
Introduction to Linear Transformations – Tools and Problems 

Tools of the Trade 

Cyclic permutation of the rotation matrices: 

There are many examples in which the labels x, y, z are permuted to generate the corresponding form 

for another index once one is known.  The matrix form representing a rotation about the z-axis is 

known. 

z(φ) = 
cos sin 0
sin cos 0
0 0

φ φ

φ φ−

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

To generate the form for a rotation about the x-axis, the indices are permuted or cycled using the rule 

...x y z x→ → → →  .  This change shifts each element down one space and to the right one space. 

The elements roll-over to the top and left-side as they exit the bottom and right side. 

z(φ) =   
cos sin 0
sin cos 0
0 0 1

φ φ

φ φ−
⎡ ⎤
⎢ ⎥ →⎢ ⎥
⎢ ⎥⎣ ⎦

x(φ) = 
1 0 0
0 cos sin
0 sin cos

φ φ

φ φ−

⎡ ⎤
⎢ ⎥ →⎢ ⎥
⎢ ⎥⎣ ⎦

  y(φ) = 
cos 0 sin

0 1 0
sin 0 cos

φ φ

φ φ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Projection Operators: 

A projection mapping of 3D vectors into the x-y –plane served as an example in this section. The 

projection can be realized as an operator 
2

1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )x y m m
m

P i i j j e e→ −
=

= ⋅ + ⋅ = ⋅∑ . A common operation 

is to project one vector onto another using the inner product.  The following operator projects vector 

onto the direction of . B
11( ) ( )dir BP B B B B B B B

−−= ⋅ ⋅ = ⎡ ⎤⎣ ⎦ B .  The hallmark of a projection 

operator P is that PP = P. That is: repeating the projection any number of times yields the same 

result as applying the operation once. 
 

Warm-Up Problems: 

WUP1.) Draw a set of Cartesian axes to represent the unprimed coordinate system. The primed 

system is rotated by θ about the original z axis. That is: the primed and unprimed systems share a z 

direction, and the x′ and y′ directions make angles of +θ with their unprimed counterparts. Add the 

primed axis to your drawing and identify the angles θ. Prepare a second drawing that displays and 

details the x-y plane only. Use this drawing to identify the angles that separated each unprimed-

primed direction pair. Use your drawing to replace each element of z(θ) by the appropriate function 

of θ:                         ( z(θ) ⇒ rotation by θ about the z axis) 

Contact: tank@alumni.rice.edu 



z(θ) = 

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆˆ ˆ( ) ( ) ( )

i i i j i k

j i j j j k

k i k j k k̂

⎡ ⎤′ ′ ′⋅ ⋅ ⋅
⎢ ⎥

′ ′ ′⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥

′ ′ ′⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

 

WUP2.) Use the process described in WUP1, but adapted to generate the form of x(φ). 

WUP3.) Given that: y(φ) = 
cos 0 sin

0 1 0
sin 0 cos

φ φ

φ φ

−⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ , show that y(- φ) = [ y(φ)]t. 

WUP4.) Given that: y(φ) = 
cos 0 sin

0 1 0
sin 0 cos

φ φ

φ φ

−⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ , show that y(- φ) = [ y(φ)]-1. Compute the matrix 

product y(φ) y(- φ) explicitly. 

WUP5.) Given that: y(φ) = 
cos 0 sin

0 1 0
sin 0 cos

φ φ

φ φ

−⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ , compute the matrix product y(α) y(β) explicitly. 

Show that y(α) y(β) = y(α + β). Rotations about a fixed axis add. 

 

WUP6. The transformation matrix from an initial frame to one rotated about the origin has been 

identified as  = 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ˆˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ

i i i j i k

ˆ

j i j j j k

k i k j k k

⎡ ⎤′ ′ ′⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥′ ′ ′⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥′ ′ ′⋅ ⋅ ⋅⎣ ⎦

.  

a.) Compute y(π) x(½π) and x(½π) y(π). Comment on the outcomes.  

b.) Consider a rotation of ½π about the x axis followed by a rotation π about the y axis. Note that:  

for the overall rotation is ( y(π) x(½π). Sketch of the original coordinate triad { } followed 

by the triad as it appears after the first and second rotation. Compute the inner products of the final 

coordinate directions with the original ones to fill in the elements in the matrix 

ˆˆ ˆ, ,i j k

. Compare the result 

with your matrix product result. 

b.) Consider a rotation π about the y axis followed by a rotation of ½π about the x axis. Note that:  

for the overall rotation is x(½π) y(π). Make a sketch of the original coordinate triad { } ˆˆ ˆ, ,i j k
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followed by the triad as it appears after the first and second rotation. Compute the inner products of 

the final coordinate directions with the original ones to fill in the elements in the matrix . Compare 

your result with x(½π) y(π). 

 

 
 

Problems 

1.)  Consider the case of a primed frame rotated by θ about the z-axis relative to the unprimed frame 

and a double-primed frame rotated by φ about the z-axis relative to the primed frame. 
/
1 1
/
2 2
/
3 3

cos sin 0
sin cos 0
0 0 1

a a
a a
a a

θ θ

θ θ−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

=                

// /
1 1
// /
2 2
// /
3 3

cos sin 0
sin cos 0
0 0 1

a a
a a
a a

φ φ

φ φ−

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎥⎣ ⎦ ⎣

=

⎦

 

Apply the transformations in sequence to show that: 

( ) ( )
( ) ( )

//
1 1
//
2 2
//
3 3

cos sin 0
sin cos 0

0 0 1

a a
a a
a a

θ φ θ φ
θ φ θ φ−

⎡ ⎤ ⎡ ⎤+ +⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

=  

‘In sequence’ means that later operations (rotation matrices) are multiplied on the left. Use well-

known trig identities to cast your result in the final form.  Why is the result obvious? 

 

In this case, the two rotations can be applied in either order. 

cos sin 0 cos sin 0 cos sin 0 cos sin 0
sin cos 0 sin cos 0 sin cos 0 sin cos 0
0 0 1 0 0 1 0 0 1 0 0 1

φ φ θ θ θ θ φ φ

φ φ θ θ θ θ φ φ− − − −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

The order of rotations about a fixed rotation axis is unimportant. The order matters if the rotation 

axis directions are different because the first rotation reorients the axis for the second. 

 

2.)  Show that a similarity transformation of a real symmetric matrix with a real orthogonal matrix 

and its inverse results in a real symmetric matrix. Similarity: / =  
-1; Orthogonal:  

t =  
-1. 

Show that a (real) congruent transformation of a real symmetric matrix yields a real symmetric 

matrix. Congruent: / =  t. Note that a congruent transformation with a real orthogonal matrix 
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is a similarity transformation. It is expected that real symmetric matrices represent classical physical 

properties. It is therefore important that the real symmetric property is preserved. 
 

3.)  Show that a similarity transformation of a Hermitian matrix using a unitary transformation 

matrix and its inverse results in a Hermitian matrix. Hermitian: †= [( ]t = ;  Unitary: -1 = †. 

 

4.) Given the equation for an ellipse in standard form with major and minor axes parallel to the x and 

y axes, transform to the view from a frame rotated by θ about the z-axis.  Show that:  

( ) ( ) ( )/ 2 / / / 222 2 2 2 2
2 2 2 2 2 2 2 2

cos sin sin cos1 11 sin(2 )yx
a b a b b a a b

x x yθ θ θ θθ+ = → + + + + =− 1y  

that gives: ( ) ( ) ( )( )2 2 2 2
2 2 2 2 2 2

cos sin sin cos 1 11
2; ; sin(2 )

a b a b b a
A B Cθ θ θ θ θ= + = + = −  in the expression for 

an ellipse   / 2 / / / 22 1A x C x y B y+ + =

Is the angle θ used here the same as the one used in the discussion of the rotated ellipse in this linear 

transformations section? 

 

5.) Considering α as a matrix, what is the relation between the determinants |α | and | /α | where 

α  is the polarizability matrix and /α =  α  -1, the polarizabilty component matrix as measured 

in another coordinate system? The determinant of a matrix is a scalar as is the magnitude of a vector.  

How do we expect scalars to transform? 

 

6.) Consider a linear mapping of a vector space  into a space .  Show that the image of  in  

under the mapping is a vector space (the full space  or a subspace of ).  Assume that  and  

are vector spaces over the same field that is also the field for the linear map.  Note that most of the 

properties of addition and multiplication are not issues. Why?  What are the issues that must be 

addressed? 

 

7.) Consider a linear mapping of a vector space  into a space .  Show that the kernel of the 

mapping is a subspace of .  Assume that VV and  are vector spaces over the same field that is also 

the field for the linear map.  Note that most of the properties of addition and multiplication are not 

issues. Why?  What are the issues that must be addressed? 
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8.) Consider a linear mapping of a vector space  into a space .  Show that the set of images of a 

basis set  in  under the mapping is a spanning set for the image of  in .  Assume that  and 

 are vector spaces over the same field which is also the field for the linear map.  

 

9.) Consider a linear mapping of a vector space  into a space .  Show that the dimension of 

minus the dimension of the kernel of the mapping is equal to the dimension of the image of  in  

under the mapping. Assume that  and  are vector spaces over the same field that is also the field 

for the linear map. 

 

 

10.)  In the moment of inertia example, the claim is made that  could be computed by finding the 

transformed coordinates of the particles and exercising the formula:  

/ / 2 / /
i j

masses
i j i j

I m r x xα α
α

α α
δ⎡ ⎤= −⎣ ⎦∑  

 Please do so. Use the transformation equations:   (remember: θ = - sin-1(3/5) ) 

( )cos sin , sin cos ,x x y y x y zθ θ θ θ′ ′= + = − + z′ =  

to compute the coordinates of the masses in the rotated frame. Compute the moment of inertia tensor 

as observed in the rotated frame using the transformed coordinates.  Masses are neither vectors nor 

(rank two) tensors.  What is the transformation type for masses and inner products of vectors?  How 

do the values of the masses of each object compare as determined by the original observer and by 

the observer in the rotated frame? 

 

11.)  Referring to the Eulerian angles, compute the rotation corresponding to φ=π/2; θ= π/4; ψ=0 and 

to φ=0; θ= π/4; ψ= π/2.  How are the two rotation sequences related?  Are the resulting overall 

rotations equivalent?  What statement can you make that summarizes your observations? 
cos sin 0 1 0 0 cos sin 0
sin cos 0 0 cos sin sin cos 0
0 0 1 0 sin cos 0 0

( , , )
ψ ψ φ φ

ψ ψ θ θ φ φ

θ θ

φ θ ψ − −

−

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ 1

⎤
⎥
⎥
⎥⎦

12.)  It has been demonstrated that the coordinate dyadic transforms as a rank two tensor. 
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d ′  = d  -1 where [ d ]ij  is xi xj

Recall 
j

i j jix xλ′ = ∑  so: 

/ / /

, ,

1 1

, , ,

j j
m m

t

m m m

im m im m

im m im m im j

ij i j

mj j

d x x x x x x

x x x x d

λ λ λ λ

λ λ λ λ λ λ− −

= = =

= = =

∑ ∑

∑ ∑ ∑
 

a.)  Show that the Kronecker delta represents the elements of a rank two tensor in the sense that the 

elements transform according to the similarity transformation rule. 

b.)  Conclude that  a matrix with elements of the form: 2
i j i j i j

masses
I m r x xα α α α

α

δ⎡ ⎤= −⎣ ⎦∑  transforms 

as a rank two tensor given that mα and rα
2 are scalars. 

c.)  Conclude that  a matrix with elements of the form: 2

charges
3i j i j i jQ q x x rα α α α

α

δ⎡ ⎤= −⎣ ⎦∑  

transforms as a rank two tensor given that qα and rα
2 are scalars. 

 

 

13.) An operator  has the matrix representation
2 0 1
0 3 0
1 0 2

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 with eigenvalues {1, 3, 3}.     

a.)  Pick mutually orthogonal eigenvectors for these eigenvalues and use them to develop an 

orthogonal transformation matrix  that diagonalizes A . Verify that your eigenvector sequence is in 

right-hand order.  If not, multiply the third vector by negative one to make it so..  

b.)  Apply the resulting similarity transformation to demonstrate that A is transformed to a diagonal 

form with the eigenvalues as the diagonal elements. A′  =  A    -1; A′  diagonal.   

c.) Verify that each eigenvector is transformed to a canonical form for a coordinate direction by the 

transformation; that is: as viewed in the rotated frame in which  appears in a diagonal form. 

d.)  Choose an alternative ordering of the eigenvectors that is also right-handed.  Form the new  and 

diagonalize .  

e.) Give the equations for the transformation rules for a scalar, a vector and for a matrix operator 

under the action of the rotation described by . 
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f.) Note that  can be identified as a rotation about one of the Cartesian axes by some angle if you 

chose the original y axis as one of the eigen-directions. If you made some other choice, try to find a 

sequence of rotations of the { x, y, z} family that rotate the original coordinate directions into the 

eigen-directions. Make a sketch to show that this rotation or rotation sequence would take the 

original axes into the eigenvector directions. Note that the angle depends on the order that you chose 

for the eigenvectors. 

 

14.) Show that a rotation of π/2 about the x-axis can be effected by rotating by π/2 about the y-axis, 

followed by π/2 about the z-axis and followed finally by -π/2 about the y-axis. That is, show that:  

y(-π/2) z(π/2) y(π/2) = x(π/2).    Draw a coordinate triad and apply each action to verify the 

interpretation of the matrix multiplication. Continue to verify that: y(-π/2) z(θ) y(π/2) = x(θ) by 

multiplying the matrices.  

 

Note that the rotation matrices themselves transform using a similarity transformation. In a 

coordinate system in which the z-axis had been rotated to the original x-direction,  

a rotation by θ about the x-axis would have the form of a rotation about the z-axis by θ. z(θ) = 

[ x(θ)]/ =  x(θ) -1 where  is the transformation that rotates the original z-axis to the original x-

direction (  = y(π/2) ). It follows that: 
-1 z(θ)  = -1 [ x(θ)]/  = y(-π/2) z(θ) y(π/2) =  x(θ) 

Flipping the sense of the transformation, a rotation of θ about the direction  by rotating  into the 

z direction, applying 

n̂ n̂

z(θ), and then rotating the z direction back to the  direction. n̂

n(θ)  = ( n→z)-1 z(θ) n→z 

 

15.) Find a matrix  that represents a rotation taking the z direction into the direction ( 1 1 1
3 3 3,, ). 

Prepare a careful sketch and argue that a rotation of -π/4 about the z axis followed by a rotation by α 

about the x axis where sin(α) = - 2
3   and cos(α) = 1

3
 does the job. x(α) z(-π/4). Verify the 

result by showing that the vector ( 1 1 1
3 3 3,, ) in the original frame has components (0,0,1) after the 

 rotation. Compute the form of a rotation by θ about the direction  = (n̂ 1 1 1
3 3 3,, ) as n(θ)  
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-1 z(θ) . Verify the result by showing that n(2π/3) acts to permute the components of a vector: 

(x→y→z→x). Make a sketch showing that a 2π/3 rotation about  just interchanges the positions of 

the axes. 

n̂

. 

16.)  Consider the function space with basis set {cos(x), cos(2x) , cos(3x) , sin(x), sin(2x), sin(3x)}, 

and inner product ( )1 ( ) ( )i jf x f x dx
π

π π−∫  consisting of functions of the form 

1 2 3 4 5 6( ) cos( ) cos(2 ) cos(3 ) sin( ) sin(2 ) sin(3 )f x a x a x a x a x a x a x= + + + + +  

with function vectors: 

[ ]1 1 2 3 4 5 6

2

3

4

5

6

( ) ( )

a a a a a a a
a
a

f x f x
a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Show that the matrices for the linear operations d
dx

  and  
2

2

d
dx

 have representations as (the ^ is read 

as 'the operator matrix for'): 

 

0 0 0 1 0 0
0 0 0 0 2 0

ˆ 0 0 0 0 0 3
1 0 0 0 0 0

0 2 0 0 0 0
0 0 3 0 0 0

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

    and  
2

2

1 0 0 0 0 0
0 4 0 0 0 0

ˆ 0 0 9 0 0 0
0 0 0 1 0 0
0 0 0 0 4 0
0 0 0 0 0 9

d
dx

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

 

Mote that the elements of these matrices could be computed using ( )1 ˆ( ) ( )i jf x O f x dx
π

π π−∫  as the 

basis set is orthonormal. 

a.) Evaluate the result of each operator on ( ) cos(2 ) sin(3 )f x x x= −  which is  
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0
1
0

( )
0
0
1

f x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 

b.)  Compute the matrix for d̂
dx

 followed by d̂
dx

. 

 

17.)  Consider the space with basis set { x0, x1, … , xn, … } of functions of the form
0

( ) n
n

n

f x a
∞

=

= ∑ x  

with function vectors similar to those for the previous problem, but with index numbers running 

from zero to infinity.  Note that the basis set is not orthonormal and that no proper inner product has 

been defined. However, the basis set is independent so that unique operator matrices exist. 

a.)  Show that the matrices for the linear operations d
dx

 and multiplication by x  have 

representations as (the ^ is read as 'the operator matrix for'):    

 

0 1 0 0 ...
0 0 2 0 ...ˆ
0 0 0 3 ...
0 0 0 0 4
... ... ... ... ...

d
dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    and  

0 0 0 0 ...
1 0 0 0 ...

ˆ 0 1 0 0 ...
0 0 1 0 0
... ... ... 1 ...

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

That is: the operator matrix for the derivative with respect to x has zero elements with the exception 

of the counting numbers on the first super-diagonal. The matrix for multiplication by x has zero 

elements with the exception of the ones on the first sub-diagonal.  Recall that rows and columns are 

numbered from ZERO. 

b.)  Show that the matrix for d
dx

 x  - x
d
dx

  is the matrix all zero elements except for ones on the 

diagonal.  The difference of operators acting in reversed order is called a commutator.  The result 

above stated that d
dx

  and  x  do not commute. 
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c.) Show that ( )( ) ( ) ( ) ( )d dx f x x f x f x f x
dx dx

− = ∀ .  Equivalently, d
dx

 x  - x
d
dx

  is the identity 

operator for all differentiable functions. 

 

18.  The trace of a matrix is defined to be the sum of its diagonal elements. Tr[  ]  

Show that the trace of a matrix is invariant under a similarity transformation. 

i j i j
i j

mδ= ∑

 

19.  A standard problem in quantum mechanics* examines the energies of two states that are initially 

degenerate (have the same energy) when a small additional interaction couples the two states.  It 

begins with the matrix: 

0

0

E
E
Δ⎡ ⎤

⎢ ⎥Δ⎣ ⎦
 

a.)  Find the eigenvalues and eigenvectors for this matrix.  Represent the eigenvectors as column 

vectors.   

b.) Find the transformation matrix that diagonalizes the matrix.  Show that it works.  It happens that 

the matrix for the transformation is orthogonal, a special case of unitary.    

* One embodiment is the energies of the 2S and 2Pz state of a hydrogen atom placed in a uniform 

external electric field E . See pages 252-255 of the text by Schiff. k̂

 

20.  An interesting variant of the previous problem studies the matrix: 

0

0

E
E

ε
ε

+ Δ⎡ ⎤
⎢ ⎥Δ −⎣ ⎦

 

Examine the eigenvectors and eigenvalues for this problem. Represent the eigenvectors as two 

element column vectors.  Compare and contrast the results for the limits Δ << ε and ε << Δ.  This 

matrix is related to a problem in which two nearly degenerate levels are coupled by a perturbation. 

Eigenvalues: 2
0E 2ε± Δ + .  If ε = 0, the original states are degenerate and a small perturbation 

significantly mixes the two states leading to eigenvalue shifts that are linear in Δ.  If Δ << ε, then the 

eigenvalue difference 2 ε provides a stiffness against mixing and the mixing fraction goes to zero as 

Δ goes to zero. Further, the eigenvalues shift is quadratic in ε in this limit. In fact the shifts have the 

form  
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2
2ε

Δ that displays the original eigenvalue difference as a stiffness against change. 

 

21.  Search for the word theorem and the words preserve inner in this handout. Compare and 

contrast the roles of orthogonal and real symmetric matrices in real spaces and unitary and 

Hermitian matrices in complex spaces.  Recall the situation for real vector spaces. Compare the 

process to construct the transformation that diagonalizes the real and Hermitian operators in the two 

cases. 

 
REAL SPACES RESULTS: It is common that real symmetric matrices represent concepts 
(material properties) in classical physics.  The eigenvectors of these matrices are orthogonal 
if they are associated with distinct eigenvalues.  The eigenvectors that correspond to a 
degenerate eigenvalues may be chosen to be orthogonal, and processes such as Gram-
Schmidt can produce a suitable orthogonal set from an initial independent set.  
The Cartesian form of the inner product is our usual starting point.  Orthogonal 
transformations preserve inner products so the standard definition as the sum of the products 
of the corresponding components remains valid. => The eigenvectors can be unity normalized 

[ ]i i i j
t

j i j i j i j i j

j

a b c a
b a a b b c c v v
c

i jδ
⎡ ⎤
⎢ ⎥ = + + = =⎢ ⎥
⎢ ⎥⎣ ⎦

 

This form implies that the column vector is the KET for a vector while the row vector is the 
BRA. A symmetric matrix is its own transpose and can be diagonalized by an orthogonal 
transformation, a transformation represented by a matrix that has its own transpose as its 
inverse. The form of the transformation matrix is the collection of the eigenvectors as the 
rows of the matrix.  The orthonormal form of the eigenvectors ensures that the matrix is 
orthogonal. 
 
The transformation matrix that diagonalizes a real symmetric matrix has the eigenvectors of 
the matrix as the rows of the transformation matrix. 
 

COMPLEX VECTOR SPACES: For complex spaces the individual components of a vector can be 

complex.  A column vector of the components can still be chosen to represent the KET for a vector.  

However, in order to ensure that property I4 is satisfied by the inner product, the conversion from 

KET to BRA requires an adjustment in addition to transposing the KET. The complex conjugate of 

the transpose is taken.  The combined process of taking the transpose plus complex conjugate 
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adjustment is designated as taking the Hermitian conjugate. This process is the dagger (Hermitian 

conjugate) operation for the matrix representation of a complex vector space. The operators for 

(real) physical observables are represented by Hermitian matrices in matrix representations of a 

complex space.  A unitary transformation matrix is one that has its Hermitian conjugate as its 

inverse. Unitary transformations preserve the values of inner products. A Hermitian matrix can 

be diagonalized by a unitary transformation. The eigenvalues of a Hermitian matrix are real. The 

eigenvectors of a Hermitian matrix that correspond to distinct eigenvalues are orthogonal.The 

complex conjugates of the eigenvectors of a Hermitian operator appear ar the rows of the 

transformation that diagonalizes that operator’s matrix.  That is each row of the transformation is the 

complex conjugate of a column vector that represents an eigenvector. The resulting 

transformation matrix is unitary. 

 

 

22.  Operators and Change of Basis Functions  ******  problem needs to be checked 

Consider the space of functions of the form 

1 2 3 4

1 1 2 2 3 3 4 4

( ) 2 cos( ) 2 sin( ) 2 cos(2 ) 2 sin(2 )
( ) ( ) ( ) ( )

f x a x a x a x a x
a B x a B x a B x a B x

= + + +

= + + +
 

with function vectors: 

[ ]1 1 2 3 4

2

3

4

( ) ( )

a a a a a
a

f x f x
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

a.)  Show that the matrices for the linear operations d
dx

  and  
2

2

d
dx

 have representations as (the ^ is 

read as 'the operator matrix for'): 

 

0 1 0 0
ˆ 1 0 0 0

0 0 0 2
0 0 2 0

d
dx

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

    and  
2

2

1 0 0 0
ˆ 0 1 0 0

0 0 4 0
0 0 0 4

d
dx

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

Notice that the operator matrices separate into 2 by 2 diagonal blocks corresponding to each 

frequency subspace. 
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b.)  What is the value of the inner product for the various functions pairs? 

*1 ( ) ( )
2i j i jB B B x B

π

ππ −
= ∫ x dx  

c.) Evaluate the result of each operator on ( ) 2 cos( ) 2 sin(2 )f x x= − x  which is  

1
0

( )
0
1

f x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

d.)  Compute the matrix for d̂
dx

 followed by d̂
dx

. 

Next consider the change of basis functions to the form 

( ) ( )
( ) (

1 2

3 4

/ / / /
1 1 2 2 3 3 4 4

( ) cos( ) sin( ) cos( ) sin( )

cos(2 ) sin( 2 ) cos(2 ) sin( 2 )

( ) ( ) ( ) ( )

f x b x x b x x

b x x b x

b B x b B x b B x b B x

= + + −

+ + + −

= + + +

)x  

with function vectors: 

[ ]1 1 2 3 4

/ /2

3

4

( ) ( )

b b b b b
b

f x f x
b
b

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

e.) What are the values of the inner products of the various basis function pairs? 

/ / /* /1 ( ) ( )
2i j i jB B B x B

π

ππ −
= ∫ x dx  

f.)  Compute the transformation matrix  that maps the original basis set to this new basis set.  Each 

element Uij is the B/
I (x) behavior in BBj (x). For example, 

 / /*
11

1 1( ) ( )
2 2i j i jU B B B x B x dx

π

ππ −
= = =∫ . 

g.)  Apply the transformation to ( ) 2 cos( ) 2 sin(2 )f x x= − x  which is  

1
0

( )
0
1

f x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

to find 

1
2

1
/ 2

1
2

1
2

( )f x

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎣ ⎦
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h.)  Develop the matrices that represent the operators d̂
dx

 and 
2

2

d̂
dx

 for the new basis set by 

computing the derivatives and building the matrices. 

i.)  Apply a similarity transform using  to transform the operator matrices from the original basis 

representations to the representations in the new basis. 

 

23.) Verify that the eigenvectors are list in right-hand order in the moment of inertia example above.  

Interchange the eigenvector rows to form any other order.  Check that the order is right-handed.  If 

not multiply row three by negative one.  Verify that the new eigenvector set is right-handed.  Apply 

the new rotation to diagonalize the original moment of inertia.  Note that the result is diagonal, but 

different.  What has changed? 

 

24.) Consider the n x n matrices =
0 1
1 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 and  = 
0 1
1 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

.  Compare  and . 

Matrices with the property that  = -  are said to anti-commute. 

 

25.) The trace of a matrix is defined to be the sum of its diagonal elements.  

 Tr[  ]   (Assume that all matrices are n x n.) i j i j
i j

mδ= ∑

(a.) Show that Tr[  ] = Tr[  ].  

(b.) Show that Tr[  ] = Tr[ ]. 

(c.) Show that Tr[  ] need not equal Tr[  ]. See the problem above about matrices that do 

not commute. Choose  to yield a product with a trace. 

 

26.) Show that the product of two diagonal matrices is a diagonal matrix. Give the form of the 

diagonal elements of the product matrix. What is the determinant of a diagonal matrix?     (the 

diagonal matrices are square ⇒ n x n.) 

 

27.) Consider a transformation of coordinates that preserves the length of a vector in two 

dimensions.     We have   11 12

21 22

x x

y x

Va a V
Va a V

⎡ ⎤⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

/

/  and need to preserve the Euclidean length:  
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2/ /
11 12 21 22x y x y x y x yV V a V a V a V a V V V+ = + + + = +

2
 

Three relationships follow from matching the coefficients of Vx
2, Vy

2 and VxVy on both sides leaving 

one degree of freedom. Argue that the relations could be satisfied by choosing one pair of the aij 

equal to sinα and cosα and another pair equal to sinβ and cosβ. The coefficient of VxVy leads to a 

relation leading to two possible values for β given α. One must choose the solution for which the 

identity transformation [ a11 = a22 = 1; a12 = a21 = 0 ] is a possibility.  Use these guides to assign the 

values of the aij. Conclude that the form is: 

11 12

21 22

cos sin
sin cos

a a
a a

θ θ
θ θ

+⎡ ⎤ ⎡ ⎤
= ±⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

. 

With the overall plus sign, the transformation is a rotation with the degree of freedom is identified as 

the angle of rotation. The overall minus adds an inversion.   

 

28.)  Moments of inertia for a collection of point masses:  (See the Introduction to Eigenvalues 

handout.) 
2

i j i j i j
masses

I m r x xα α α α
α

δ⎡ ⎤= −⎣ ⎦∑  

Using the mapping: 1 2 3; ;x x x y x z↔ ↔ ↔ , for example x72 is the y coordinate of particle 7. 

 

x

y

 

 

 

m1:  1 kg @ (10m, 5m, 0m) 

 

m2:  1 kg @ (2m, 11m, 0m) 

 

m3:  1 kg @ (-10m, -5m, 0m) 

 

m4:  1 kg @ (-2m, -11m, 0m) 

 

a.)  COMPUTE the moment of 

inertia tensor for the four-mass 

distribution shown. The units 
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should be kg-m2. 

 

 I
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

  kg-m2    

b.) Lω = , the angular momentum of the rigid assembly of masses rotating at ω . The assembly can 

only rotate smoothly (torque-free) if L  is parallel toω . Consider ˆˆ ˆ1 1 1 ( /i j k rad sω ⎡ ⎤= + +⎣ ⎦ ) . 

Compute the angular momentum for this angular velocity. Compute the angle between the directions 

of and Lω

c.) The inertial tensor can be normalized by a rotation about the z axis by φ where cosφ = 4/5 and 

sinφ = 3/5. Find the values of the masses and their coordinates as measured by an observer in the 

frame rotated about the z axis by φ. Compute the elements of the inertia tensor as measured by 

that observer. 

 

29.) Moments of Inertia for Bodies with Rotational Symmetry:  The moment of inertial is real 

symmetric so it may be represented as:   = 
xx xy xz

xy yy yz

xz yz zz

I I I
I I I
I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. Give the array of values observed in a 

frame rotated by π/2 about the z axis relative to the original frame. Next suppose that the z axis is a 

four-fold rotational symmetry axis of the body. That means that the new form and the original form 

are identical. Conclude that:  = 
0 0

0
0 0

xx

xx

zz

I
I 0

I

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ . If the body has two distinct n-fold rotational 

symmetry axes with n ≥ 3, then the inertia tensor is proportionate the 3 x 3 identity. 

 

30.) Rotations:  Given the rotation matrices 

x

1 0 0
0 cos sin
0 sin cos

( ) θ θ

θ θ

θ
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, y

cos 0 sin
0 1 0

sin 0 cos
( )

α α

α α

α
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and z

cos sin 0
sin cos 0
0 0

( )
φ φ

φ φφ −
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦1

. 

 

a.) Give the matrix product that represents a rotation of π/2 about the x-axis followed by a rotation 
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of π/2 about the then z-axis followed by π/2 about the then y-axis.          You need not multiply the 

matrices. 

 

b.) Sketch an axis triad representing the x, y, and z directions before any rotations and then after 

each rotation described above. What additional rotation would return the triad to its original 

orientation?  
 

c.) A vector has a component representation ˆˆ ˆ2 11 7V m i m j m= + + k  in an original frame.  

Give the component representation of this vector in a frame rotated by φ  = cos-1(0.6) = + 53.130  

about the z axis relative to the original frame.  

 

31. Orthogonal Transformation: 

a.) The matrix    =   has eigenvectors: 
4 0 2
0 5 0
2 0 4

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

ˆ ˆˆ ˆ ˆ; ;
2 2

i k i k j
⎧ ⎫+ −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

. Find the eigenvalue for the 

second of these directions. 

b.) How are the eigenvectors related to , the orthogonal transformation matrix that diagonalizes 

AA. Give the explicit form of  . 

c.) Apply the resulting similarity transformation to demonstrate that AA is transformed to a 

diagonal form with the eigenvalues as the diagonal elements. AA  / =  AA   -1 ; AA  / diagonal. 

 

32.) Consider two arbitrary vectors (⇒ their components transform according to the vector rule) and 

show that their inner product is preserved by orthogonal transformations. 

 

33.) Show that if the eigenvectors are normalized and listed in RHR order, that the determinant of 

the associated transformations from the original axis set to the eigen-set is orthogonal with 

determinant one. That is: the transformation is a rotation. 

34.) Show that a rotation of π/2 about the y-axis can be effected by rotating by - π/2 about the x-axis, 

followed by π/2 about the z-axis and followed finally by  + π/2 about the x-axis. That is, show that:  

x(π/2) z(π/2) x(- π/2) = y(π/2).    Draw a coordinate triad and apply each action in turn to generate 

new triads to verify the interpretation of the matrix multiplication. Continue to verify that: x(π/2) 
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z(θ) x( - π/2) = y(θ). Note that the rotation matrices themselves transform using a similarity 

transformation. In a coordinate system in which the z-axis had been rotated to the original y-

direction, a rotation by θ about the y-axis would have the form of a rotation about the z-axis by θ. 

 

35.) a.) Show that: ( )
x y z

x y z

x y z

A A A
A B C B B B

C C C
⋅ × = . Conclude that ( )

x y z

x y z

x y z

A A A
A B C B B B

C C C
⋅ × =  ≥ 0 for 

vectors in right-hand-rule order.  b.) A proper orthogonal transformation (a rotation with no 

inversion) has a determinant of positive one. What does this tell you about the order in which the 

eigenvectors are inserted as rows to form the matrix  representing the transformation? 

 

36.)  Apply a rotation of θ about the z axis to the matrix   = 

5 3 0

3 3 0
0 0 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 to reach a diagonal 

form  / = -1. Use the method and results form the “Why would we ever use a rotation? - 

Consider an ellipse:” section. Identify the angle θ required and give the explicit form of . Next use 

the matrix eigenvalue approach to find the eigenvalues and eigenvectors. Create a 3 x 3 matrix  by 

arranging the eigenvectors in a RHR order and using them in sequence as the rows of . Does  

correspond to a rotation? If so, by what angle? How is that angle related to θ? Compare the 

eigenvalues with the diagonal values in  / = -1.  Compute  // = -1. Create a 3 x 3 

matrix  by arranging the eigenvectors in a distinct RHR order and using them in sequence as the 

rows of . Does  correspond to a rotation? If so, by what angle? How is that angle related to θ? 

Compare the diagonal elements in Compute  /// = -1 with those in  // = -1. Make and 

report an astute observation. Study the original matrix . What suggest that a rotation about the z 

axis might be adequate to reach a diagonal form rather than a more general rotation? 

 

37.) Compute e  where  is the matrix below. Use:  0 ; 1  ; 2  ; . . .  and a 

function  of a matrix is evaluated as the power series expansion of the function with the matrix 

replacing its argument.          (See problem 39 for a more important result.) 
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=  1 =          
0 0

0 0
0 0 1

θ
θ

⎡ ⎤
⎢−⎢
⎢ ⎥⎣ ⎦

⎥
⎥

2 = ?       3 = ?       4 = ? 

Begin by computing 0, 1, 2, 3 and 4. Extrapolate to 1+4n, 2+4n, 3+4n and 4n. 

You may use: n =  
11 12 11 12

21 22 21 22

0 0
0 0

0 0 1 0 0 1

nna a a a
a a a a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Write out the power series expansions for ex, cos(x) and sin(x).  Write out the first 6 terms in the 

expansion for ex explicitly with  substituted for x. Collect the terms in a single matrix with 

elements that are the sum of the corresponding elements of the various terms in the expansion of e . 

Sum the expressions in that appear as each element in the summed matrices. 

 

Answer:  e  = 
cos sin 0
sin cos 0
0 0 e

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

38.) Prove that: 
11 12 11 12 11 11 12 21 11 12 12 22

21 22 21 22 21 11 22 21 21 12 22 22

0 0 0
0 0 0

0 0 1 0 0 1 0 0

a a b b a b a b a b a b
a a b b a b a b a b a b

+ +⎡ ⎤ ⎡ ⎤

1

⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

, and hence that 

.   Note: 
11 12 11 12

21 22 21 22

0 0
0 0

0 0 1 0 0 1

a a a a
a a a a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

nn

11 12 11 12 11 11 12 21 11 12 12 22

21 22 21 22 21 11 22 21 21 12 22 22

a a b b a b a b a b a b
a a b b a b a b a b a b

+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

39.) A well-know representation of ex is [ ]lim 1
n

nxn
→∞

+ . Using the binomial theorem, one can expand 

the expression as:           [ ] 2 3( 1) ( 1)( 2)
2! 3!1 1 ( ) ( ) ( ) ...n n n n n nx x x xn n n nn − − −+ = + + + +  

[ ]
1 1 12 3(1 ) (1 )(1 2 )

2! 3!1 1 ( ) ( ) ...n n n nx n x x x
− − −− − −+ = + + + +  

In the large n limit, this becomes: 
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[ ] 2 3

0

1 1
2! 3! !1 1 ( ) ( ) ... x

m

mn xx n mx x x
∞

=

+ = + + + + = =∑ e

0

⎤
⎥
⎥
⎥⎦

 

The matrix for an infinitesimal rotation dθ about the z axis is: 

cos( ) sin( ) 0 1 0 0 0 0
lim sin( ) cos( ) 0 0 1 0 0 0

0 0 1 0 0 1 0 0
d small

d d d
d d d

θ

θ θ θ
θ θ θ

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− = + −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

 

The matrix for a rotation by a finite angle θ about the z axis follows by making a sequence of n 

rotations by the small angle θ/n.   

z(θ) = 
1 0 0 0 0

lim 0 1 0 0 0
0 0 1 0 0 0

n

n
n

n

θ

θ
→∞

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ + −⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 

Following the reasoning above, 

z(θ) = 
1

1 0 0 0 0
10 1 0 0 0

!
0 0 1 0 0 0m

m

m
θ

θ
∞

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢+ − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

∑
⎦

 

Begin by computing the various powers of the z rotation generator. 

=  1 =          
0 0

0 0
0 0 0

θ
θ

⎡ ⎤
⎢−⎢
⎢ ⎥⎣ ⎦

⎥
⎥

2 = ?       3 = ?       4 = ? 

Begin by computing:  1, 2, 3 and 4. Extrapolate to 1+4n, 2+4n, 3+4n and 4n. 

You may use: n =  
11 12 11 12

21 22 21 22

0 0
0 0

0 0 0 0 0 0

nna a a a
a a a a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Write out the power series expansions for cos(x) and sin(x).  Write out the first several terms in the 

expansion for sin(x) explicitly with  substituted for x. Collect the terms in a single matrix with 

elements that are the sum of the corresponding elements of the various terms. Sum the expressions in 

that appear as each element in the summed matrices. Congratulations, you have shown that a rotation 

by θ can be accomplished by making n rotations by θ/n. 

4/1/2008 Physics Handout Series.Tank:  Linear Transformations – Tools and Problems 20 



1 0 0 0 0 cos( ) sin( ) 0
lim 0 1 0 0 0 sin( ) cos( ) 0

0 0 1 0 0 0 0 0 1
n

n
n

n

θ

θ
θ θ
θ θ

→∞

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢+ − = −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦⎝ ⎠

⎤
⎥
⎥
⎥⎦

 

40.) Solve the eigenvalue problem associated with the moment of inertia example. 

( )
( )

( )

73 36 0 0
36 52 0 0
0 0 125 0

a
b
c

μ
μ

μ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦

               = 
73 36 0
36 52 0
0 0 125

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Find the eigenvalues and eigenvectors. Use them to generate the form of , the transformation that 

diagonalizes the original matrix . Compute    -1 =    t to display the diagonal form. Verify 

that the eigenvalues appear on the diagonal in the row in which the corresponding eigenvector 

appeared in . 

 

41.) Special Quantum Mechanics Sample Problem.  A standard problem in quantum mechanics 

examines the energies of two states that are initially degenerate (have the same energy) when a small 

additional interaction couples the two states.  It begins with the Hamiltonian matrix: 

0

0

ˆ E i
H

i E
Δ⎡

= ⎢− Δ⎣ ⎦

⎤
⎥  where Eo and Δ are real values 

Note: Δ is a small positive energy; the symbol does not indicate an increment. 

The quantum states would be represented in terms of a set of basis wavefunctions – say the 

hydrogenic |2S〉 and |2Po〉. A column vector represents a mixed state. 

|ψ〉 = a |2S〉 + b |2Po〉      where |a|
a
b

ψ
⎡ ⎤

→ = ⎢ ⎥
⎣ ⎦

2 = |b|2 = 1  so that |2S〉    and  |2P
1
0

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
o〉  

0
1

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
 

The inner product 〈φ|ψ〉 = 
* *a b a

b
φ φ ψ

ψ

φ ψ
⎡ ⎤ ⎡ ⎤⎣ ⎦ =⎢ ⎥

⎢ ⎥⎣ ⎦

† . The eigenvalue relation and eigenvalue equation 

become:       and 0

0

j j
j

j j

a aE i
bi E

ε
Δ ⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥− Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦b
0

0

0
E i

i E
ε

ε
− Δ

=
− Δ −

. The normalized eigenvectors are 

formed as:  
2 2

1
| | | |

i
i

ii i

a
e

ba b

⎡ ⎤
= ⎢ ⎥

+ ⎣ ⎦
. 

The problem is the same as our classical physics eigenvalue problems except that real symmetric is 

replaced by Hermitian (a matrix equal to the complex conjugate of its transpose), and orthogonal is 
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replaced by unitary (the inverse is the complex conjugate of the transpose), and a and b can be 

complex as can the elements of all matrices. The rows of the unitary matrix that diagonalizes the 

hamiltonian are the complex conjugates of the coefficients for the eigenvectors. 

a.)  Show that the Hamiltonian matrix is Hermitian. That is: ˆ ˆH H= † .  

b.) Find the eigenvalues for the Hamiltonian matrix. Are they real? 

c.) Find the normalized eigenvectors and note which has which eigenvalue. 

d.) Form the transformation matrix.  = 
* *
1 1
* *
2 2

a b
a b

⎡ ⎤
⎢ ⎥
⎣ ⎦

. It can be said that each row is the Hermitian 

conjugate of an eigenvector (⇒ one of the ). ie†

e.) Show that  is unitary. Compute . 

f.) Compute    and 1e 2e . Comment on the forms of the results. 

g.) Compute  = H ′ H . Comment on the form of the result. 

0

0

ˆ E i
H

i E
Δ⎡ ⎤

= ⎢ ⎥− Δ⎣ ⎦
, Ĥ i

t
ψ ψ∂

=
∂

  ⇒  0 0

0 0

a
t

b
t

E i E a i ba
i

i E i a E bb

∂
∂

∂
∂

Δ + Δ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− Δ − Δ +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

h.) Write out the equations for ∂a/∂ t and ∂b/∂ t. In the absence of mixing (Δ = 0), show that: 
0( / )( ) (0) i E ta t a e−=  and .  This means that |a|0( / )( ) (0) i E tb t b e−= 2 and |b|2, the probabilities for the 

system to be found in the 2S and 2Po states, do not change in time if Δ is zero (the hamiltonian 

appears in a diagonal form).  

i.) In the case of mixing (Δ ≠ 0) with the system starting in the 2S state at t = 0:  

0

1
( 0) 2

0t
t Sψ

=

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
 

Show that b(t) is approximately:  
1a

b
t

a
=

∂
∂

Δ⎡ ⎤= − ⎣ ⎦  and ( )( )b t tΔ≈ − for very small times t. Hence 

the probability for the system to be found in the 2Po state, |b|2 grows as a quadratic in time for very 

small times. 

j.) What units must the elements in the Hamiltonian matrix have? What are the units of the 

combination ( tΔ− )  which represents b(t) for small times t? 
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The perturbation, the small additional piece added to the hamiltonian, has off-diagonal elements. 

The action of these elements is to mix the states that correspond to the index values for those 

elements. 

 

42.) Almost a Vector: Consider angular momentum defined as the cross product where L r p= × r  

and p  are both vectors with proper transformation properties. Show that Li = | | λij Lj.  

That is: angular momentum transforms like a vector under orthogonal transformations with det =1, 

and it changes signs under orthogonal transformations with det = -1.  Orthogonal transformations 

with det = 1 are called proper and are the rotations. Orthogonal transformations with det = -1 are 

called improper and are the rotations plus a single (or odd number of) inversions. 

As background, one should review the definition of determinant. Implicit summation notation may 

be confusing in this case so you should adopt an explicit summation convention. Using this 

convention, use Li = εijk xj pk and establish that 
3

, , 1
ijk i mj nk

i j k

ε λ λ λ
=

∑  = ε mn | |. 

A quantity that transforms according to the rule vi = | | λij vj is called a pseudo-vector or an axial 

vector. This potential for a sign change is thought provoking, but not a real issue with regard to the 

physical outcome of a situation. Cross products are always used in pairs! In the case of angular 

momentum, the LAW is ( )L r p r F
t t

∂ ∂
= × = ×

∂ ∂
. In the case of magnetism, a cross product is used to 

define the field as: 3
0

( )
4
s s sp

p
sp

q v r
B r

rπε
×

= . The field is just our bookkeeping device. We don’t have 

physics until we find the force on another charge.  
due to others

( )
pq p p pF q v B r= × . Cross products appear in 

pairs so the final physics is not changed as there are always two factors of | | between the cause and 

the effect. One could even adopt the left-hand rule as long as one used it consistently. 

 

43.) Show that the inner product of two vectors is a scalar.  Show that the inner product of two 

vectors 
3

1
m m

m

A B A B
=

⋅ = ∑  transforms as a scalar under an orthogonal transformation. 
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44.) Given a displacement: , someone proposed a metric Δx + Δy + Δz. Consider the vector 

. Use it to show that τ = Δr

rΔ

ˆˆ ˆ1 1 1r i jΔ = + + k x + Δry + Δrz is not a scalar. Do this by computing τ′ for 

the special case the  is z(θ). Show that τ fails to transform as a scalar. An alternative proposal for 

a metric is σ = |Δx| + |Δy| + |Δz|.  Why is this alternative call the taxi cab metric? Could it be a 

proper scalar? 

 

45.) The components of vectors transform according to the rule a′ =  . For a sequence of 

transformations such as 

a

1 followed by 2, the overall transformation follows the rule a′′ =   

where 

a

2 1. The component matrix for the polarizabilty follows a more complex rule. α ′ = 

 α -1. Apply the transformations in sequence: α ′ = 1 α 1
-1 followed by α ′′ = 2 α ′ 2

-1. Does 

the rule  α -1 with 2 1 agree with your result? Explain. 

 

46.) Consider the physical matrix  = 

7 3 0

3 5 0
0 0 10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. What property does  posses that we expect 

of a matrix the represents a physical property? Use the rotation results from the moment of inertia 

example to identify the rotation about the z axis that would diagonalize this matrix. Compute z(φ) 

 [ z(φ)]-1. Find the eigenvalues and eigenvectors for  and discuss the results. Form a 

transformation matrix  by placing the eigenvectors in RHR order and then using them in turn as the 

rows of . Compare the result with z(φ). 

 

 

47.) Tensors exist or they do not. They do not appear in one coordinate frame and disappear in 

another.  Read the complete problem statement and then think. 

The rule for transforming the representation of a vector is: 

F ′  =             F
j

i j jiF Fλ′= ∑  

All physical vectors transform using the identical rule. As vectors transform using one power of  

they are designated tensors of rank one.  
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Tensors of rank two such as the (moment of) inertia tensor or the electric quadrupole tensor are 

physical entities or fields that have as many components as the dimension of the universe raised to 

the second power with these components following the transformation rule are tensors.  

α′ =  α    -1 =  α    t ;  
, , ,

t
i m m j i m m j i m j m

m m m
ijα λ α λ λ α λ λ λ α′ = = =∑ ∑ ∑

r r

 

Tensors of rank r:  Physical entities or fields that have as many components as the dimension of the 

universe to the r power and have components that obey the transformation rule:  

1 2 1 1 1 2 1 2

1 2

... ....
....

...
r r

r

i i i i j i j i j j j j
j j j

α λ λ λ α′ = ∑  

Show that if all the components of a tensor are zero in one coordinate system, that they are all zero 

in any coordinate system. Assume that λ is the linear transformation for the change of coordinates. 

Conclude: If a physical tensor has at least one non-zero component in a coordinate system, then it 

must have at least one non-zero component in every coordinate system. We have focused on 

rotations, but any linear transformation should be allowed. 

48.) The matrix representations for rotations about the Cartesian axes are: 

x

1 0 0
0 cos sin
0 sin cos

( ) θ θ

θ θ

θ
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

; y(θ) = 
cos 0 sin

0 1 0
sin 0 cos

θ θ

θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and  z

cos sin 0
sin cos 0
0 0

( )
φ φ

φ φφ −
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦1

k

a.) Give the matrix that represents a rotation of π/2 about the y-axis followed by a rotation of π/2 

about the then x-axis. Complete the matrix multiplication.  

b.) A vector V has a component representation  in an original frame.  

Give the component representation V

ˆˆ ˆ75 50 25V m i m j m= + +

′  of this vector in a frame rotated by φ  = cos-1(0.8) ≈ 

+ 36.870 about the y axis relative to the original frame. Compute the square root of the sum of the 

squares of the components in two coordinate system representations: V and V .  ′

c.)  A tensor  has the representation 
4 3 2
3 6 1
2 1 3

A
⎡ ⎤
⎢ ⎥⇒ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 in the original frame. Using the 

transformation matrix  = 
cos 0 sin

0 1 0
sin 0 cos

θ θ

θ θ

−⎡ ⎤
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥ , write down the explicit matrix multiplication that 
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would give A′ , the form of the matrix as expressed with respect to the basis vectors of the rotated 

frame.  

 

************************************************* 

5B.) Prove that if a real symmetric matrix is transformed using a similarity transformation that the 

result is also a symmetric matrix. 

 

5C.) Prove that the trace of a matrix is invariant under a similarity transformation using an 

orthogonal transformation. 

 

X2. (2%)  Prove that | | =±1 for an orthogonal relation. Use  t =  -1 and the properties of 

determinants. (Note that a rotation matrix has determinant +1. Orthogonal transformations are the 

rotations ⊕ inversions.) 

 

X3.) Consider two arbitrary vectors (⇒ their components transform according to the vector rule) and 

show that their inner product is preserved by orthogonal transformations. 
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Hermitian operator: An operator is Hermitian if it is its own Hermitian conjugate. The example above d/dx did not meet this 

standard, but all operators that represent physical observables do so let us press onward. What can be said about the matrix that 

represents a Hermitian operator? The matrix elements have the form ˆ ˆ ˆ
k m k m ke H e e H e H e e= = †

m . The last 

equality follows from the definition of the Hermitian conjugate operator. IMPORTANT: There is another process that moves things 

from the KET to the BRA. The third property of the inner product interchanges the BRA and KET at the cost of one complex 

conjugation. 

 

I3. 
*I M M I=   asterisk means complex conjugate              'Hermitian' 

*ˆ ˆ ˆ ˆ
k m k m k m m ke H e e H e H e e e H e= = =† †

 

If the operator is Hermitian, then = . Ĥ Ĥ †

* * *ˆ ˆ ˆ ˆ ˆ ˆ
k m k m k m m k m k m ke H e e H e H e e e H e e H e e H e= = = = =† † †

 

Hkm = (Hmk )
*

      or         = (  t)* =  t 

The matrix representing the operator is equal to the complex conjugate of its transpose. That is: it's Hermitian. Hermitian is used to 

describe a bundle of features because all those features are related. 

 

Exercise: Consider the space of all functions of x defined on the interval (a, b) that are continuously differentiable to all orders. 

Further all functions in the space have the property that f(a) = f(b). The operator is ( )ˆ d
dxd i= −  and the inner product is the 

function space standard. The factor 1i = − . 

( )*1 ( ) ( )
b

a
g h g x h x dx

N
= ∫  

Find the differential operator representing: .  Is  Hermitian?  Explain. d̂† d̂
Note: The condition f(a) = f(b) is crucial. It can be arbitrarily imposed, but it occurs more naturally for functions that are periodic 

with period b - a or that vanish at a and b. 
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Exercise: Consider the space of all functions of x, a single real variable, defined on the interval (a, b) that are continuously 

differentiable to all orders. Further all functions in the space have the property that f(a) = f(b). The operator is ˆ x=  and the inner 

product is the function space standard. 

( )*1 ( ) ( )
b

a
g h g x h x dx

N
= ∫  

Find the  operator representing: .  Is  Hermitian?  Explain. ˆ† ˆ
 

Operations that equal the identity when applied a second time are call idempotent.  

Unary minus:  - ( - A) = A 

Multiplicative inverse:  1/(1/A) = A 

Complex conjugate:  ( A * )* = A 

Matrix transpose:  (  t ) t = 

Matrix Hermitian Conjugate:   (  t ) t = 

Exercise: Use the definition of Hermitian conjugate and property I3 of the inner product to show that ( )ˆ ˆo o=
††

. Use 

ˆ ˆ ,m j m j j mo V V V o V V V= ∀† ∈ . 

 

It is understood that operators act to the right so ˆm j m jV o V V o V⇒ ˆ . Adding the Hermitian conjugate operator: 

ˆ ˆ ˆm j m j m jV o V V o V o V V⇒ = †
. Beware of a careless interpretation that arises from too much familiarity 

with Hermitian operators for which 

 ˆ ˆ ˆ
m j m j m jV h V V h V hV V⇒ =  as ˆ ˆh h=†

. 

In general, the action direction and ordering of operators matters. To the right is right. 
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	36.)  Apply a rotation of  about the z axis to the matrix  M =   to reach a diagonal form M / =  M -1. Use the method and results form the “Why would we ever use a rotation? - Consider an ellipse:” section. Identify the angle  required and give the explicit form of . Next use the matrix eigenvalue approach to find the eigenvalues and eigenvectors. Create a 3 x 3 matrix S by arranging the eigenvectors in a RHR order and using them in sequence as the rows of S. Does S correspond to a rotation? If so, by what angle? How is that angle related to ? Compare the eigenvalues with the diagonal values in M / =  M -1.  Compute M // = S M S-1. Create a 3 x 3 matrix T by arranging the eigenvectors in a distinct RHR order and using them in sequence as the rows of T. Does T correspond to a rotation? If so, by what angle? How is that angle related to ? Compare the diagonal elements in Compute M /// = T M T-1 with those in M // = S M S-1. Make and report an astute observation. Study the original matrix M. What suggest that a rotation about the z axis might be adequate to reach a diagonal form rather than a more general rotation?

