eigen-directions: {(4/5, -
3/5.0) ; (3/5, 

4/5.0); (0, 0,1) } 

 

Observations:  A simple rotation diagonalized the matrix of coefficients for the 

equation of an ellipse.  The procedure also worked for a simple moment of inertia 

matrix.  Both initial matrices were real symmetric.   

 

The unsupported conclusion is that a real symmetric matrix can be diagonalized by 

an orthogonal transformation of which rotations are the most interesting.  To 

diagonalize a general 3 x 3 real symmetric matrix, an arbitrary rotation involving 

the three independent Euler angles is needed. 

 

Orthogonal transformations include rotations and inversions. One need only multiply the collection of all rotations by 

[(x,y,z)->(-x,y,z) ] reflection across the y-z plane or  [(x,y,z)->(-x,-y-,z) ] inversion through the origin to fill out all 
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possible orthogonal transformations in 3D. Rotations do not distort physical objects as they are transformed; 

inversions begin and end in configurations in which all separations are the same, but no continuous transformation 

can be imagined that preserves separations throughout the transformation.   The set of all 3 by 3 orthogonal matrices 

forms the group O(3). If the inversions are excluded, the remaining transformations form the special subgroup SO(3) 

representing rotations in three dimensions. The matrices representing transformations of the O(3) type have a 

determinant of ±1 while all those for SO(3) have determinant +1.
 

Exercise:  Consider the eigenvalue problem above. 

 
 

 

 
 

 

73 36 0 0 73 36 0

36 52 0 0 36 52 0 0

0 0 125 0 0 0 125

a

b

c

 
 

 

        
              
          

  

Show that the determinant condition leads to the equation (125 - 

) which has roots {25, 100, 125}. 



The physical importance is that all (rank two) tensor properties that are naturally real 

symmetric appear as diagonal matrices in some rotated frame.  Consider the inertia 

tensor  for a football.  Common sense and symmetry principles suggest that one axis 

be along the long axis of the ball and that the other two axes be any mutually 

perpendicular directions perpendicular to that axis. 

 

Examples of physical (rank two) tensors:  Quadrupole moments: , Moment of 

inertia: , Polarizability: . Note that these matrices represent physical properties of 

physical entities, and that they are real symmetric.   

 

The usual case:    Note that matrices representing physical properties of physical entities (at rest) are real 

symmetric (  =  t ). The matrices  that represent rotations are to transform from one coordinate system 

(not a part of the physics) to another coordinate system (not part of the physics).  These matrices are 

orthogonal (   
-1 =  t ) rather than real symmetric.  Other physical concepts are represented by anti-

symmetric matrices (  = -  t ).  I am unable to make a clear statement, but these anti-symmetric matrices 

are tied to our attempt to involve motion and position at the same time and more specifically, they involve a 

cross product or curl with the arbitrary sign convention, the right-hand rule.  
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

What can be learned from rotation matrices?: 

Suppose that an inertia tensor has been diagonalized, 

 = 
0 0

0 0

0 0

x

y

z

I

I

I

 
 
 
  

 

and that the body has a four-fold rotation symmetry about the z-axis. The last 

statement means, when the body is rotated by 900 about the z-axis, an identical mass 

distribution results. So:    / =   t.   

 = 
cos sin 0

sin cos 0

0 0

 
 

1

 
  
  

 

0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

x x x y

y y y

z z z z

I I I

I I I
x

I

I

I I I

 

    

            
            
            
                         I






 

Not surprisingly, the 900 rotation interchanges the x and the y elements.  As the body 

is invariant under the rotation, the inertia tensor must be identical: Ix=Iy . The 

conclusion is that, when diagonalized, the x and y diagonal elements are equal for a 

body with four-fold rotation symmetry about the z-axis. 

 

Suppose the body only has three-fold rotation symmetry about the z-axis.  That is a 

rotation be 1200 returns the body to an identical configuration. 

3 3 31 1 1
2 2 2 2 4 4

3 3 31 1
2 2 2 2 4 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0

x x x y

y y x y

z z z

I I I I

I I 1 0I I

I I I

   

     

       
       
       
              






 

Again the result requires that Ix=Iy .  In fact, the result holds for the z-axis being an n-

fold rotational symmetry axis for any integer n > 2. 
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How does one find  to diagonalize a general real symmetric matrix?: 

A prescription to build  can be developed from results that have been established.  

Consider the generic representation of the eigenvectors and eigenvalue problem for a 

real symmetric matrix where the left-hand equation is in the original coordinate 

representation while the right-hand is the form after rotating the reference frame to 

yield the diagonal form of . 

11 12 13

12 22 23

13 23 33

1, 2,3
i i

i i i

i i

m m m a a

m m m b b where i

m m m c c


     
           
          

   

/ /
1

/ /
2

/ /
3

0 0

0 0

0 0

i i

i i i

i i

a a

b b

c c


 



    
         
         

  form before rotation                                          form in preferred frame  

The preferred frame has its axes along the eigen-directions.  Watch the Notation: The 

symbol  represents an eigenvalue; he symbol  already represents the rotation matrix 

with elements ij.   

 

Just as the original observer represents x direction as 
1

ˆ 0

0

i

 
   
  

, the rotated observer 

would could to represent the one axis as 
1

0

0

 
 
 
  

. The axis is in the physical direction of 

the first eigenvector.  

1

0

0

 
 
 
  

 = e1 1 =  e  = 
11 12 13 1

21 22 23 1

31 32 33 1

x

y

z

e

e

e

  
  
  

   
       
     

 

Hence, after rotation, the normalized eigenvectors in (a, b, c) form must transform 

into the canonical forms {{1, 0, 0}, … , …}: 
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/ /
1 11 12 13 1 2 3
/ /

1 21 22 23 1 2 3
/ /
1 31 32 33 1 2 3

1 0

0 ; 1 ;

0 0

a a a

b b b

c c c

  
  
  

             
                             
                          

/

/

/

0

0

1

a

b

c

 

The eigenvectors must be listed in right-hand rule order. If not, the transformation is a 

rotation plus an inversion. 

Exercise: What directions are to be chosen as the natural coordinate directions in the 

eigen-frame? Give the coordinate triplets for those coordinate directions as observed 

in the eigen-frame. 

 

Recalling that the inverse of  is its transpose: 

/
11 21 31 11 21 31 1

/
12 22 32 12 22 32 1

/
13 23 33 13 23 33 1

1

0

0

i

i

i

a a

b b

c c

     
     
     

        
                 
               

 or 11 1 12 1 13 1; ;a b c     

Each row of the rotation matrix is the components of the corresponding eigen-

direction.    

 =  
11 12 13 1 1 1

21 22 23 2 2 2

31 32 33 3 3 3

a b c

a b c

a b c

  
  
  

  
    
    






Recall: Our conventions for 3D require that the coordinate vector triad be listed 

in right-hand order.  As the directions are orthogonal, this convention requires at 

most that the sign of the third eigenvector be changed.  If the vectors are not 

listed in right-hand order, the transformation represented is a rotation plus 

an inversion.  Inversions are discussed later. 

 

For the moment of inertia problem above, the final x-y-z sequence of eigenvalues as 

computed in the rotated frame is: 400, 100, 500 kg-m2.  Listing the eigenvectors as 

rows in the corresponding sequence: 
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 = 

34
5 511 12 13

3 4
5 521 22 23

31 32 33

0

0

0 0 1

  
  
  

   
      
     

 

Applying these values to the reduced problem: 

t =  

3 34 4
5 5 5 5

3 34 4
5 5 5 5

0 73 36 0 0

0 36 52 0 0

0 0 1 0 0 125 0 0 1




   

      
      






 

                                                =

34
5 5

3 4
5 5

0 80 15 0 100 0 0

0 60 20 0 0 25 0

0 0 1 0 0 125 0 0 125

     
           
         

 

Fantastic, it works in a simple case.  More difficult examples are reserved for the 

homework problem section. 

 

Exercise: Verify that the eigenvectors are list in right-hand order in the example 

above.  Interchange the eigenvector rows to form any other order.  Check that the 

order is right-handed.  If not multiply row three by negative one.  Verify that the new 

eigenvector set is right-handed.  Apply the new rotation to diagonalize the original 

moment of inertia.  Note that the result is still diagonal.  What has changed? 

 

Second Sample Calculation of  from the Eigenvectors: 

The matrix    =   has eigenvalues {1, 3, 3}.     
2 0 1

0 3 0

1 0 2

 


  




a.)  Pick mutually orthogonal eigenvectors for these eigenvalues and use them to 

develop an orthogonal transformation matrix  that diagonalizes . Verify that your 

eigenvector sequence is in right-hand order.  If not, multiply the third vector by 

negative one.  
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b.)  Apply the resulting similarity transformation to demonstrate that  is transformed 

to a diagonal form with the eigenvalues as the diagonal elements.   / =     -1;   / 

diagonal.   

Work with the distinct eigenvalue first.   = 1. 

2 0 1

0 3 0 0

1 0 2

a

b

c






  
     
    

0

0

 
 
 
  






2 1 0 1 0

0 3 1 0 0

1 0 2 1 0

a

b

c


       

     
           
          

 

a + c = 0   and 2 b  = 0     c  = - a  and b  = 0.    1

ˆˆ
2

ˆ i ke
  

Work with  = 3 to find the condition satisfied by the components of the other two 

eigen-directions. 

2 3 0 1 0

0 3 3 0 0

1 0 2 3 0

a

b

c

  
    
    

  
    
    

   - a  + c = 0  and 0 b = 0.  c = a  and b  unrestricted. 

Choose and values that satisfy the requirements.  Example:  c = a  and b = 0.   

3

ˆˆ
2

ˆ A
i ke
 . 

The third direction must be orthogonal, and it must satisfy the RHR so use the cross 

product. 

   3 1 3

ˆ ˆˆ ˆˆ ˆ
22 2

ˆˆ ˆ ˆB A
j ji k i ke e e  

        j . 

As rows:  1

ˆˆ
2

1 1
2 2

ˆ , 0,i ke
   ;   3

ˆˆ
2

1 1
2 2

ˆ , 0,A
i ke
  ;    3

ˆˆ 0, 1,0)Be j    



1
2

1 1
2 2

1
2 0

0

0 1 0

 
 
 
  

 

 

1
2

1 1
2 2

1
2 0

0

0 1 0

 
 
 
  

2 0 1

0 3 0

1 0 2

  
  
  
   

1
2

1 1
2 2

1
2 0

0 0 1

0

 
 

  
   

 

4/7/2010 Physics Handout Series.Tank:  Linear Transformations 38 



 

1
2

1 1
2 2

1
2 0

0

0 1 0

 
 
 
  

31
2 2

31
2 2

0

0 0 3

0

 
  
  

= 
0 0

0 3 0

0 0 3

1 
 
 
  

=  A


  (check ) 

 

Eigenvectors for distinct eigenvalues are orthogonal. 

Orthogonal transformations preserve the original Euclidean inner product for a real 

space. 

 i i i j
t

j i j i j i j i

j

a b c a

b a a b b c c v

c

 
      
  

  jv   where    
 j i i i

t
j j i

j

a a

v b and v

c

 
   
  

 
b c

 

Orthogonal transformations preserve all inner products so that this standard method 

can be used before and after a transformation. 

 

The eigenvalue problem for real symmetric matrices (and its transpose): 

 j jv jv         (    ) ( )j j j
t tv v   j

tv  t =  and finally  j j
tv  j

tv  =  j j
tv 

The last form follows because real symmetric matrices are their own transposes. 

NOTE: The real-symmetric nature is required to complete this proof. 

        eigenvalue equation for kets:  j jv v j   

        eigenvalue equation for bras:  j
tv  =  j j

tv 

 

Theorem:  The eigenvectors of a real symmetric matrix that correspond to distinct 

eigenvalues are orthogonal. 

( i
tv  )  =  (jv i

tv  )      associative property jv

( ) (i i j i j j
t tv v v v     )

0

              eigenvalue property 

( )i j i j
tv v                    the ’s are just numbers 
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The conclusion is that if the eigenvalues i and j are distinct (not equal) then their 

corresponding eigenvectors must be orthogonal ( 0i j
tv v   ). 

 

It is common that real symmetric matrices represent concepts (material properties) 

in classical physics.  The eigenvectors of these matrices are orthogonal if they are 

associated with distinct eigenvalues.  The eigenvectors that correspond to a 

degenerate eigenvalue may be chosen to be orthogonal, and processes such as 

Gram-Schmidt can produce a suitable orthogonal set from an initial set.  

 

The Cartesian form of the inner product is our usual starting point.  Orthogonal 

transformations preserve inner products so the standard definition as the sum of the 

products of the corresponding components remains valid.  The eigenvectors can 

be unity normalized. 

 i i i j
t

j i j i j i j i j

j

a b c a

b a a b b c c v v

c
i j

 
       
  

   

A symmetric matrix can be diagonalized by an orthogonal transformation. The form 

of the transformation matrix is the collection of the eigenvectors as the rows of the 

matrix.  The orthonormal  form of the eigenvectors ensures that the matrix is 

orthogonal. 

 

Other transformations proper and otherwise:  

Rotations are but one class of orthogonal transformations.  As demonstrated, the 

determinant of the coefficients representing a rotation is one.  Orthogonal 

transformations with determinant one are designated as proper transformations.  

Orthogonal transformations are severely restricted as they must preserve all inner 
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products, but a reflection across a coordinate plane does qualify.  Consider the 

mapping by a single reflection across the y-z coordinate plane: 
/ / /; ;x x y y z z     

Vector inner products are preserved as: 

/ / / / / / ( ) ( )x x y y z z x x y y z z x x y y za b a b a b a b a b a b a b a b a b                         z
  

The determinant of this orthogonal transformation is negative one, and it is an 

improper transformation.  If this transformation is followed by a reflection across the 

x-z plane, the net mapping is: 
/ / /; ;x x y y z z      

and the determinant is one, and therefore is a proper transformation.  This result is not 

surprising as the particular sequence of two reflections is identical to a rotation of  

about the z axis. Viewed otherwise, the product of two transformations that each have 

determinant negative one is a transformation with determinant one.  Hence the product 

of two improper transformations is a proper one, a rotation. Continuing, one has the 

inversion mapping 
/ / /; ;x x y y z z       

that may be achieved as a sequence of three reflections across the three coordinate 

planes.  It is improper as it has determinant (-1)3.   

 

A reflection across any plane through the origin is the combination of a rotation to 

orient that plane as a coordinate plane, the reflection and a rotation back to the original 

plane.  The determinant of the entire operation is (+1)(-1)(+1)=-1.  The mapping is 

improper as are all that contain an odd number of reflections. 

 

Orthogonal transformations can represent gentle passive changes of reference frame.   

Improper transformation seem to be a little ruder, but at least distances, shapes, angles, 

…. are preserved although inversion itself is painful.  Physical vectors behave well 
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under all orthogonal transformations.  The class of pretenders, pseudo-vectors, co-

varies with vectors under proper transformations but fails under improper ones.  The 

components of a vector change sign under an inversion, but those of pseudo-vectors 

do not. Pseudo-vectors include cross products and curls with common examples being 

torque, magnetic field, angular momentum, and angular velocity.  Although pseudo-

vectors are not quite vectors, it is permissible to pretend that they are as long as one 

restricts reference frame changes to proper ones such as rotations.  Do not ponder the 

preceding paragraph; just steel yourself against the day in graduate school when the 

cross product is declared to be an anti-symmetric tensor rather than a vector.  In three 

dimensions, a tensor has nine components.  If it is anti-symmetric, the diagonal entries 

must be zero leaving three independent off-diagonal values, the three components of 

the pseudo-vector.  Above all remember that for us, it just does not matter. 

 

More general transformations fail to preserve inner products.  Recall that preserving 

inner products leaves distances and angles (size and shapes) unchanged.  An isotropic 

scaling changes the inner product.  Suppose the basis vectors  ˆˆ ˆ2 ,2 ,2i j k  are adopted.  

Then the new vector components relative to this basis are the original values divided 

by 2. 

           / / / 1 1 1
2 2 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2 2 2x y z x y z x ya i a j a k a i a j a k a i a j a               ˆ
z k  

The inner product changes under a scaling! 

/ / / /2

2 /

2 /

1 0 0 2 0 0

0 1 0 0 2 0

0 0 1 0 0 2

x y zx y z x y zx x x

y y

z z

a a aa a a a a ab b

b b

b b

                               
                    

         
 
 

y

z

b

b

b

 



 

The inner product takes the form 
3

/ /

, 1
i i j j

i j

a b a g b


    
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where gij  is the metric.  The metric was ignored in Cartesian problems because it is 

just the identity.  It has been lurking around other places such as in spherical 

coordinates. 

 

 

2 2

2

1 0 0

| | 0 0

0 0 sin

dr d d dr

dr r d

dr

 



                

  

 

Projection is a useful mapping which alters inner product.  Projection collapses the 

space in some manner rather than just changing the way we view as in the case of a 

reference frame rotation.  The mapping for projection into the x-y plane is:      
/ / /; ;x x y y z NULL    

1 0 0

0 1 0

0 0 0 0

x x x

y y y

z z

       
                
              

 

Projections are operations that yield the same result if repeated. P P v P v            

Our example, in a sense, maps (x,y,z) to (x,y,0). If the projection is repeated, clearly 

(x,y,0) is mapped to (x,y,0) so ( , , ) ( , ,0) ( , ,0)P P x y z P x y x y           .  

1 0 0 1 0 0

0 1 0 0 1 0

0 0 0 0 0 0 0

x x x

y y y

z z

        
                  
                






 

The operator identity is P[P[ … ]] = P[ … ] or 
1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0

     
          
          

. 

In prose, the projection finds and the part parallel to the z = 0 plane and removes that 

part perpendicular to that plane. Projecting a second time yields the same answer as 

the previous projection removed all non-parallel contributions. 

 

Angles and more can be distorted by a shear. 
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/ /; ; /x x y y y z z     

 

Exercise:  Provide the matrix representation of the shear mapping above.  Find the 

angle between the mappings of the x and y directions. Compute the magnitude of the 

mappings of the x and y directions. 

 

We love rotations.  We detest transformations that fail to preserve inner products. 

 

JUMP TO PAGE 45. 

 

The angular velocity as a vector: 

 

Rotations failed to qualify as vectors early in the game as the net action of rotations is 

different if they are applied in a different order.  Rotations lack a commutative 

addition.   

 

A GENERAL  PRINCIPLE  OF  EXPANSIONS is that if an expansion retains any second (nth) order terms, it must 

retain all terms of that order if valid conclusions are to be drawn.  The treatment below ignores the second order 

terms in the expansion of the cosines.  The flavor of the conclusion is nonetheless correct.  This section is not to be 

corrected before next year.  More on this point in the Perturbations Handout that has not been written. 

 

The development below succeeds because the terms of interest must involve interaction between the two rotations.  

That means that all the terms of interest are products that are first order in the first rotation and first order in the 

second rotation.  As a consequence one finds all the terms of interest with only first order expansions for the actions 

of the individual rotations. 

 

The expansion to second order in the cross product form is: 

   1 1 1 1
1

2r r    r    
      

If one compares the action of infinitesimal rotation sequences, the crux of the issue 

becomes apparent.  For small angles cos 1   and sin     .  A small rotation 
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about the three axis followed by a small rotation about the one axis has the matrix 

representation: 

3 3

1 3 3

1 1 3

1 0 0 1 0 1 0

0 1 1 0 1

0 1 0 0 1

 

1

1 1

  
  

     
            
           









0

 

so the change is: 

                 
3 3

3 1 3 1

1 3 1 1 3 1

1 0 1 0 0 0

1 0 1 0 0

1 0 0 1 0

 
  

     

      
               
               



1 3

1

 

Reversing the order of the rotations: 

3 3

3 1 3

1 1

1 0 1 0 0 1

1 0 0 1 1

0 0 1 0 1 0 1

   
  

 

     
            
         


  





3

0

 

so the change is: 

3 1 3 3 1

3 1 3 1

1 1

1 1 0 0 0

1 0 1 0 0

0 1 0 0 1 0

     
   

 

          
               
           

 

The results differ in second order in the small angles.  If the second order pieces were 

negligible, the actions would commute.  Angular velocities afford just this release.  

Represent i ias t    and divide by t .  In the limit 0t  , the offending second 

order terms disappear.  Angular velocities and infinitesimal rotations can be 

considered as vectors under proper transformations of reference frames.    
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

r

r

 

This result is so important that it is to be 

repeated.  Consider rotating a body with 

( )r t
   representing the position vector of a 

point on the body.  The body rotates 

about the origin at   for a short time t . 

The new position of the point is:    

(r t ) ( ) ( )t r t r tt    
   . (NOTE:  This 

transformation is active.) 

 

Now consider the change due to two rotation steps  1


 and 2


. (Note that the notation 

chosen begs the ‘Is it a vector ?’ question.  The vector-like notation does not qualify the rotations as 

vectors.  They must satisfy the properties of vector addition and scalar multiplication. 

1 1 ( )r r   t
   

2 2 2 1( ) ( )r r t r    t      
      

or: 1 2 2 1( ) ( ) ( )r r t r t r     t        
        

If the rotations are applied in the reverse order, one would find: 

1 2 1 2( ) ( ) ( )r r t r t r     t        
        

Look at the velocities: 

1 2 1 2

1
( ) ( ) ( )

r
v r t r t

t t
r t

    
 

           

         or 

1 2 2 1

1
( ) ( ) ( )

r
v r t r t

t t
r t

    
 

           

         

In the limit that t goes to zero, the s go to zero, but the ratios  
i

i
t


 
  , finite 

angular velocities. 

 1 2 1 2 1 2( ) ( ) ( ) ( )
r

v r t r t r t
t

r t
      


              

           
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 2 1 2 1 2 1( ) ( ) ( ) ( )
r

v r t r t r t
t

r t
      


              

         



 

The angular velocities obey a commutative addition. Angular velocities (and 

infinitesimal rotations) behave like vectors in most cases of interest.  Finite rotations 

do not.  One application is the precessing bicycle wheel.  The total angular velocity is 

the vector is represented as the vector sum of the rapid rotation about the axis of the 

wheel  plus the vertical component of rotational velocity .   ˆwheel axis ˆ
prec k

 

*****  Add a section defining  and demonstrating that its members transform like 

those of a vector under proper orthogonal transformations, but not under the improper 

ones. 



Matrix Representations of Linear Operators 

 

Great effort has been taken to be vague about whatever it is that is being discussed. 

Mathematics abstracts common behaviors and rules from systems and hides all the 

particulars that are not essential to express those rules. A fantastic game ! At crunch 

time, a concrete representation is necessary, and, for things linear, matrices are a 

common choice. Matrices are to be proposed to represent vectors and linear mappings. 

The net effect of applying one mapping and then applying a second mapping to the 

result of the first is to be represented by multiplying by the matrix representation of 

the each mapping successively on the left. Settle in. The next few paragraphs are to 

meander over a range of topics - some of them advanced. Think about what is said, 

but take solace from the promise that the discussion is to end soon and is probably not 

critical to your immediate success. 
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The general topic is linear mappings of a vector space  into a vector space . 

Assume that a basis set 1 2{ , , ... , }v v v
ne e e  has been chosen for  and that 

1 2{ , , ... , }w w w
me e e  has been chosen for . A vector in either space is to be represented 

by the column vector of its coefficients in the chosen basis. 

1 1 2 2
v v

i i i in nv a e a e a e   v   and 1 1 2 2
w w

j j j jm mw c e c e c e   w  

Hence: 

1

2

i

i
i

in

a

a
v

a

 
 
 
 
 
 


   and    

1

2

j

j

j

jm

c

c
w

c

 
 
 
 
 
  


 

Next consider a linear mapping L of a vector space  into a vector space . The 

mapping is fully characterized by the collection of its actions on each basis vector for 

. The mapping of each v
ie  is L [ v

ie ], an element of  that therefore is a linear 

combination of the basis vectors for . 

. . .
1 1 2 2 ...std w std w std w
i i mie e     me  = L [ v

ie ] 

(The symbol  is to be used for the matrix representation of the mapping L.) The 

superscript std. specifies that the values .std
j i  are for the representation in the standard 

basis sets. This notation is usually omitted, and use of the standard basis sets is 

assumed. When the mapping acts on a general member of , 

1 1 2 2 ...V v V v V v
n nV a e a e a e     

it is mapped to L [ V ] [ ] [ ] [ ]
1 1 2 2 ...L V w L V w L V w

m mb e b e b e     where 

[ ]
1 11 12 1

[ ]
2 21 22 2

[ ]
1 2

...

...

... ... ... ... ... ...

...

L V std std std V
n

L V std std std V
n

L V std std std V
m m m mn

c a

c a

c a

  
  

  

    
    
    
    
    
        

1

2

n








        c a    . 
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The action of the linear mapping is represented by a matrix. Each column of the 

mapping matrix is the coefficients for the mapping of the corresponding basis vector. 

The symbols c  and  represent the components of the vectors and  a   represents the 

linear mapping. A change of basis set for either space requires re-computing  or  

and 

a c

 . In terms of the new basis sets, the vectors and the linear mapping are 

represented by arrays of values ' or ' and a c  '. 

 

Exercise: Assume that both basis sets have elements that are mutually orthogonal and 

that are unity normalized. ( i j i je e   )  Show that  ˆw v
mn m ne e   where L v

ie  = 

ˆ v
ie .  ˆw v w

mn m n m ne e e e    ˆ v  is one element of the matrix representing ̂ . 

 

Operators: Next, some non-standard notation to separate cases of interest. A mapping 

is to be anointed an operator if it maps a space into that same space. 

 

For an operator, element 
m

  is the -character amplitude in the output for unity (1) 

amplitude character m as the input for the operator.  The mapping of a space into itself 

is to be liberally interpreted. A vector in  may be mapped into a dimensioned scalar 

value times a vector in . 

 

Schrödinger quantum mechanics has the space of wave functions with differential 

operators such as the hamiltonian, the energy operator. The vectors in Schrödinger 

space are the wave functions (x) and the energy operator is: 

2 2

2
ˆ ( )

2
H V

m x

 
    


x  

leading to the infamous and profoundly productive Schrödinger equation. 
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2 2

2
ˆ ( ) ( ) ( )

2
H x V x x i

m x t

  
  

      

   

The std. basis is the energy eigenfunction basis found by solving the equation: 

22

2
ˆ ( ) ( ) ( ) ( )

2
n

n nH x V x x E x
m x

 
 

     


n n

0

 

The En are the characteristic energy levels for the system, and the matrix representing 

the operator  is particularly simple. Ĥ

1

2

0 0 0

0 0ˆ

0 0 ... n

E

E
H

E

 
 
 
 
 
 


 

A small complication is that n is usually infinite.  

 

If a state of the quantum system is expanded in terms of the energy eigenfunction 

basis, ( ) ( )n n
n

x a x 

ˆ ˆ ( )n n
n n

a H x  

, then the hamiltonian operating on the function yields 

. As the n(x) are eigenfunctions, the hamiltonian, 

an operator for energy, does not mix the states of one characteristic energy with those 

of a distinct characteristic energy as indicated by the characteristic diagonal form of its 

matrix. 

( ) ( )n n nH x a E x 

 

Momentum, a second physical observable, is represent by the operator: p̂ i
x


 


 . 

The energy eigenfunctions are rarely also momentum eigenfunctions so momentum is 

represented by a complicated matrix:   
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11 12 1

21 22 2

1 11

ˆ

...

n

n

n nn

p p p

p p p
p

p p p

 
 
 
 
 
 





   where mn m nx

p i
  


 

As the matrix for p̂  is not diagonal, making a measurement of momentum on an 

energy eigenstate mixes in other energy eigenstates. A year of quantum mechanics 

identifies the eigenstates of momentum (the momentum basis set) as:  1

2

pi x
e


 . 

Using the inner product to project out the p-momentum character part of ( )n x . 

 
*

1

2
( ) ( )

upper
p

n nlower

pi x
e x dx


 

 
  

 
 

   

The Fourier transform of the spatial wave function is the amplitude of the momentum 

character components of the wavefunction. That is: ( )n p  is the Fourier transform of 

( )n x . Note that the twiddle is used differently here. (Again:  ( )n p  is the Fourier 

transform of ( )n x .)   

 

! TIME OUT!: Leave this for graduate school.  For now, realize the matrices can 

represent operators. If the representation is in terms of the eigenstates for that 

operator, then its matrix is diagonal. If the matrix has off-diagonal elements, then the 

operator mixes the states or causes transitions between states. Certain inner products 

are to be designated as matrix elements omn. 

ˆmn m no o   

Operators operate to the right so: †ˆ ˆ ˆmn m n m n m no o o o        . Dirac notation 

is a little ambiguous, so the action-to-the-right rule must be added. The action of the 

operator  to the right in the KET is identical to the action of its Hermitian conjugate 

 in the BRA to the left. 

ô

†ô
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Let's look ahead just a little further before returning to more concrete tasks. 

 

Transformations: A (basis) transformation is to be analogous to a change of 

coordinates such as a rotation of a set of x-y-z axes.  A physical vector does not 

change when the axes are rotated, but its component representation is different after 

the rotation. Transformations translate the components of a vector and the elements of 

an operator's matrix from those for one basis set to those for another basis set. 



Suppose that the basis set for  is transformed by so the components of a vector are 

mapped to those in the new basis by  V and the basis for  is transformed such that 

the components of a vector are mapped to those in the new basis by  W. 

/b    W b     W a  = (  W     V
-1) (  V ) = ( a  W     V

-1) ( ) /a

The result is that the transformation rule for the matrix representing a transformation 

is a distressing mess: / = (  W     V
-1).  Fortunately, life is rarely this difficult.  If the 

 is an operator, then  and   are the same vector space, so  V =  W.  For operators:  

/a  =            a /b    b         / = (      
-1)  

 

Example:  Consider the operation ˆ ˆ ˆ ˆ ˆ(3 ) ( ) ( 2 )d i r i i r j j r      ĵ
     and the basis 

 ˆ ˆ,i j  for both the initial and target two dimension spaces. The operator is applied to 

the two basis vectors for the space of two dimensional displacements. 

ˆ ˆ ˆ( ) (3 ) ( 1) (0)d i i j j  


ˆ ˆ   and    ˆ ˆ ˆ( ) (0) ( 0) ( 2 )d j i j j  


 

Following the rule: Each column of the transformation matrix is the coefficients from 

the mapping of the corresponding basis vector,  

=   or   
3 0

1 2



 




x

x y

33 0

21 2
x x

y y

d dx

d dy

     
           
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Next consider this transformation as described by an observer rotated by + /4 about 

the z-axis.  The new basis directions for the rotated frame  / /ˆ ˆ,i j  are represented in 

terms of the basis vector used to define the mapping as  1
2

ˆ ˆi j    and  1
2

ˆ ˆi j    .  

Inverting the equations,   / /1
2

ˆ ˆi i ĵ     and   / /1
2

ˆ ˆ ˆj i j    .  

 

A vector    / / / / / / /
1 2 1 2 1 2

1 1
2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆv a i a j a i j a i j a i a j             
 /ˆ  

That is the component transformation rule is: 

 
/ 1 1

11 12 1 1 1 22 21
/ 1 1

21 22 2 2 1 22 22

1
2

R R a a a aa

R R a a a aa

          
                       

 

which identifies 

= 
1 1

2 2

1 1
2 2

 
  

 

Compute the action of the operator on the new basis vectors. 

 
   

/ 3 1
2 2

/

1
2

1 1
2 2

ˆ ˆ ˆ ˆ ˆ( ) ( [ ]) ( ) ( ) ( 2 )

ˆ ˆ ˆ ˆ ˆ3 [ ] (0) [ ] 3

d i d i j i j j

i j i j i

    

    

 
ˆ 

 
1 3

ˆ
0 0


   

   
   

 

 
   

/ 3 1
2 2

/ /

1
2

1 1
2 2

ˆ ˆ ˆ ˆ ˆ( ) ( [ ] ) ( ) ( ) ( 2 )

ˆ ˆ ˆ ˆ ˆ ˆ( 1) [ ] (2) [ ] 1 2

d j d i j i j j

i j i j i j

       

       

 
ˆ 

 
0 1

ˆ
1 2


   

   
   

 

 

Therefore the transformed representation for the operator matrix in the new basis is: 

/= 
3 1

0 2

 
 
 

 

This result is to be compared with that found by transforming the original matrix with 

the rotation matrix for + /4 about the z-axis. 
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/ = -1 =  
1 1 1 1

2 2 2 2

1 1 1 1
2 2 2 2

3 0 3 1

1 2 0 2

      
   


   
      

 

This stuff just works!  There is another complication. While all classical physics is 

real, quantum mechanics requires complex values. The next topic is the generalization 

from vector spaces over real scalars to vector spaces over the scalar field of complex 

numbers. 

 

Complex spaces and abstract basis (coordinate) transformations 

                         using Hermitian matrices and unitary transformations: 
 

The focus now shifts from three dimensional real spaces of physical vectors to 

abstract complex spaces of arbitrary dimension. It is important to note the parallels 

between the current development for complex spaces with Hermitian operators and 

unitary transformations and the one for real spaces with symmetric operators and 

orthogonal transformations.  The changes are just the generalizations necessary to 

accommodate complex numbers.  
 

Begin with a complex vector space with an orthonormal basis:             ei| ej = ij

1 1 2 2{.... ,...} .... ;i i i in nV a e a e a e ai j      

As discussed in the vector space handout, the inner product must be modified for 

complex vectors to ensure that a vector’s inner product with itself is positive (inner 

Product property I4). 

1

2

...

j

j

j j

jn

a

a
v v

a

 
 
  
 
 
  

    and    

1 2
* * *...i i in

i i

a a a

v v

 
 

  †   

The BRA is represented as the complex conjugate of the transpose of the BRA column 

vector. 
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11 2

2

1 1 2 2

* * *

* * *

...

...
...

ji i in

j

i j i j in jn i j i j

jn

aa a a

a
a a a a a a v v v v

a

      
       
 
 
  

 †            [LT.10] 

 

Recall that the dagger t represents the Hermitian conjugate, the complex conjugate of 

the transpose. 

Exercise: 1 1 2 2 ....i i i in nV a e a e a e    ; give the corresponding representation of Vj|.  

Compute Vi|Vj using ei| ej = ij and 1 1 2 2 ....j j j njV a e a e a e      n Compare with 

[LT.10].

   For a change of basis (reference system), the components of the vectors obey a 

transformation rule.  The e-basis is our standard basis and the b-basis in some other 

orthonormal basis for the same space. 

 

1 1 2 2 1 1 2 2.... ....b b b
i i i in n i i in nV a e a e a e a b a b a b              

 

b
im m i m i ima b V b e a U a    

 


    

 

1 1 1 2 1 11

2 1 2 2 2 22

1 2

...

...

... ... ... ... ......

...

b
n ii

b
n ii

b
n n n nin

b e b e b e aa

b e b e b e aa

b e b e b e aa

  

in

 
    
    
    
    

        






;    

1 1 1 2 1

2 1 2 2 2

1 2

...

...

... ... ... ...

...

n

n

n n n n

b e b e b e

b e b e b e
U

b e b e b e

 
 
 
 
 
  

  

The inverse transformation just interchanges the role of the e’s and b’s. 

 

1 ;i j i j i j i jU e b U b       e  
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(See inner product space property I3.)  As the space is complex, 
*

i j j ie b b e , the 

inverse transformation is the complex conjugate of the transpose – that is: the 

Hermitian conjugate of the forward transformation matrix.      t 1 ( )*tU U     U

A matrix is a unitary matrix if its Hermitian conjugate is its inverse. 

Properties of an inner product: 

I1.   im inI M N I M I N c c                                        Distributive 

I2.  I d M d I M  where d is any scalar.                            Scaling 

I3. *
I M M I   asterisk means complex conjugate              'Hermitian' 

I4. 0I I   and 0I I   if and only if 0I  .                         Can be a Norm 

 

 

A matrix for which the Hermitian conjugate is the inverse is designated as a unitary 

matrix.  The basis transformations between orthonormal basis sets for complex vector 

spaces are unitary.  Unitary matrices are to Hermitian matrices what orthogonal 

matrices are to real symmetric matrices. (Real symmetric matrices are there own 

transposes and can be diagonalized by an orthogonal transformation. If a 

transformation is orthogonal, its inverse transformation is the transpose of the forward 

transformation. Hermitian matrices can be diagonalized using a unitary 

transformation.) 

11 12 13

21 22 23

31 32 33

U U U

U U U

U U U

 
   
  

  and  †= - as  
1,2,3 1,2,3i i

mi imi iU U U U 
 

  *
m   

†   
† = . 

Equivalently, the rows of a unitary matrix are the coefficients of normalized mutually 

orthogonal vectors under our standard inner product for complex spaces. 
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11 2

2 t
1 1 2 2

* * *

* * *

...

...
...

ji i in

j

i j i j in jn i j

jn

ij

UU U U

U
U U U U U U u u

U



      
       
 
 
  

   

The same statement applies to the columns considered as components of vectors. 

 

What happens to inner products? 

,

( )* ( )* ( ) ( )* ( )*b b
j m i m ms j s mt j t j s j t ms mt

m m s t s t m

a a U a U a a a U U                  

use:   t -1( )* ( )* ( ) ( )ms mt s m mt s m mt s m mt st
m m m m

tU U U U U U U U                       

( )* ( )*b b
j m i m j s j s

m s

a a a a      

Unitary transformations preserve inner products of vectors in complex spaces. In 

particular, each vector transforms into a vector of the same magnitude. 

 

Exercise: Use matrix properties to avoid the detailed component sums in the proof 

that unitary transformations preserve inner products v w v w    † †  if  = v  v ,  =  w  

w  and  -1 =  †. 

 

Hermitian Conjugate of an Operator: 

 

The plan is to drop back from the comfortable world of matrices and to use abstract 

vector space notation to review the action on operators and to define the Hermitian 

conjugate of an operator and from that to characterize Hermitian operators. To close 

the loop, the matrix representation of a Hermitian operator is necessarily a Hermitian 

matrix. 
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What does an operator do? An operator maps one vector in a space to another vector 

in that same space.  

ˆ ,i j i jo V V for V V  

Given a basis set for , the (linear) operator is completely characterized by its action 

on that basis. 

andi im m j jk
m k

V a e V a e  k   

ˆjk k m im km im
m m

a e o e a o  a   

The matrix representing the operator has elements okm = ˆk me o e . 

Exercise: The matrix that represents an operator has elements Omn  = 

ˆm O n m On ˆ . Show that Hermitian operators are represented by Hermitian 

matrices.  

 

 

Exercise: Show that if a Hermitian matrix is transformed using a similarity 

transformation with a unitary matrix that the result is also a Hermitian matrix. Given 

H = † and H  -1 =  † show that = ( † where H H H H   -1. Use matrix 

properties rather than detailed matrix element based proofs. 

 

Which way do operators operate?  Operators operate to their right. A few examples 

have included differential operators which are known to operate to the right. 

 * *( )( ( ) ) ( ( ) ) dfd
dx dxf xg x g x  

Given that ˆ io V V j , the rule is: 

   ˆ ˆm i m i m j m jV o V V o V V V V V    
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This prescription directs that the operator act to the right mapping iV  to jV  and that 

then the inner product of Vm and Vj be computed. Well, not exactly. An example 

follows in which some flesh is to be wrapped around this abstract skeleton. 

 

Hermitian conjugate takes the operator to the left. To define action to the left, a 

partner operator , the Hermitian conjugate is introduced. The Hermitian conjugate 

lives to act on the left (on the BRA part of the BRA-KET). It is defined by its action: 

ô†

ˆ ˆ ,m j m j j mo V V V o V V V  †  

That's it. The Hermitian conjugate of an operator ô is whatever it takes operating on 

the BRA vector to yield the same inner product as if the operator ô had acted on the 

KET.   

 

Example: Finding a Hermitian conjugate.  The abstract formulation above applies 

universally to all vectors spaces real and imagined providing information proportional 

to the inverse of its scope. Consider the space of all functions of x defined on the 

interval (a, b) that are continuously differentiable to all orders. Further all functions in 

the space have the property that f(a) = f(b). The operator is ˆ d
dxD   and the inner 

product is the function space standard. 

 *1
( ) ( )

b

a
g h g x h x dx

N
   

 *1ˆ ˆ ( )
b

a

dh
dxg D h g D h g x dx

N
    

Finally!  A use for Calculus II. Integrate by parts. 

      
** *1 1

( ) ( ) ( ) ( ) 0
bb b

a aa

d
dx

dgdh
dx dxg x dx g x h x h x dx g h

N N
          

   ˆ ˆ( ) d d
dx dxg D h D g h or    †  
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Note that the boundary conditions g(a) = g(b) and  h(a) = h(b) are assumed. These conditions are 

often stated as the functions are periodic with period b - a or that the functions vanish at a and b. 

 

 

The plan is to leave the comfortable world of matrices and to use abstract vector space notation to review the 

action on operators and to define the Hermitian conjugate of an operator and from that to characterize 

Hermitian operators. To close the loop, the matrix representation of a Hermitian operator is necessarily a 

Hermitian matrix. 

 

Hermitian operator: An operator is Hermitian if it is its own Hermitian conjugate. The example above 
d
/dx 

did not meet this standard, but all operators that represent physical observables do so let us press onward. 

What can be said about the matrix that represents a Hermitian operator? The matrix elements have the form: 

ˆ ˆ ˆ
k m k m k me H e e H e H e e  † . The last equality follows from the definition of the Hermitian 

conjugate operator. IMPORTANT: There is another process that moves things from the KET to the BRA. 

The third property of the inner product interchanges the BRA and KET at the cost of one complex conjugation. 

 

I3. 
*

I M M I   asterisk means complex conjugate              'Hermitian' 

*
ˆ ˆ ˆ ˆ

k m k m k m m ke H e e H e H e e e H e  † †  

If the operator is Hermitian, then = . Ĥ Ĥ †

* * *ˆ ˆ ˆ ˆ ˆ ˆ
k m k m k m m k m k m ke H e e H e H e e e H e e H e e H e    † † †  

Hkm = (Hmk )
*
      or         = (  t)* =  t 

The matrix representing the operator is equal to the complex conjugate of its transpose. That is: it's Hermitian. 

Hermitian is used to describes a bundle of features because all those features are related. 

 

Exercise: Consider the space of all functions of x defined on the interval (a, b) that are continuously 

differentiable to all orders. Further all functions in the space have the property that f(a) = f(b). The operator is 

ˆ d
dxd i    and the inner product is the function space standard. The factor 1i  . 

 *1
( ) ( )

b

a
g h g x h x dx

N
   

Find the differential operator representing .  Is  Hermitian?  Explain. d̂† d̂
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Exercise: Consider the space of all functions of x, a single real variable, defined on the interval (a, b) that are 

continuously differentiable to all orders. Further all functions in the space have the property that f(a) = f(b). 

The operator is ˆ x  and the inner product is the function space standard. 

 *1
( ) ( )

b

a
g h g x h x dx

N
   

Find the differential operator representing .  Is  Hermitian?  Explain. ̂† ̂
 

Operations that equal the identity when applied a second time their own inverses! 

**** Let’s find a term for this distinction. 

Unary minus:  - ( - A) = A 

Multiplicative inverse:  1/(1/A) = A 

Complex conjugate:  ( A * )
*
 = A 

Matrix transpose:  (  t ) t = 

Matrix Hermitian Conjugate:   (  t ) t  = 

Exercise: Use the definition of Hermitian conjugate and property I3 of the inner product to show that 

 ˆ ˆo 
†† o . Use ˆ ˆ ,m j m j j mo V V V o V V V †  . 

 

It is understood that operators act to the right so ˆm j m jV o V V o V ˆ . Adding the Hermitian conjugate 

operator: ˆ ˆ ˆm j m j m jV o V V o V o V V  † . Beware of a careless interpretations that arise from too 

much familiarity with Hermitian operators for which ˆ ˆ ˆ
m j m j m jV h V V h V hV V   as ĥ ĥ† . In 

general, the action direction and ordering of operators matters. 

 

The eigenvalue problem: 

Hermitian operators operate in a complex space and have eigenvectors with their 

associated eigenvalues.  

ˆ
i iH V V i                  Eigenvalue equation 

An eigenvalue might be found by solving a differential equation and applying 

boundary conditions. Only the matrix method is to be reviewed. 
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Considered in its matrix representation 

1 2
* * *...i i in

i i

a a a

V v

 
 

   †     ;    

1

2

...

j

j

j j

jn

a

a
V v

a

 
 
  
 
 
  

    ;          
*

i i i

t
V V V 

†  

ˆ
i i iH V V  jv = j

  jv   eigenvalue equation

         set           |  -   11 | = 0                      characteristic equation 

Find the set of n (for n x n ) eigenvalues.  Substitute each eigenvalue in turn into the 

eigenvalue equation and solve for the eigen-directions.  The scale of each eigenvector 

being set by normalizing once the eigenvalue equation provides the ratios of the 

various components. 

 

where the dagger ( t) represents the Hermitian conjugate, the complex conjugate of the 

transpose.  Compute the Hermitian conjugate of the eigenvalue equation. 

( jv = j
  ) t = (  jv jv †  t  = *

j jv  †  )   (in general) 

                                =  (  jv †  = *
jv j †  )      (for Hermitian) 

 

Theorem: The eigenvalues of a Hermitian matrix are real. 

jv†  jv = ( jv† )  =  ( jv jv† jv  )  associate the multiplication 

                             =  j  = jv† jv *
j jv †         use the eigenvalue equations jv

                  =  =    or  j j jv v  † *
j j jv v  † *

j j   real, no imaginary part 

Recall 

 that the inner product of a vector with itself is  is non-zero as long as  is not 

the zero vector 

j jv v †
j jv v †

 

Theorem: The eigenvectors of distinct eigenvalues are orthogonal. 
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jv† iv  -  jv† iv  = 0          a simple truth 

( jv† )  -  ( iv jv† iv ) = 0      associate the multiplication 

( *
j jv † )  -  (iv jv† i iv  ) = 0        use the eigenvalue equations 

( ) -  = 0            factor out constants  *
j j iv v  †

i j iv v  †

 * 0j i j iv v   † 



                eigenvalues assumed not equal 

  0j i j iv v   †                eigenvalues are real and distinct 

0j iv v  †    orthogonal eigenvector for distinct values 

 

Abstract Vector Space Notation. 

The previous theorems are to be repeated to demonstrate the abstract vector space 

notation and to exercise the definition of Hermitian conjugate and inner product 

property I3. The abstract notation proofs establish the results for all complex (and 

real) vector spaces. More abstract developments have a broader scope of validity.  

 

Begin with the eigenvalue equation for a Hermitian operator and a complex space. 

ˆ
i iH i    

 

Consider a matrix element of a Hermitian operator taken between two 

eigenvectors/states. 

Start with ˆ
i H j   which involves two distinct non-zero eigenstates. 

ˆ ˆ ˆ
i j i j iH H H j       †      acts right; move left by dagger-op 

*ˆ ˆ
i j i j j i j j iH H Ĥ          † †  eigenvalue equation plus I3 

* * *ˆ ˆ
j i j j i j i j i iH H          †       is a scalar and  ˆ ˆH H†
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* ** *
j i j j i i i j i i i j                   just a scalar and I3 

 * 0j i i j      

Theorem: The eigenvalues of a Hermitian operator are real.  

Choose i  = j.         * *0 0j j j j j j           

The eigenstates are nonzero so the self-inner product is real positive. It follows that j 

is real.  

                  All the eigenvalues of Hermitian operators are real. 

 

Theorem: Eigenvectors with distinct eigenvalues are orthogonal. 

   * 0j i i j j i i j                           used: eigenvalues are real 

  0j i i j       0                                       used: eigenvalues are distinct 

Eigenstates with distinct eigenvalue have zero mutual inner product; they are 

orthogonal. 

 

In cases in which the eigenvalues are degenerate, the independent eigenstates can be 

chosen to be orthogonal. Gram-Schmidt provides is a procedure suited to developing a 

mutually orthogonal set from an original set. 

 

 

The previous two proofs can be condensed if the abstract notation is pushed a 

little further. 

ˆ ˆ ˆ ,i j i j i j i jV O V V O V O V V V V  †    

Taken with property I3 and the eigenvalue relation 

*ˆ ˆ ˆ
j j j j j jO V OV o V O V o V   †

j  

You should attempt more economical proofs based on this relation. 
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How do you find the unitary matrix  that diagonalizes a Hermitian matrix ? 

This section is represented as 3D, but the development should be understood to be N 

dimensional. The solution follows from result previously derived.  Consider the 

generic representation of the eigenvectors and eigenvalue problem for a Hermitian 

matrix for a complex space where the left-hand equation is in the original coordinate 

representation while the right-hand is the form after transforming to the preferred 

basis set (the eigenvector basis) to yield the diagonal form of . 

11 12 13

12 22 23

13 23 33

1, 2,3
i i

i i i

i i

H H H a a

H H H b E b where i

H H H c c

     
           
          

   

/ /
1

/ /
2

/ /
3

0 0

0 0

0 0

i i

i i i

i i

E a

E b E b

E c c

    
         
         

a

  original basis                                          form in preferred basis  

The preferred frame has its axes along the eigen-directions (functions). The symbol i 

represents the eigenvalue of the Hermitian matrix (operator)  which has elements 

mn.   

Hence, after transformation, the normalized eigenvectors must be in the canonical 

form (up to a multiplicative phase which may be set to one):  

/ /
1 11 12 13 1 2 3
/ /

1 21 22 23 1 2 3
/ /
1 31 32 33 1 2 3

1 0

0 ; 1 ;

0 0

a U U U a a a

b U U U b b b

c U U U c c c

             
                             
                          

/

/

/

0

0

1

 

Recalling that the inverse of  is its Hermitian conjugate: 

/
11 21 31 11 21 311 1

/
12 22 32 1 12 22 32 1

/
1 113 23 33 13 23 33

* * * * * *

* * * * * *

* * * * * *

1

0

0

U U U U U Ua a

U U U b U U U b

c cU U U U U U

                                           

  

or 11 1 12 2 13 3
* *; ;U a U a U a*    

Each row of the unitary transformation matrix is the complex conjugates of the 

components of the corresponding N component eigenvector. 
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 =  
1 1 111 12 13

21 22 23 2 2 2

31 32 33 3 3 3

* * *

* * *

* * *

a b cU U U

U U U a b c

U U U a b c

  
      
      

 

Exercise: Each row of the transformation matrix  is the complex conjugate of an 

eigenvector. What are the columns of -1 ? -1 is the same as what other operation on 

? 

 

Hermitian matrices (operators) represent measurable values in quantum physics.  

The eigenvectors (functions) of these matrices (operators)  are orthogonal if they 

are associated with distinct eigenvalues.  The eigenvectors that correspond to a 

degenerate eigenvalue may be chosen to be orthogonal, and processes such as 

Gram-Schmidt can produce a suitable orthogonal set from an initial set.  

 

Unitary transformations preserve all inner products so the standard definition as 

the sum of the products of the KET components with the complex conjugate of the 

BRA component coefficients remains valid.  The eigenvectors can be unity 

normalized. 

11 2

2

1 1 2 2

* * *

* * *

...

...
...

ji i in

j

i j i j in jn i j

jn

aa a a

a
a a a a a a v v

a

      
      
 
 
  

 †  

A Hermitian matrix can be diagonalized by a unitary transformation.  The form of 

the transformation matrix is the collection of the complex conjugates of the 

eigenvectors as the rows of the matrix.  The orthonormal form of the eigenvectors 

for the complex space ensures that the matrix is unitary. 
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Oscillator space example:  This example is so simple that it can only illustrate basic 

features, but here it goes. 

 

Our oscillator space is the space of all solutions for the harmonic oscillator with unit 

frequency. 

/ /( ) 2 cos( ) 2 sin( ) it itx t c t d t c e d e                  

Proposed is a standard basis set  1 2ˆ ˆ( ) 2 cos( ) ; ( ) 2 sin( )e t t e t t   plus an alternative 

basis set for the space  1 2
ˆ ˆ( ) ; ( )it itb t e b t e  .   The normalizations have been chosen 

so that both sets are orthonormal using the inner product.  
2

0

*1
2 ( ) ( )f g f t g



  t dt  

Using our canonical recipe, the unitary transformation from the standard basis to the 

alternative basis has elements 

ˆ ˆ jij iU b e   for example   2

01

*
1

211 1
1

2
ˆ ˆ 2 cos( )itU b e e t dt



    

Continuing: 

 

 = 
1

2
1

2 2

i

i
2

 

  

  and hence  
†= 

1 1
2 2

2 2
i i

 
 
  

 

Let’s check this by computing  
† 

1 11
2 22 2

1
2 22 2

1 0

0 1

i

i ii





     
     
       

 =    (It works ! ) 

 

Suppose that the system has a solution vector: 

   1
2( ) cos( ) 2 cos( ) 0 2 sin( )x t t t t     

     

Transforming to the alternative basis, 
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/

/

1 1
22

1
2

1
2 2

1
2 2 0

i

i
c

d

      
      
       

 

Hence  

   1 1
2 2( ) cos( )it itx t e e          t    (It checks !) 

 

Now, let’s move on to operators.  There are few choices available as the problem is 

simple and as we need operators that map oscillator space into oscillator space.  

 

The time shift operator  : 2t t    

 

In the standard basis  2 22 cos( ) 2 cos( ) 2 sin( ) ; 2 sin( ) 2 sin( ) 2 cos( )t t t t t        t   

so 

0 1

1 0


 
   

  

The element m   is the -character amplitude in the output for unity (1) amplitude 

character m as the input for the operator. 



 

Develop   using the prescribed method: 

( ) 2 cos( ) 2 sin( )x t c t d t    
     

2 2ˆ ( ) 2 cos( ) 2 sin( )

2 cos( ) 2 sin( ) 2 cos( ) 2 sin( )

x t c t d t

d t c t a t b

           
                 t

 

The action of an operator on a function (vector) is to return a function (vector). That 

returned function has an expansion in terms of the basis set. A matrix relation 

summarizes the action of the operator: 

11 12

21 22

a c

b d

 
 
    

     
    

             mm
e e  

. 
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The element   m



 is the amount of   character in the result for a unit of m character in 

the input.  To find  11
 , one assumes a pure one input (c=1; d=0), and looks for one 

character in the result. 

 2ˆ ( ) 1 2 cos( ) 1 2 sin( )x t t  t      
     

There is none!  11
0.   For  21

 , assume a pure one input (c=1; d=0), and looks for 

character of type two ( 2 sin( )t ) in the result.  The result is (-1) times type-two 

behavior so  21
1.   

 

Exercise:  Extend this reasoning to find  12
  and  22

 . 

 

Alternatively, one can compute the elements using    mm
e e  

. 

 
2

11 0

2 2

0 0

1
2

1 1
2 2 2

ˆ2 cos( ) 2 cos( )

2 cos( ) 2 cos( ) 2 cos( ) 2 sin( ) 0

t t dt

t t dt t t dt



 




 

    

         



  
 

 
2

12 0

2 2

0 0

1
2

1 1
2 2 2

ˆ2 cos( ) 2 sin( )

2 cos( ) 2 sin( ) 2 cos( ) 2 cos( ) 1

t t dt

t t dt t t dt



 




 

    

        



  
 

Exercise:  Continue the    mm
e e  

 method to find  21
  and  22

 . 

 

 

Applying the time shift to the alternative basis,  ;it it it ite e e ei  i  . In the 

alternative basis each basis vector is mapped to a constant times itself. Clearly,   is 

diagonal in this basis. 

/ 0

0

i

i


 
   

  
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Transforming   to the alternative basis, ( / =     
-1=     t  ) 

/
1 11

2 22 2
1

2 22 2

0 0 1

0 1 0

i

i ii

i i

i i






        
                   

 0

0 
   (amazing !) 

The only other operator to be considered is time (reversal) inversion i


:  t t

 

Exercise: Show that in the standard basis, the time inversion operator matrix is: 

1 0

0 1
i

 
   


 

 

Exercise: Show that in the alternative basis, the time inversion operator matrix is: 

/ 0 1

1 0
i

 
  
 


 

 

Exercise: Show that time inversion transforms in the canonical fashion. 

/i


 =  i


  t 

 

Quantum mechanics is formulated in a complex vector space with Hermitian operators 

representing physical observables. 

 

Advanced Example:  DO  NOT  READ THIS  SEGMENT !! 

 

The topic is still oscillator space: 

Standard basis:  1 2ˆ ˆ( ) 2 cos( ) ; ( ) 2 sin( )e t t e t t    

Alternative basis:  1 2
ˆ ˆ( ) ; ( )it itb t e b t e   

The operator d/dt can be represented for each basis   
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0 1

1 0

d

dt


  


     std basis     

0

0

id

idt

 
   

  alternative 

It is interesting to note that in the standard basis: 
2

2

1 0

0 1

d

dt


   


      Compare:  

0 1 0 1 1 0

1 0 1 0 0 1

d d

dt dt

                        
 

The point of these representations of operators is that they represent the operators, 

actions and algebra; the representations work and can be adopted as a faithful 

substitute for the original problem.   

 

Continuing in the standard basis, 
3

3

0 1

1 0

d

dt


 

 


                  

4

4

1 0

0 1

d

dt

 
  

 
                

4

4

1 0

0 1

m

m

d

dt

 
  

 
 

4 1

4 1 0 1

1 0m

md

dt


 
  


               4 2

4 2 1 0

0 1m

md

dt


  
   

            4 3

4 3 0 1

1 0m

md

dt


  
  

 
 

 

As all the time derivatives are known, the time development operator can be formed.  

Recalling the Taylor’s series expansion: 
2

2
2

1 1
2! !( ) ( ) ... ...

n
n

nn
df d f d f

f t f t
dt dt dt

            

FUNCTIONS OF MATRICES   ARE DEFINED BY SUBSTITUTING THE 

MATRIX INTO THE  POWER SERIES  EXPANSION OF THE FUNCTION.  

Use:  0 ; 1  ; 2  ; . . .  

 

Now just substitute the corresponding matrices for each derivative and sum the 

infinite series to find  ….   Baloney !      Actually, the sum can be computed in this case as the derivative 

matrices separate into odd and even order sequences each with alternating signs.  Completing the sums yields matrices 

with elements that are cosine and sine.  The standard method however is to transform to a basis in which the operator 

matrix is diagonal.  This approach makes life ‘easy’. 
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Eigen-basis and diagonal forms to the rescue!   The alternative basis is the basis in 

which the time derivative is diagonal. 

Alternative basis:     1 2
ˆ ˆ( ) ; ( )it itb t e b t e   

 

0

0

id

idt

 
   

      
 

0

0

nn

nn

id

dt i

 
  

  
 

The nth power of a diagonal matrix is just a matrix with the nth powers of the original 

diagonal elements on its diagonal.  In our alternative basis, the time development 

operator becomes 

   

2

0 1 2
2

1 1
2! !

0 01 0 0
( ) .... ...

0 1 0 0 0

n

n
b nn

i ii
T

i i i

      
                            


 

 
 

 
 

 
 

 
 

0 1 2

0 1 2
1 1
2! !

0 0 0 0
( ) .... ...

0 0 0 0

n

b nn

i i i i
T

i i i i

         
            
                   

 



 

0
( )

0
b

i

i

e
T

e



 

 
   

 


 

 

How does the time-development operator work? 

 

Suppose that one has the state: ( ) it it a
x t a e b e

b
              

 

The time operator maps this state into the state at time t + . 

0
( )

0
b

i i

i i

a ae a
T

b be b

e

e

 

  

     
  


     

   


   


 

    ( )( )
t i ti it i it ii

T x t a e e b e e a e b e e                      


 

The time development by  operator transforms the state into the state that it will be at 

a time  later. 
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What about the standard basis? 

 

The time development operator can be transformed into the standard basis. UU is the 

transformation from standard to alternative so going the reverse direction: 

( )eT 


 = -1 ( )bT 


  ( -1)-1 =  t ( )bT 


       inverse of a unitary matrix 

                 = 
1 1 1

2 2 2 2
1

2 2 2 2

cos sin0

sin cos0

i

i

i

i i i
e

e



 





       
                 

 

Starting with ( ) 2 cos( ) 2 sin( )
c

x t c t d t
d

             
 

cos sin cos sin
( )

sin cos cos sine

c c c
T

d d d

d

c

          
         


            


 

 

   
cos sin

( ) cos sin 2 cos( ) cos sin 2 sin( )
cos sin

c d
x t c d t d c t

d c

  
          

  

            

   ( ) 2 cos cos( ) sin sin( ) 2 cos sin( ) sin cos( )x t c t t d t t             

  

( ) 2 cos( ) 2 sin( )x t c t d t          
     

It works in the standard basis as well. 

 

What could have been learned? 

A function of a matrix is computed by substituting the matrix into the power series 

expansion of the function.  Powers of diagonal matrices are easy to compute so it is 

easiest to transform to a basis in which the operator matrix is diagonal.  After the 

function of a matrix is computed, the result can be transformed to another basis using 

the canonical method, a similarity transformation. 
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Additional transformations and their consequences: 

Observers should be able to use the same form of the laws of physics even after more 

general transformations than rotations.  The Principle of Galilean Invariance states 

that any inertial observer can make valid observations.  That is: any observer traveling 

at a uniform velocity.  It is also assumed that information can be transmitted at infinite 

speed. [This is our view for this section – a view that is modified by Special 

Relativity.]  With signal propagation at infinite speed, one can synchronize clocks 

instantaneously over all space.  In Galilean relative all observers’ clocks agree keeping 

exactly the same time.   

 

Coordinate Transformation Equations for Galilean Relativity 

 

Assume that the origins of the primed and unprimed inertial systems coincided at t=0 

and that the primed observer moves at velocity u
  relative to the unprimed observer.  

As both systems are moving at uniform velocities (as they are inertial), their relative 

velocity  is also uniform. u


/ /;t t r r u   t
    

Derived transformations:  (take time derivatives of /r r u  t
   ) 

velocity:   /v v u 
    

acceleration:   /a a
   

relative velocity:    / /
2 1 2 1 2 1v v v u v u v v      
         

Velocities transform according to a rule ( /v v u 
   ) while accelerations, relative 

velocities, masses, time and forces are Galilean invariants. 

 

What does Galilean relativity say about possible physical laws?  One popular 

misstatement is that:  
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  net

dp d dm dv
mv v m F

dt dt dt dt
   

     

The force , the mass m  and the acceleration netF
 dv

dt


 are Galilean invariants.  The factor 

dm

dt
 (combination of mass and time) would be a Galilean invariant if it meant 

anything.  All this invariance would require that the only other factor  also be 

invariant if the equation were to be meaningful.  The transformation rule for velocities 

states that velocities are not invariant under Galilean transformations. 

v


 

In classical (pre-relativistic) physics, the mass of something is a constant.  One can 

have a rail car loaded with coal and throw the coal out of the car.  The mass of the car 

remains the same as does the mass of the coal.  Mass moves around, it does not 

change.  The factor dm

dt
 does not mean that the mass of something is changing, rather 

it is used to represent the rate at which mass is transferred into (or out of) an open 

system.  Consider the rocket equation. 

exhaust net

dv dm
m v

dt dt
 


F
     or  exhaust net

dv dm
m v

dt dt
   F
   

Note that  appears rather than exhaustv


v
 , the velocity of the rocket.  The velocity exhaustv

  is 

the velocity of the exhausted gases relative to the rocket; exhaustv
  is a relative velocity 

and hence a Galilean invariant.  Therefore it can appear in a valid equation in which 

all terms and factors are invariant.  Note that dm

dt
 is the rate at which fuel plus 

oxidizer is expelled from the rocket.  Is the mass of any thing actually changing?    

Some of the statements and conclusions of the previous paragraph must be modified when special relativity 

is considered.  The point was to show that transformation invariance could provide restrictions on the form 

of terms that can appear in physical laws.  In general the equations representing laws need not be 

invariant under transformation. The must be covariant. That is: the two sides of the equation must vary in 

the same fashion such that the equation remains valid.  
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Special relativity declares that there is a maximum speed at which information can be transferred leading 

to different final conclusions about hr transformation properties of physical quantities.  Nonetheless, the 

conclusions above are useful as approximations in cases in which all speeds are small compared to the 

speed of light. 

 

Exercise: In the Galilean context of the discussion just above, compare and contrast 

the situations in which an open topped coal car of mass 10,000 kg is rolling down a 

straight, level frictionless track with initial speed v = 10 m/s at t = 0 s.  In the first 

situation rain falls directly downward with no horizontal component of velocity 

relative to the earth and fills the car at the rate of 10 kg/s.  What happens to the car's 

speed? Develop an expression for v(t).  In the second situation, the 10,000 kg car is 

filled with 10,000 kg of water and rolling down the track at v = 10 m/s when a vertical 

drain pipe is opened on the underside of the car allowing the water to flow out at 10 
kg/s.  How does the car’s speed vary with time? What is the horizontal component of 

velocity of the water that has just exited the pipe?  Describe the location and 

orientation of a drain pipe that could be used to jet (rocket) the car down the track. 

 

The sad story of coupled oscillators and diagonalization 

 

The coupled oscillator problem requires that two real symmetric matrices,  and , 

be diagonalized.  The transformation to simultaneously diagonalize the two matrices 

is more complicated that a rotation.  It may be decomposed into three steps: a rotation 

to diagonalize ; a set of scalings to each coordinate to render a diagonalized  as a 

multiple of the identity and a final rotation to diagonalize whatever  has become 

after the first two steps.  As  is a multiple of the identity after the first two steps, the 

final similarity transformation does not disturb it.  was initially real symmetric, and 

it maintains its real symmetric form after the first two steps so it is guaranteed that a 
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final rotation can render it diagonal.  One of the problems is to prove that a similarity 

transformation of a real symmetric matrix that uses an orthogonal matrix preserves the 

symmetry of the matrix.  The proof that a scaling preserves it as well is not difficult. 

   The sad part of the story is that the scaling alters the inner product such that the 

components of the eigenvectors must be variably weighted.  This issue is discussed in 

the coupled oscillator handout where the mass matrix is proposed as the metric for the 

space. 

  11 12 13

21 22 23

31 32 33

i i i j

j

j

a b c m m m a

I J m m m

m m m c

b

  
     
     

 where  = 
11 12 13

21 22 23

31 32 33

m m m

m m m

m m m

 
 
 
  

 

shown as an example for three degrees of freedom.  This inner product has the 

dimensions of kg-m2.   

Any inner product that meets the defining behaviors may be used.  A proposed inner 

product of two normal modes might be proposed to be: 

  11 12 13

21 22 23

31 32 33

*
2

i i i j

j
i j

a b c m m m a

I J m m m b

m m m cj

 
    

                      

 

which has dimensions Joules.  (Note that the angular frequencies can be chosen 

positive by convention as it is their squares that arise as eigenvalues.) The extension 

of this proposal to a inner product of general (rather than just eigenvectors) vectors 

would need to be developed. That prescription would then need to be test for 

compliance with the four inner product axioms. If such a procedure could be found, it 

might be more attractive just because Joules are more familiar dimensions than kg-m2. 

 

P. K. Aravind, Geometrical interpretation of the simultaneous diagonalization of 

two quadratic forms, American Journal of Physics (April 1989) 57, 4, pp. 309-311. 

 

Could it get any worse?! 
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In the coupled oscillator problem, the kinetic energy and the potential energy are 

represented by homogeneous quadratic expressions. 

1 1
2 2i j i j i j i jKE m q q and PE k q q     

leading to the defining of two matrices: 

 =     and 

11 12 1

21 22 2

1

...

...

n

n

n n

m m m

m m m

m m

 
 
 
 
 
 

 

n


 = 

11 12 1

21 22 2

1

...

...

n

n

n n

k k k

k k k

k k n

 
 
 
 
 
 

  
 

These matrices can be chosen to be real symmetric.  Are they physical tensors? 
 

What do we know about rank two tensors? The components transform between frames 

according to a similarity transformation / =      -1 where  is the transformation 

for the components of a (vector) displacement. A rank two tensor has [ dimension ]2 

components. All components share the same units.  

 

Form the generalized coordinate vectors 

 1 1 2

2 t;

n

n

q q q q

q
q q

q

 
 
  
 
 
 



 


 

When transforming coordinates, the obey the general linear form 
q / =    and ( /)t = ( q q  ) t =  t q q  t 

where  is and the n x n matrix representing the transformation. The vector  follows 

the same transformation rule for time independent transformations. Next, recall that 

PE and KE are physical scalars. 

q

PE = 1/2   t q q  =  1/2  (
/) t q

/ /  scalar values are invariant q

Use the transformation rules. 

1/2   t q q  =  1/2  (
/) t q

/ / = 1/2 q  t q   t 
/  q  
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Hence 

=  t 
/ (the  t -object- form is called a congruent transformation)

This rule only represents a similarity transformation if  t = -1 which is not true for 

many coupled oscillator problems.  Yikes! It appears that 
 
and  fail the 'am I a 

tensor?' test. 

Sure they do.  A tensor has [ dimension ] 2 components. A tensor is a collection of 

components with the same dimension describing one thing.  The generalized 

coordinate position vector does not transform like displacement vector so all other 

bets are off. The matrices 
 
and  are just that: matrices of physical interest, not 

physical tensors with standard, good transformation properties. (Review the 

arguments that established that the inertia tensor obeyed the correct transformation 

rules. Count the elements and check that their dimensions agree.) 
 

The congruent transformations for the coupled-oscillator problem have the form: 

 = 
2 1 where 1 is a rotation that diagonalizes ,  is a diagonal scaling ( Sij = si 

ij = c m/
jj

 ) that maps the diagonalized = 1 ( 1)
t to a multiple of the identity c , 

and 
2 is a rotation to diagonalize  

2 1  ( 
2 1)

t (which is still real symmetric). 

In this transformed space, the eigenvectors have the standard metric, a multiple of . 

The transformed = 
2 1  ( 

2 1)
t is also a multiple of , so, after the inverse 

transformation,  can be used as the metric in the original basis of generalized 

coordinates.
Thoughts under devlopment !!!!!   DO NOT READ.      TO  ADD: 
transformations in abstract spaces 
s-p hybrid orbitals 
sp2   Use the picture of a triad and require equal s character in each => all have 1/roo(3) for S.  One with S and 2/3 in 
one P    1/root6 [root2,2,0] 
other  1/root6[root2,-1, +- root3] 
sp3  equal parts of S => amplitude 1/2  easy answers 
(1/2) * { [1,1,1,1]; [1,1,-1,-1]; [1,-1,-1,1]; [1,-1,1,-1] } 
 
Unitary and Hermitian 
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Recap mapping vs change of basis:  An operator mapping changes or associates each vector in the space into another 
vector in the space or perhaps in another space.  Under a change of basis transformation, nothing physics changes only 
the representations change. 
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