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Recommended as prerequisites 

 Vector Calculus   

 Coordinate systems 

 Separation of PDEs  - Laplace’s equation 

 

Concepts of primary interest: 

 Consistent expansions and small parameters 

 Multipole moments 

  Monopole moment 

  Dipole moment  

  Quadrupole moment 

 

Sample calculations:  

 Decomposition example 

 Quadrupole expansion with details 

 To Add:  Energy of a distribution in an external potential 

 Using Symmetry to Avoid Calculations 

 

Tools of the trade: 

 Taylor’s series expansions in three dimensions 

 Relation to the Legendre Expansion in Griffiths 

 Using Symmetry to Avoid Calculations 

 

A multipole expansion provides a set of parameters that characterize the potential due 

to a charge distribution of finite size at large distances from that distribution. The goal 

is to represent the potential by a series expansion of the form: 
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


                                     [MP.1]     0 1 2( ) ( ) ( ) ( ) ...V r V r V r V r  
  

            total =   zeroth order +   first order   +   second order + … 

where each term  is proportional to ( )nV r
  { }( ' )

ncharge size of the distribution
distance distance to field pointCoulomb s Constant .  

The small expansion parameter is  { }
size of the distribution

distance to field point  or  {
typical linear dimension
distance to field point}  and n is the 

order of the term in the small parameter. 
 

The Coulomb integral provides an exact expression for the electrostatic potential at 

points in space. 

               
3

0

1
4

( )
( )

r d r
V r

r r
  



                         [MP.2] 

The symbol d3r' represents a volume element for the source (primed) coordinates, r
  is 

the position vector for the source charge and r
  is the position vector for the field point 

at which the potential is to be computed. The equation directs that a "sum" over the 

source charges be computed. Repeating this sum for each field point r  would be a 

daunting task. Instead, the denominator is to be expanded in a power series in the 

primed sources coordinates, the coordinates over which one must integrate, so that a 

few integrals over the source coordinates can be computed once and then reused to 

approximate to the potential at many field points 



r


.  We want an approximation that 

can be evaluated again and again for new field points without any requirement to 

compute any additional integrals over the source coordinates. 

Defn:  
     2 2 2

1 1
( ; ) ( , , ; , , )D r r D x y z x y z

r r x x y y z z
   

       

 
     

3 3
0 1 2

0 0

1 1
4 4( ) ( ; ) ( ) [ ( ; ) ( ; ) ( ; ) ...] ( )V r D r r r d r D r r D r r D r r r d r             

             

Given that the field point coordinates x, y, z are fixed during the integrations, a Taylor's 

series expansion in the source point coordinates x', y', z' about (0,0,0) provides an 

approximation of the source coordinate dependence of ( ; )D r r
 

.    Adopt the standard 

subscript-component conventions: [x' = x1', y' = x2' and z' = x3' ] 
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    
23 3

1 , 10 0

1
( ; ) ( ;0) 0 0 0 ......

2!i i
i i ji i jr r

D D
D r r D r x x x

x x x  

         
     
 

j
  

 

0 1 2( ; ) ( ; ) ( ; ) ( ; ) ....D r r D r r D r r D r r     
       

  

Note that the derivatives are evaluated at 0r 


. This expansion is expected to be 

useful only if the successive terms get smaller rapidly. We will find that if no source 

charges are farther than r'max from the origin then the expansion may be useful for r  > 

r'max.   That is:  at field points outside the source distribution.  

 

To begin, 
     2 2

1
( ; )D r r

2
x x y y z z

 
     

 


 and 1

( ; ) ( ;0)oD r r D r
r

 
  

. 

 

Using the zero order D,  the monopole (20 – pole) contribution follows: 
 

     
3

3
0 0

0 0

1 1
4 4

( )( ) ( , ) ( ) total

o

Q
r

r d rV r D r r r d r
r 4 

        

   
                    [MP.3] 

Point Question: The integration is over source coordinates. After the integration, the 

result  only depends on which coordinates? 0( )V r


 

It is not surprising that the simplest approximation for large distances is to consider the 

distribution to be a point charge Qtotal located at the origin. The distribution looks like a 

point charge of charge equal to the net or total charge of the distribution when viewed 

from very large distances. 
 

Computing 
1

D D

x x

 


  
 reveals the form of the next term in the expansion. 

  

     

     
 

     

1
2

3/22 2 2

3/2 3/22 2 2 2 2 2

2
1

x x
xx x

x r r x x y y z z

x x x

x y zx x y y z z



 


                     


 
             

 
 

for (x',y',z') = (0,0,0). 
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Exercise: Given 
1

D D

x x

 


  
, what are 

2

D

x




 and 
3

D

x




? 

 

As always, the derivatives are to be taken using a form of  ( ; )D r r
   that explicitly 

displays its dependences on all six coordinates. The results are evaluated for x' =  y' = 

z'  = 0 only after the derivatives have been taken. Take care not to evaluate a function 

using  specific values of its arguments prior to computing derivatives.  

 

The dipole (21 - pole) contribution:     

                      
3 3

3 3 3
1

1 1
0

( , ) i i i
i ii r

D  D r r x r x x r xx yy zz r r r
x

  

 


         


 


        

 

3

3

1 3

3

3
0 0

( )1
4 44

( )( )
o

r r r d r

r
p r

r
r r r d rV r

r


 




          
      

          [MP.4] 

                             where 3( )p r r d   r
  

                         [MP.5] 

The first correction to  is the contribution due to a point dipole 0( )V r


p


 at the origin 

where p


 is the net dipole moment of the source charge distribution.  

 

(A physical dipole could be represented by the distribution with - q at 1
2

  and q at 

1
2


  where q and  are finite. This distribution has no monopole moment, but it has 

higher order odd moments (such as octupole) in addition to a dipole moment. A point 
dipole is defined as the limit of a distribution with - q at 1

2

  and q at 1

2


    as  0 

and  is held constant ( q is doubled when is halved). In this limit, the dipole 

moment remains finite as  0 while the higher moments go to zero. The distribution 

becomes a pure or point dipole.) 

q 
  p
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Exercise: To prepare for the next step, interpret the following recalling that xj where  j 

= 1  x; = 2  y and = 3  z and that field and source coordinates are independent 

of one another.   

31 2 2 2

1 1 1 2
; ; ; ;

2

xx x x x
x x x x x

    
      

                 . 

Find compact representations for: 
( i i )

j

x x
x
 

 
  and 

( i i )

j

x x
x
 

 . Write out the relations for 

various sets of integer values substituted for i and j if that is needed to clarify the 

interpretations of the symbols. 

Second partials must be computed to generate the second order terms..   
2

i j

D

x x


  

 =  

   
     

 
     

2

5/2 3/22 2 2 2 2 2

31 j ji i j j

i j

ix x xx x x x

x x r r x x y y z z x x y y z z


 

   
                             

   

   
           

5/2 3/22 2 2 2 2 2

3 i i j j i jx x x x

x x y y z z x x y y z z

  
 
                    

 

  
2

2

5
0

1 3

i j

i j

r

i j

x x r r

x x r

r





  
          




   with (x,y,z) = (0,0,0). 

In order to reach the standard form for this term, a few summation (dummy) indices 

need to be changed. To begin we recast  2

,

3 i j i
i j

i jx x r x x      

 

   

2

, , , ,

2

, , , , ,

2 2

, ,

3 3

3 3

3 3

i j i j i j i j k k i j i j
i j i j k i j

i j i j i j i j k k i j i j k k
i j i j k i j k

i j i j i j i j i j i j
i j i j

i jx x r x x x x x x x x x x

x x x x x x x x x x x x r x x

x x x x r x x x x r

  

  

 

            

               

          

   

    

 

 


   
 

,
i j

i j

x x 
 
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In the last step, the dummy labels were renamed i and j. As a result of the entire 

process, the forms for the primed and unprimed values are interchanged! Clearly this 

step is not magic; it’s just not obvious. 

 
23

2
2 5

, 1 ,0

1 1
( , ) 3

2! 2i j i j i j i j
i j i ji j r

D
D r r x x x x r x x

x x r


 

 
  

       
   



 
 

After pulling the unprimed variables out of the integral, 

3
2 2

0

1
4( ) ( , ) ( )V r D r r r d r   

   
becomes 

 2 ,3
2 5 5

, 00

1
4( ) ( ) 3

2 4

½ i j i j
i j i j

i j i j
i j

Q x x
x x

V r r x x r d r
r r  

 
 
  

      


 
 

     [MP.6]                         

                               where   2 3( ) 3i j i j i jr x x r dQ  


r 


     
                      [MP.7] 

 

                    2

.

3i j i j i j
Sources

pt charges

q x x rQ    



        (for point charges)               [MP.8] 

 

Multipole summary: 2; ; 3net i i
sources sources sources

j i jq dq p r dq Q x x r  j dq 
  

     
 

 

The Qij are the Cartesian quadrupole (22 - pole) moments. The 3 x 3 matrix of the Qij  

is traceless and symmetric and hence has 5 independent components. Continuing this 

horrendous expansion shows in general that the 2 - pole term has  independent 

quantities defined in terms of integrals over the source charge distribution. The 

reduction from the initial 3 terms to the (2+ 1) independent parameters in each order 

becomes progressively more painful. 

2  1

3 5
0

1
4 4 4 2

( ) total i j
i j

o o

q p r
r r

x x
higher order than two

r
V r Q  

   
 

   [MP.9] 

Attention: In the expression for V just above, all the information about the source 

charges and their locations (correct to second [quadrupole] order) is held internally in 

the monopole, dipole and quadrupole moments. The expression for  is the ( )V r

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approximation correct through second order which is expected to be useful at the field 

points  if  r >> rmax. The xi and xj are the components of the field point position r
 r


. 

The symbols r, , xj and xj have no relation to source charge coordinates.  Read this r


statement every time you complete a multipole problem until you are absolutely sure 

that you know why it is suggested that you do so. 

 

Exercise: Verify that the matrix with elements Qij is traceless and symmetric. Justify 

the claim that the 3 x 3 matrix has just five independent elements. 

Note that: 
 

,

xx xy xz
t

i i j j yx yy yz
i j

zx zy zz

x y z Q Q Q x

x Q x Q Q Q y x Q x

Q Q Q z

   
       
     

  
 

Exercise: Express 
3

2

1

1/2

( ; ) as ( )m m
m

D r r x x





 

   
 .  Show that the first partial derivative 

is:                 
3 3

2

1 1

3/2
1
2( ) ( )m m

m p

( )
2( ) p p

p p
i

x x
x x x x

x x 


  

i

D
  

   

      
     

Note that the index label p is chosen to be distinct from m. 

The index label i is the free or external index (not a summation index). It cannot be changed freely.  

All references to a free (external) index must be identified and changed in unison.  Leave then fixed!

Complete the evaluations of 
i

D

x



 and 

2

j i

D

x x


  

. Evaluate the final forms for r  = 0. 

 

The smallest set of parameters that completely describe an order in the expansion is an 

irreducible set.  Later, we will see than an expansion in spherical coordinates in terms 

of solutions of the Laplace equation in spherical coordinates is more natural and yields 

reduced representations directly. 
 

order description V varies as E varies as parameters 

zero monopole r -1 r -2 1 
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first dipole r -2 r -3 3 

second quadrupole r -3 r -4 5 

th 2 -pole r -(+1) r -(+2) 2  + 1 

 
 

Expressions for Computing Multipoles: 

 
 


)

)

)
'net

sources

r dV

r dA
q

r d

q

dq










  

      















  







                      

 
 
 

)

)

)

sources

net

r r dV

r r dA

r r d

r q

p r dq

 








  

       




 




 


 

 

  


 

           net charge                                       dipole moment 

     

 
 


2

2

2

2

2

3 ( ) )

3 ( ) )

3 ( ) )

3 ( )

3 ( )

i j ij

i j ij

ij
i j ij

ij
sources

i j ij

i j

x x r r dV

x x r r dA
Q

x x r r d

q x x r

x x r dq

   


 

 

 





       




                   
    


   




 






 
                 [MP.10] 

        quadrupole moments 

 

Far-Field Potential Expansion Correct through Quadrupole Terms: 

                       
3

0 1 2

5
0

1
4 4 4

( ) ( ) ( ) ( ) ...

...
2

total i j
i j

o o

q p r
r r

V r V r V r V r
x x

r
Q  



  

   
 

    


             [MP.11] 

Note that: r, , xi and xj are field point coordinate values. r


All source location data is hidden and fixed inside qtotal, p


 and the Qij.
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We declare that Qjk is the quadrupole that results from displacing a positive pj dipole in 

the positive xk direction from an equivalent –pj dipole (equal magnitude, but oppositely 

directed). 

Note: There is one value for the net charge, the monopole moment. A dipole is two 

equal, but opposite charges displaced from one another. The displacement can be made 

in each of the three independent directions, so there are three independent components 

in the electric dipole. A quadrupole is formed by displacing two equal, but opposite 

dipoles from one another. A basic Qzz is formed by displacing two equal, but opposite 

z-dipoles along their direction. A pair of opposite pz dipoles displaced in the y direction 

from one another yields the same charge pattern as a pair of opposite py dipoles 

displaced from one another in the z direction. It follows that Qzy and Qyz describe the 
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same charge distribution patterns. As defined, Qij = Qji and the matrix of the 

quadrupole moments Qij is real and symmetric. Consider quadrupoles like Qzz pictured 

above. The sum Qxx + Qyy + Qzz is a charge – 6 q at the origin plus six charge +q 

equidistantly from the origin along each axis. These six charges are the best six charge 

approximation to a uniformly charged shell. The field due to a point charge of charge – 

6 q surrounded by a concentric spherical shell of net charge + 6 q is zero outside the 

‘shell’. For this reason, Qxx + Qyy + Qzz = 0. The trace of the quadrupole matrix is zero. 

The symmetric property alone reduces the 3 x 3 quadrupole matrix to six independent 

components. Adding the vanishing trace constraint, the number of independent 

elements in the quadrupole matrix is found to be five. A general 2 multipole has 2 + 

1 independent elements. 

S1. Decomposition Example: Consider the charge distribution - 2 q at a , 2 q at 0 , 

-q at - a . Find an equivalent distribution with a charge qtotal at the origin, a dipole 

centered on the origin and a remainder. As a first model, restrict the charge locations to 

be one of the set of actual charge locations { a , 0 , - a } and their inverse points 

with respect to the origin. A charge at 

k̂ k̂

k̂

k̂ k̂ k̂

1r
  would means that the point  would also be 

available for use. The net charge is qnet = – q, and the net dipole moment is: 

1r


p  

 (- 2 q )(a )+ (2 q )(0 )+ -q )(- a ) = - q a . It is possible to center each multipole 

about the origin except perhaps the highest one in the decomposition. In this example, 

it just happens that the highest multipole charge arrangement, the quadrupole, is also 

centered. (The exercise below ends with an off-center multipole.) 

k̂ k̂ k̂ k̂
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What is the net charge of the dipole term? What are the net charge and the net dipole 

moment of the quadrupole term? 

A ‘centered’ finite dimensioned 2  pole has higher order terms in its expansion 

beginning with the 2 +2   - pole. A finite dimensioned 2 - pole that is displaced from the 

centered position has higher order terms in its expansion beginning with the (2 +1) - 

pole. 
 

Exercise: Suppose that a charge distribution is a single point charge that is not at the 

origin. Show that distribution is equivalent to a point charge at the origin plus a finite 

non-centered dipole. Show that a finite non-centered dipole is equivalent to a centered 

finite dipole at the origin plus a finite non-centered quadrupole. 

 

S2. Dipole Moment and Potential: 

Consider charges q at ½    and – q at -½  . k̂ k̂

3

0 1 2

5
0

1
4 4 4

( ) ( ) ( ) ( ) ...

...
2

total i j
i j

o o

q p r
r r

V r V r V r V r

x x

r
Q  



  

   
 

   


 

The net charge is zero, so out first approximation is:  

3 30 1 4 4 4
0( ) ( ) ( )

o o

p r p r
r rV r V r V r

or  
     
     

 

The dipole moment is a characteristic of the sources and 
contains source charge and location information: (q, ,…). 

 
 

ˆp q r q q 


   k
     

The position vector  on the other hand is a field point position. So  

where x, y, z are the field-valued coordinates of the field point at which the potential is 

to be evaluated.  

r
 ˆˆ ˆr xi y j z k  

3 3 22 2 3/24 4 44

ˆ ˆˆ ˆ( )
[ ]

( )
o o o

p r q k xi y j zk q z q
r r x y z

V r    2
cos

or
   

    
      

(Far-field expansions are only valid for  max| | | |r r
  .) 
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Exercise: Classify each symbol in 3 3 22 2 3/24 4 4

ˆˆ ˆ( )
[ ]

; ;
o o o

p r q xi y j zk q z
r r x y z  

   
 

     as a 

source-related quantity, a field point related quantity or a constant (independent of the 

source and field point positions). 
 

S3. Quadrupole Moment and Potential 

Consider charges q at a   and at - a , – 2 q at 0 . k̂ k̂ k̂

3

0 1 2

5
0

1
4 4 4

( ) ( ) ( ) ( ) ...

...
2

total i j
i j

o o

q p r
r r

V r V r V r V r
x x

r
Q  



  

   
 

    
 

The net charge and dipole moment are zero, so the leading 

order contribution to the potential is the quadrupole terms: 

2 5
0

1
4( ) ( )

2
i j

i j

x x
V r V r

r
Q   

 
 

 ONE MORE TIME!: Note that xi and xj are field point coordinates; one integrates (or 

sums) over the source point coordinates to compute the multipole moments. It is those 

resulting source moments that appear in the expression for the potential, not the source 

coordinates. Once a coordinate has been integrated over, it is like a summation index 

that has been summed over; it does not appear as a variable in the result. In the 

expression, 
3

0

1
4

( )
( )

r d r
V r

r r
  



   the integration over the source (primed) variable 

generates a function that depends only on the field (unprimed) variables. All of the r’s, 

xi’s and xj’s that appear in 3 5
0

1
4 4 4( ) ...

2
total i j

i j
o o

q p r
r r

x x
V r

r
Q  

    
 

are field point 

values.  

 

A quadrupole moment can be developed for a directionally neutral (isotropic) 

distribution by distorting it. Consider a point charge – Q surrounded by a concentric 

uniformly charged spherical shell with charge + Q. This distribution does not cause an 
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electric field or contribute to the potential outside of the shell. A Qzz quadrupole 

moment can be developed by stretching the positively charged shell along the plus and 

minus z directions. 

  

Stretching the positive 
charge along the z axes gives 
a positive Qzz. At the same 
time, positive charge is 
pulled in along the x and y 
directions. The result is that 
Qxx and Qyy are negative for 
this distribution.  
 

Qxx + Qyy + Qzz = 0  (always) 

The charge of the shell is equal and opposite to that of the central point charge. 

Calculating quadrupole moments for a distribution of point charges: 

The simple pattern of point charges q at a   and at - a , – 2 q at 0  is a model with 

the characteristics qtotal = 0, 

k̂ k̂ k̂

p
 = 0 and Qzz  0. The moments, including the quadrupole 

moments, are to be calculated as examples. 

totalq q


          p r q 


            23 ( ) iji jijQ q x x r   


     

( 2 ) 0totalq q q q q


       

ˆ ˆ ˆ( ) ( ) ( 2 )(0 ) 0p r q q a k q q k q k 


      
   

2
33

2 2 2 2 2 2

33 3 ( )

[3 ] [3( ) ] ( 2 )[3(0) 0 ] 4

zzQ Q q z z r

q a a q a a q qa

   


     

       


2

2qa

 

 

2
11

2 2 2 2 2 2

11 3 ( )

[3(0) ] [3(0) ] ( 2 )[3(0) 0 ] 2

xxQ Q q x x r

q a q a q

   


     

       


 

 

 2
1313 3 ( ) 3

[3(0) ] [3(0)( )] ( 2 )[3(0)(0)] 0

xzQ Q q x z r q x z

q a q a q

      
 

      

    

 
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After more calculations: Qxx = Qyy = -2qa2; Qzz = 4qa2; Qxy = Qyx = Qxz = Qzx = Qyz = Qzy 

= 0. Note that the quadrupole moments depend on the sources charges and locations. 

Each moment has the dimensions Coulomb-(meters)2.   (What are the dimensions of q-

total and of p
 ?) 

 

30 1 2 5
0

1
4 4 4

0 0( ) ( ) ( ) ( )
2

i j
i j

o or r
x x

V r V r V r V r
r

Q           
  

   5 5

,0 0

1 1 1
2 4 8( ) ...i j i j xx xy xz yx yy

i j
r rV r x x Q xx Q xy Q xz Q yx Q yyQ      

  

 5

2 2

0

1
8( ) 2 0 ... 2 ... 4rV r qa xx xy qa yy qa zz                    

 2  

5 5/2 5/2

2 2 22 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2
0 0 0

2 [2 ] 2 [2 ] 2 [3
4 4 [ ] 4 [ ]

( ) qa z x y qa z x y qa z x y z
r x y z x y z

V r   
      

   
   ]  

Spherical coordinates: use z = r cos and P2(cos) = 3/2 cos2

25 3

2 22 2 2

0 0

2 [3 cos ] 4
4 4 (cos )( ) qa r r qa PV r r r


     

(Far-field expansions are only valid for  max| | | |r r
  .) 

Exercise: Class each symbol in the two lines of equations above as a source-related 

quantity, a field point related quantity or a constant (independent of the source and 

field point positions). 
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Stretching the positive charge 

along the z axes gives a 

positive Qzz. At the same 

time, positive charge is 

pulled in along the x and y 

directions. The result is that 

Qxx and Qyy are negative for 

this distribution.  

Qxx + Qyy + Qzz = 0  (always) 

The charge of the shell is equal and opposite to that of the central point charge. 

 

Exercise: Note that these charge distributions might be expected to cause a positive 

potential in cones of space around the positive and negative z axes and a belt of 

negative potential around the equatorial (x-y) plane. Use the far-field potential 

2

2 2 2

3 3
0 0

2 [3cos 1] 4
4 4

( ) (cosqa qa
r r

V r P
      to find the constant  coordinate surfaces 

that divide space into these three regions.  Label the regions as either + or – depending 

on the sign of the potential in that region. (The second order or leading non-vanishing 

order expansion is expected to be useful for max| | | |r r
 

). Add a centered circle of 

radius 3 a to your drawing. Does excluding the region r < 3a from consideration make 

sense? 

 

Skew Moments: The quadrupoles studied to this point have had non-zero elements 

only on the diagonal. An off-diagonal or skew Qxy quadrupole is developed from an 

isotropic (direction neutral) distribution when positive charge is pulled out along the 

line x = y or negative charge is pulled out along the line x = - y. From another point of 

view, a skew moment arises when two equal but opposite dipoles are displaced from 

one another along a line perpendicular to their directions. A simple non-diagonal Qxy 
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quadrupole is: q at (a,a,0), -q at (-a,a,0), q at (-a,-a,0) and -q at (-a,-a,0). This four 

charge distribution has the characters of pulling positive charge out along x = y; 

pulling negative charge out along x = - y and of the displacement of equal and opposite 

dipoles along a direction perpendicular to their directions. 
 

   

 

The total charge is zero as is the net dipole moment. The quadrupole moments are: 

23 ( ) iji jijQ q x x r   


     

2
33

2 2 2 2 2 2 2 2

33 3 ( )

[3(0) 2 ] ( )[3(0) 2 ] [3(0) 2 ] ( )[3(0) 2 ] 0

zzQ Q q z z r

q a q a q a q a

   


     

         


 

 

2
11

2 2 2 2 2 2 2 2

11 3 ( )

[3( ) 2 ] ( )[3( ) 2 ] [3( ) 2 ] ( )[3( ) 2 ] 0

xxQ Q q x x r

q a a q a a q a a q a a

   


     

           


 

Clearly, Qyy must vanish as well. (Why?) 

 2
12

2

12 3 ( ) 3

[3( )( )] ( )[3( )( )] [3( )( )] ( )[3( )( )] 12

xyQ Q q x y r q x y

q a a q a a q a a q a a q

      
 

      

          a

 
 

 

 2
1313 3 ( ) 3

[3( )(0)] ( )[3( )(0)] [3( )(0)] ( )[3( )(0)] 0

xzQ Q q x z r q x z

q a q a q a q a

      
 

      

       

 
 



 

1/31/2010  Electric Multipole Expansion MultiPol-17 

 

The conclusion is that Qxy = Qyx = 12 qa2, and all the other quadrupole moments are 

zero. 

 5 5
,0 0

1 1 1
2 4 8( ) ...xx xy xz yx yyi j i j

i j
r rV r x x Q xx Q xy Q xz Q yx Q yyQ 

 
 
 

        

 5
2 2

0

1
8( ) [0] [12 ] [0] [12 ] [0] ...rV r xx qa xy xz qa yx yy       

5

2 2 2

3
0 0

12 12 sin sin cos
4 4

( ) qa xy qa
r r

V r   
  

 

 (Far-field expansions are only valid for  max| | | |r r
 

.) 

Be able to give the Cartesian and spherical representations of each result. 
 

Exercise: Note that this charge distribution might be expected to cause a positive 

potential in the far-field for certain values of  and negative potential for other ranges 

of . Guess these ranges by studying the figure and then verify them using the result  

that 
2 2

3
0

12
4

sin sin cos( )
r

qaV r 


   in the far-field ( max| | | |r r
  ). Confirm your results by 

expressing sin cos as a single trig function.
(Never use far-field approximations at field points inside the source distribution. They are not valid unless max| | | |r r

 
.  

The expansion cannot be expected to converge quickly unless max| | |r r
 

) 

 

S4. Calculating quadrupole moments for a continuous charge distribution 

Given a surface charge density(,) on a shell of radius R: 

 20( , ) cos located at .r R       

 
 
 

)

)

)
'net

sources

r dV

r dA
q

r d

q

dq










  

      















 
                      

 
 
 

)

)

)

sources

net

r r dV

r r dA

r r d

r q

p r dq

 








  

       




 




 


 

 

  


 





           net charge                                       dipole moment 
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     

 
 


2

2

2

2

2

3 ( ) )

3 ( ) )

3 ( ) )

3 ( )

3 ( )

i j ij

i j ij

ij
i j ij

ij
sources

i j ij

i j

x x r r dV

x x r r dA
Q

x x r r d

q x x r

x x r dq

   


 

 

 





       




                   
    


   




 






 
                 [MP.12] 

        quadrupole moments 

 

a. Compute the total charge of the distribution.  20( , ) cos     on the surface r 

= R. 

   

 

2

0 0

2 2

0

22
0

2
0 0

4
3

)

2 sin

cos sin

cos

netq dq r dA

R d R

R d d
 

 



  

   





 

    

  

  



   





 

Used:   22
0 dAcos and sin( , ) R d d             

b. Compute the electric dipole moment of the distribution. 

 
 

)

ˆˆ ˆ(sin cos sin sin cos ) )

netp r dq r r dA

R i j k r



     

     

   dA     

 


   




 

0netp 


 

ˆ ˆˆ ˆ ˆ ˆ) (sin cos sin sin cos )r x i y j z k R i j k                 


Note that . It’s not 

hard! Just write it out. 

c. Compute Qzz  and Qxx.  

 2 23 ( ) 3 ( ) )ij i j ij i j ijQ x x r dq x x r r d    
                A 

 

 2 2 2( )cos3 )zz ijQ R R r d   
    A 


 

 2 2 2( )sin cos3 )xx ijQ R R r d    
    A  


 

 2 2 2(sin ) cos sin3 (0)xyQ R R r d        ) A  


 

The remainder of the evaluation is to be assigned homework. 
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sin cos ; sin sin ; cosx R y R z R             Used:  

Energy of a Charge Distribution in an External Electrostatic Field 
 

A closely related calculation is that of the potential energy of the charge distribution 

due to an externally applied electrostatic potential. 
 

3( ) ( )ext extU V r r d  r  
 

 

This time, the external potential is expanded in a Taylor's series about a reference point 

(origin) for the charge distribution with r
  representing the position relative to that 

origin of each charge in the distribution subject to the external potential field. External 

potential field means that the source charges for that potential are located outside the 

region occupied by the charge distribution of interest. This condition ensures that the 

external potential satisfies the Laplace equation in the region occupied by the charge 

distribution.          2
ext extV E    0 0

 
 

each of the derivatives is evaluated at 0r 
 

 

   
23 3

1 , 10 0

1
( ) (0) .....

2!
ext ext

ext ext i i j
i i ji i jr r

V V
V r V x x x

x x x  

     
     

  

    

 

   
23 3

3

1 , 10 0

1
(0) ..... ( )

2!
ext ext

ext ext i i j
i i ji i jr r

V V
U V x x x r d

x x x


  

  
r         

      
    

   

 

(0) 3(0) ( ) (0)ext ext total extU V r d r Q V      
   

 
3

(1) 3 3

1 0

( ) (0) ( ) (0)ext
ext i ext ext

i i

V
U x r d r E r r d r

x
 



                 
 

p E
       

 

 
2 23 3

(2) 3 3

, 1 , 1
0 0

1 1
( ) ( )

2! 2!
ext ext

ext i j i j
i j i ji j i j

V V
U x x r d r x x

x x x x
 

 

  
r d r         

        
  

 

    

 

equivalently:            
3

(2) 3

, 1
0

1
( )

2!

ext j
ext i j

i j i

E
U x x

x




   
r d r    

 





  
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A magic trick transforms the last term to the quadrupole form. Recall that the external 

field is due to charges located elsewhere. The external field is caused by a charge 

distribution external which is identically zero in thee region containing the charge 

distribution of interest (where /( ) 0r 
 ). Gauss's Law states that: . 

Subtracting 0 or its alias,

0ext
extE  

  
 

21
6

extr E
 

, recasts the second order term as: 

 
3 3

2(2) 3

, 1 , 1
0 0

1 1
3 ' ( )

6 6

ext extj j
ext i j i j i j

i j i ji i

E E
U x x r r d r

x x
 

 

                    
 

 


Q

|

 

One might be troubled by the need for a magic step and perhaps even skeptical that 

such a compatible step could be found. This happy circumstance is less surprising 

when one realizes that the expansion of Vext  involves 1| r r 
 

 , the same basic 

function as did the far-field expansion that led to the multipole moments, and that that 

function is symmetric under the interchange of source and field coordinates. 

In summary  

   
3

, 1

0

1(0) (0) ...
6

ext
j

ext ext ext i jtotal
i j i

E
U Q V p E Q

x

 
  


     

 



 

       [MP.13] 

23 3

, 1 , 10 0

1(0) ...
6j j

ext ext
ext ext j i jtotal

i j i j i

V VU Q V p Q
x x x 

     
     




 

This expansion clarifies the manner in which a charge distribution interacts with an 

external potential. The net charge interacts with the potential; the dipole moment 

interacts with the gradient of the potential (the electric field); the quadrupole moments 

interact with the gradient of the external electric field and so on.  Understand that ‘the 

dipole moment interacts with the gradient of the potential’ just means that the total 

energy of a dipole in a uniform potential is zero.  The net interaction energy for a pair 

of equal, but opposite charges depends on the potential at the location of the positive 

charge being different from that at the location of the negative charge.  There is no net 
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interaction energy in the absence of a gradient of the potential (That is: a non-zero 

electric field). 
 

Further expansion of the potential to 3rd order leads to a requirement for a fist full of 

magic tricks to identify the particular combinations of the terms to yield the most 

meaningful 7 (= 2  + 1) independent parameters describing the charge distribution. As 

a rule, a pure point multipole should have zero values for all its lower multipole 

moments. The reduction to 2 + 1 parameters in th order occurs naturally in spherical 

coordinates as demonstrated below. 

 

Spherical Coordinate Expansion of the potential due to a charge distribution with 

finite spatial extent.  The source charges are restricted to a finite region and, outside of 

that region, the potential satisfies the Laplace equation.  As the distance from the 

charge distribution increases, the distribution appears more point-like, and the potential 

becomes more nearly spherically symmetric.  This character suggests that a spherical 

rather than a Cartesian expansion might be more natural. Let us review the separation 

of Laplace's equation in spherical coordinates. 

2
2 2

2 2 2 2

1 ( ) 1 ( ) 1 (
( ) sin 0

sin sin

V r V r V r
V r r

r r r r r


    
                                    

 
2

)


 

The solution is assumed to separate as ( , , ) ( ) ( ) ( )V r R r       with the results: 

 2 2
2 2

2

2 2 2

1 ( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) sin

sin

1 ( )
( ) ( ) 0

sin

R r
R r r R r

r r r r

R r
r

( )     
  


 

                             
   

     





 

 

 2 ( )
1 (

d dR r
r R

dr dr
    
 

  )r  
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 
2

2

1 ( )
sin 1 ( )

sin sin

d d m

d d

 
   

          
   

   

 

2
2

2

( )
( )

d
m

d

 



    

For problems with no  dependence, the solutions which are regular for  = 0,  take 

the form:  

( 1)

0
( , ) (cos )V r a r b r P 


 



 
     




 

The P are the Legendre polynomials. With  dependence, the solutions become 

(restricted to solutions regular in ) 

( 1)

0
( , , ) ( , )m m m

m

V r a r b r Y  




 



 
      




 
  

where the Ym are the spherical harmonics (that are the angular dependences of the 

electron wave functions for the hydrogen atom). 

(2 1) ( )!
( , ) ( 1) (cos )

4 ( )!
m m im

m
m

Y P
m

e   

 

 
 

 


 

   2 /2( ) 1 (1 ) ( ) ; 0
m

mm m m
m

d
P x x P x m

dx
      

2

0 0 ' ' ' '
* ( , ) ( , ) sin mmm mY Y d d

 
              

for reference 

0
(2 1)

( , ) (cos )
4

Y P  



 
  and   ,( , ) 1 ( , )m mY Y

m       

With enormous difficulty, it can be shown that for ( , , )r r    and / / / /( , , )r r    the  1
r r
    

has the expansion:    (This development is to be included in the PDEs Handout.) 

1
0

*
/
1

| |
4

2 1
( ', ') ( , )

m

m
m mr r

r

r
Y Y   

 



  


 
  
 


 



 
 

  
  
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where r<  is the smaller of r and r' and r> is the greater. Applying this incredible result, 

a spherical multipole expansion follows as: 

                                
1

0

4 1
(

2 1
) (

m

m
m mV q

r
r Y , ) 

 


 

 
  
 


 



 
  


 

For points outside the finite source distribution, the multipole moments are defined 

as: 

mq

3
' '

* ( , ) ' ( ') '
source
volume

m mq Y r r    
  d r

 
 

Note that as m runs from = -to +; there are 2+ 1 expansion quantities for the ( 1)r    

contribution to the potential naturally! 

  Again, the closely related problem of computing the potential energy of the charge 

distribution due to an externally applied electrostatic potential leads to the spherical 

multipole moments. 

3

arg

( ') ( ') 'ext ext

ch e
distribution

U V r r   d r
  

 

As the external potential is due to charges located outside the region occupied by the 

charge distribution , the external potential satisfies Laplace's equation and can be 

expanded in the small argument form for the spherical coordinate solutions:   (Reference 

the Laplace Equation in Spherical Coordinates Handout.) 

/( )r 

  
0

( '')
m

ext
ext m m

m

V rr ( ', ')Y  
 

 

  
 



 


 

Substituting into the expression for Uext we find: 

  3
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We note the various moments of the charge distribution only "interact" with the 

corresponding terms in the expansion of the potential demonstrating a behavior related 

to orthogonality. 
 

Cartesian Representation of the Spherical Harmonics 
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BE CAUTIOUS:  THIS HANDOUT IS UNDER DEVELOPMENT AND THE RELATIONS PRESENTED SHOULD BE 

CHECKED CAREFULLY BEFORE THEY ARE USED FOR IMPORTANT APPLICATIONS. 

 

Relation between Cartesian and Spherical Moments 

 

00
1

4 netq q  
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10
3

4 zpq      11
3

8 x yp i pq       

 

20
5

16 zzQq       21
5

24 xz yzQ i Qq       

 

22
5

96 2xx xy yQ i Q Qq  y     

 

APPLICATIONS OF MULTIPOLE EXPANSIONS: 
 

1. ANALYSIS OF THE ENERGIES OF NUCLEAR STATES TO PROVIDE NUCLEAR STRUCTURE 
DATA. 

 

2. TO CHARACTERIZE THE MAGNETIC FIELDS OF SUBMARINES AS A TOOL IN ADJUSTING 
ACTIVE DEGAUSSING MEASURES. 

 

3. TO PREDICT ONE CONTRIBUTION TO THE PRECESSION OF THE PERIHELION OF MERCURY. 
 

4. TO STUDY THE DYNAMICS OF ROTATING BODIES. 
 

5. TO PREDICT THE ELECTROMAGNETIC RADIATION PATTERNS ASSOCIATED WITH ATOMIC AND 
MOLECULAR TRANSITIONS. 

 

6. TO CHARACTERIZE THE MASS DISTRIBUTIONS, MAGNETIC FIELDS, AND GRAVITATIONAL 
FIELDS OF PLANETS. 

 

7. TO PROBE THE STRUCTURES OF SOLIDS. 
_____________________________________________________________ 

EXERCISE: Fill in the steps to complete the derivations of 1( )V r
  on page 1 and of 2 ( )V r

  

on page 2.  Verify the relations between q00  and qnet and between the first moments 

q10 and q1±1 and the Cartesian dipole moments: px, py, and pz as listed above. 
 

NOTATION ALERT: The symbol Ym represents our standard complex spherical  

harmonics. These symbols are occasionally hijacked to represent real-valued functions 
related to the spherical harmonics. We will use Ym for the functions above, but other  

may use Y
m (, ) to emphasize that the standard compelx-valued spherical harmonics  

are to be substituted. 

 

Physical and Point Multipoles: 
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A physical monopole is a finite charge distribution with a non-zero net charge qnet. The 

point moment limit is achieved by keeping the monopole moment constant while 

spatial (the distance of each charge from the origin) extent the distance of each charge 

from the origin) is reduced to zero. This limit leads to a point charge qnet at the origin. 

A physical dipole can be formed by separating two equal by opposite point monopoles 

q and -q. The dipole moment of the distribution is p q
   where  is the displacement 

from the negative charge to the positive charge.  If opposite charges are symmetrically 

displaced from the origin, the distribution can also have non-zero odd multipole 

moments of higher order. If the charges are not symmetrically displaced from the 

origin, the distribution can also have non-zero values for all multipole moments of 

higher order. A pure dipole is developed from a physical dipole by taking the limit that 

 approaches zero while




p


is keep constant. That is each charge is doubled as its 

distance from the origin is halved. The 2n - pole moment is proportional to the linear 

extent of the charge distribution taken to the nth power. Hence the higher order 

multipoles vanish in the limit that the spatial extent of the distribution is halved while 

all charges are doubled repeatedly. 

 

The mulitpoles of a charge distribution are related to its symmetry. A symmetric 

charge distribution only has even order moments. A distribution that is anti-symmetric 

under inversion only has odd multipole moments. A finite multipole has its base 

multipole moment plus higher multipole moments. A dipole with its plus and minus 

charges symmetrically located (an odd symmetry distribution) has a base dipole 

moment plus odd order higher moments. A point charge at the origin is a pure 

monopole.  A quadrupole distribution(one with zero net charge and zero net dipole 

moment) has a base quadrupole (22 – pole)  moment and corrections that begin with 

hexadecupole  (24 – pole)  if the charge distribution is symmetric. If the distribution has 

mixed symmetry, there can be octupole (23 – pole)   corrections as well. 
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If the charges are restricted to lie on a spherical shell, the position of the charges is 

fully symmetric and does not complicate that multipole structure. If the surface charge 

distribution on the shell is proportional to a single spherical harmonic Ym, then only 

the corresponding th order moment is non-zero. More complicated distributions can be 

analyzed by invoking superposition. If the spherical shell with a fixed surface charge 

distribution on the shell is proportional to a single spherical harmonic Ym is given a 

small radial distortion following a single spherical harmonic Y'm'
 then the potential is 

expected to include small additional moments with orders in the range |  - ' | to | + 

' | following the rules for the addition of angular momenta. 

 

Exercise: How would one form a physical quadrupole from two equal, but opposite 

dipoles? 

 

Translating a charge distribution does not change its lowest non-zero multipole 

moment, but it can change the values of all the higher order multipoles of the 

distribution. 

 

Tools of the Trade:   
 

3D Taylor’s series:  The task at hand is to develop an extension of the Taylor’s series 

expansion appropriate for function of three variables, the Cartesian coordinates in three 

dimensions.  The value of the function is known at (x0 , y0,, z0 ) and the value at 

(x0+u,y0+v,z0+w) is to be predicted using derivatives computed in a small 

neighborhood of the point (x0,,y0,,z0 ). The distance between the points is 
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2 2s u v w   2 . The plan is to map the problem to a set of primed coordinate axes 

rotated such that the x’ axis lies parallel to the line from (x0,,y0,,z0 ) to 

(x0+u,y0+v,z0+w).  For points along this line, the function is a function of the single 

variable x’. The function is  f [x(x’),y(x’),z(x’)]  where x(x’o   )=xo ; y(x’o   )=yo ; z(x’o   

)=zo and x(x’o  +s )=xo+u ; y(x’o +s )=yo+v ; z(x’o +s )=zo+w.  The rotation is a linear 

mapping. 

/ / /; dydx u v dz w
s s sdx dx dx constant values    

 

Recalling the 1D Taylor’s series 

   /
0 / /

0 0

2
/ / / / / / 2 / /

0 0 0 02/ / /

1 1
( ) ( ) ( ) ( ) ( )

2! !

n
n

n
x

x x

df d f d f
f x f x x x x x x x

dx nd x d x
           

and applying the chain rule: 

/ / / /

d dx dy dz u v w

dx x dx y dx z dx s x s y s z

                                              



 

Noting that / /
0x x  s , the chain rule is substitutes into the Taylor’s series. 

/

( , , )

2

( , , )

( , , )

( ) ( , , ) ( , , )

1
( , , )

2!

1
( , , )

!

o o o

o o o

o o o

o o o
x y z

x y z

n

x y z

x y z

x y z

x y z

f x f x y z u f x y z

u f x y z

u f x y z
n

w

w

w

v

v

v

  
  

  
  

  
  

     

    

    

 

 

 





 

Adopting the subscript notation x1 = x, x2  =y  and x3 =z, the expansion becomes 

Adopting the subscript notation x1 = x, x2  =y  and x3 =z, the expansion becomes 

23 3

1 , 1( , , ) ( , , )

33

, , 1
( , , )

1
( , , ) ( , , )

2!

1
...

3!

o o o o o o

o o o

o o o i i j
i i ji i jx y z x y z

i j k
i j k i j k x y z

f f
f x y z f x y z x x x

x x x

f
x x x

x x x

 



 
     

  


    

  

 


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where x1 = x =u, x2 = y = v and x3 = z = w.  The formula above is the three-

dimensional Taylor’s series expansion.  
 

An alternative notation follows by rotating the axis to so that the new axis, the x’-axis 

lies along the line joining  and the point of interest 0r


r
 .  Let 0 ˆr r s e 

  . The 1D 

Taylor’s series  

   /
0 / /

0 0

2
/ / / / / / 2 / /

0 0 0 02/ / /

1 1
( ) ( ) ( ) ( ) ( )

2! !

n
n

n
x

x x

df d f d f
f x f x x x x x x x

dx nd x d x
           

can be expressed using the directional derivative, 1 2 3ê e e e
x y z

 
   


  


, as 

represented in the original coordinate system.  (Reference the Vector Calculus handout 

or RHB p.163-6.) 

     0 0

2 3
2 3

0
1 1

2! 3!ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ...r rf r f r e f r s e f r s e f r s    
         

        
      

0r
  

        
0 0

2 3

0 0 0 0
1 1

2! 3!( ) ( ) ( ) ( ) ( ) ...r rf r f r r r f r r r f r r r f r                   
 

            
0r



  

 

where x1 = x =u, x2 = y = v and x3 = z = w.  The formula above is the three 

dimensional Taylor’s series expansion and is the basis for the Cartesian multipole 

expansion presented in this handout. 
 

The Relation to the Method of Griffiths: The relation: 

 
( 1)

0

1
ˆ ˆ( )

r
P r r for r r

r r r







  

 





    is the basis for the multipole expansion presented in 

the E&M text written by David Griffiths.  This identity is developed in the Laplace 

Equation handout. The expression for the potential becomes: 

 3
3

( 1)
00 0

1 1
4 4

( )
ˆ ˆ( ) ( ) ( )

rr d r
V r r P r r d r for r r

r r r  
 






 
    


  






 
    

For example, the lowest order term is:  
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 / 3 3
0

0

0

3

(0 1)0 0

( )1 1
4 4

( )
ˆ ˆ( ) ( ) ( ) (1)

r d r

r
r r

V r r P r r d r d r
rr


     

 

  
      



04
   

The first order term is: 

 3

3 3
1 12

0 0

1 1
4 4

( ) '
ˆ ˆ ˆ ˆ( ) ( ) ( )r

r r
V r P r r d r r r r r r d r

r  
 


      

     

As P1(x) = x, . 1 ˆ ˆ ˆ ˆ( )P r r r r   

3 3

/ 3
1

3

0 0

( )1
4 4( ) ( )

r r d rr r p
r rV r r r r d r


3

04 r  
          
        

Continuing the expansion generates higher order terms.  The following relations prove 

to be useful. 

 

3

1ˆ ˆ
j j

j

x x
r r

r r
r r r r




  
 

 
   

 

3

2 , 1

2/2
3 31 1

2 2 2ˆ ˆ ˆ ˆ( )
j m j m

j m

x x x x

P r r r r
r r



   
       
 
 
 


2  

With a few more twists, the form  2

,

1
2 3 i j i j i

i j
jx x r x x    

  appears as required to 

match the definition of the Cartesian quadrupole moments. 

 

Exercise: Show that 
3

2 2

, 1

3 j m j m
j m

x x x x r r


    can be written as:
3

2

, 1

3 j m jm j m
j m

x x r x x


     . 

Recall that  
3

j m

A B
, 1

j m jmA B 


  
 

. 

 

Using Symmetry to Avoid Calculations: Cartesian Multipoles 

Consider a problem of the type:  

 Given a surface charge density on a shell of radius R: 
2

0( , ) cos sin             

a. Compute the total charge of the distribution. 
b. Compute the electric dipole moment of the distribution. 
c. Compute all the Cartesian quadrupole moments of the distribution. 
d. Give the expansion of the potential due to this distribution including terms 
through second order. 
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dq


 

Computing the quadrupole moments can be a chore. One can reduce the work load by 

noting that the  are the Cartesian multipole moments and that 

the charge density can be separated into two Cartesian-form components with the 

overall result following from superposition. 

23 ( )ij i j ijQ x x r 
   

2
0 0

2
2 2 2

( , ) cos sin 0 x y
yz

r
           

            

Symmetry arguments can be applied more directly in these forms. Consider Qzz. The 

operator has the form 3 z2 – r2 and hence is even in x, y and z. The density 1 is even in 

all three coordinates as well so integration over the even domain can give a non-zero 

result for Qzz. The density 2 is odd with respect to x so integration over the even 

domain with the even Qzz operator yields zero additional contribution to Qzz. Exploiting 

the fact that a zero contribution will result in the case that any coordinate integration is 

of an odd function over an even domain, it follows that only the diagonal elements of 

Qzz are non-zero and that only 1 contributes to them. Extending this reasoning to the 

dipole moment indicates that only 2 contributes and only py is non-zero. Finally, the 

operator for the monopole moment (1) is even so only 1
 yields a net contribution. (See 

problem SL-6.) 

  

Consider a basic quadrupole:  

Qzz quadrupole (Qxx = Qyy = -½ Qzz). 

The charge distribution is even under the symmetry 

operations: x -x; y  -y and z  -z. The operators Dxx = 

2 x2 – y2 – z2 ,Dyy = 2  x2 – y2
 – z2 and Dzz = 2  z2 – y2 – x2 are 

even under these symmetry operations. Thus, 

2 2 22zz
sources

Q q z x y   


     can be non-zero as can Qxx and 

Qyy. On the other hand Dxz = - 3xz is odd under the symmetry 

 

ij ij
sources

Q q


  D  
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operations: x -x and z  -z while the charge distribution 

is even. Thus Qxz must be zero. For example, the operation z 

 -z changes the sign of the expression for Qxz while 

moving each charge q from its position (x, y, z) to (x, 

y, - z) does not alter the physical charge distribution. It is 

the same distribution, but the expression for Qxz has changed 

sign   Qxz must be zero.  

Dij=3 xi xj – r2 ij

 

Problems: 

1.  Four charges are located as shown: 
 

  - q @ (0,0,a) 

  - q @ (0,0,-a) 

    q @ (0,0,0) and 

   2q @ (0,a,0) 

 

23 ( )i j ijq x x r   


    

x

y

z

-q

-q

q 2q

 

a.)  Compute the monopole moment qtotal for the charge distribution. 

b.)  Compute the dipole moment of the charge distribution. 

c.)  Give the large distance approximation for the potential due to the charges correct to 

order 1/r2.    

d. Compute Qzz for the distribution.     

e. Show the details as you calculate the contribution of the 2q charge to Qzz. 

f. Argue that Qxy = Qxz = Qyz = 0.    See: Using Symmetry to Avoid Calculations in 

Tools … .  
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g.) Calculate Qxx and Qyy using 23 ( ) ijq x x r   


   . Show that Qxx + Qyy + Qzz = 0. 

h.) Compute the quadrupole contribution to the far-field approximation of the potential. 

See equation[MP.11]. 
 

2.    Use cos(3) = 4 cos3 - 3 cos.  Express cos(3) as a sum of the P(cos); that is: 

of the Legendre polynomials of cos for   < 4.         

       Desired form: cos(3) = ao Po(cos) + a1 P1(cos) + a2 P2(cos) + a3 P3(cos). 

 

3.   Given a charge distribution: 

   2
0 1 sin cos

( )
0

r a for r a
r

for r a

  


          


  

a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 

c. Compute all the Cartesian quadrupole moments of the distribution. 

d. Give the expansion of the potential due to this distribution including terms through 

second order. 
 

4.  Given a surface charge density on a shell of radius R: 

0( , ) cos located at .r R       

a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 

c. Compute Qzz  and Qxy.  All the Cartesian quadrupole moments of the distribution 

vanish. It is a pure dipole distribution. 

d. Give the expansion of the potential due to this distribution including terms 

through second order. 
 

Note: The charge density (,) = o cos on a shell of radius R is identical to that of a 
uniformly polarized sphere of radius R. In your E&M text, the volume 

polarization charge density is pol is the negative of the divergence of the 



 

1/31/2010  Electric Multipole Expansion MultiPol-34 

polarization density pol P  
 

 and ˆpol P n  


 evaluated on the surface of the 

polarized object. Another representation is two spheres with uniform charge 

densities +o and -o with the center of the positive sphere at  relative to that of 

the negative sphere. The convention is that polarization direction defines the z 

direction: . The combination has a net surface charge density of 

ˆd k

k̂ ˆ ˆo d k n  . (What 

is the divergence of a uniform (constant) vector field?)
 

5. Given a surface charge density on a shell of radius R: 

 20( , ) cos located at .r R       

a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 

c. Compute Qzz  and Qxx. It happens that Qxx = Qyy. Why must this be true for this 

distribution? All the other Cartesian quadrupole moments of the distribution 

vanish. 

d. Give the expansion of the potential due to this distribution including terms 

through second order. 
 

6. Given a surface charge density on a shell of radius R: 

2
0( , ) cos sin             

a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 

c. Compute all the Cartesian quadrupole moments of the distribution. 

d. Give the expansion of the potential due to this distribution including terms through 

second order. 
 

7. Given a collection of point charges on the z-axis, q at , - q at , - q at  and 

q at . 

ˆ2a k ˆa k ˆa k

ˆ2a k

a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 
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ˆ

ˆ

c. Compute all the Cartesian quadrupole moments of the distribution. 

d. Give the expansion of the potential due to this distribution including terms through 

second order. 
 

8.  Given a collection of point charges in the x-y plane: q at , - q at , - 

q at  and q at . 

ˆa i a j ˆ ˆa i a j 

ˆa i a j ˆ ˆa i a j 

a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 

c. Compute all the Cartesian quadrupole moments of the distribution. 

d. Give the expansion of the potential due to this distribution including terms through 

second (quadrupole) order. 

{+ q at (a, a, 0), + q at (- a, - a, 0), - q at (- a, a, 0), - q at (a, - a, 0)}. 
 

10.  Use the Griffiths method to generate the Cartesian quadrupole terms in the 

expansion of the potential.  See the Tools of the Trade section. 
 

11.  *******   This Identity has not been VERIFIED ! !!!! ****   The following 

identity is proposed. 

*4
2 1

ˆ ˆ( ) ( , ) ( ,m m
m

P r r Y Y )   



  



  


   

where ˆˆ ˆˆ sin cos sin cosr i j k            k and ˆˆ ˆˆ sin cos sin cosr i j        .  Establish 

the equality for  0 and for  

cos( ) cos( )cos( ) sin( )sin(

 1 by brute force comparison.  It may be useful to note 

that )          .  Some of the 'm sY  are tabulated in this 

handout. 
 

13.  Given a collection of point charges on the z-axis:  2 q at , and - 2 q at . ˆ0k ˆa k

 a. Compute the total charge of the distribution. 

b. Compute the electric dipole moment of the distribution. 

c. Compute all the Qzz and Qxy Cartesian quadrupole moments of the distribution. 
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d. Give the expansion of the potential due to this distribution including terms 

through second order. 

     Use: - ½ Qzz = Qxx = Qyy and Qij = 0 for i  j. (See the solution to problem 5.) 

e. Represent the charge distribution as the sum of a monopole at the origin and a 

dipole (slightly off center). Compare the moments with those calculated in parts a 

and b. Represent the charge distribution as the sum of a monopole at the origin, a 

dipole centered on the origin, and an off-center quadrupole.  

f. The quadrupole moments of that off-center quadrupole identified in the previous 

part should match those computed in part c.  Compute the Qzz and Qxy quadrupole 

moments for the quadrupole part of your distribution. (Note that finite multipoles 

have non-vanishing higher order multipole moments.) Compute the Qzz and Qxy 

quadrupole moments of the off-center dipole part of your distribution. If 2-pole is 

symmetrically located, its first higher moment is a 2 +2-pole. If it is not 

symmetrically distributed relative to the origin, it can have a 2+1-pole and higher 

moments. Further note that, as your monopole was placed at the origin, the 

monopole is pure and infinitesimal. 
 

14.  Show that the four charges:  

3q @ (0,0,a), q @ (0,0,-a), -2q @ (0,-a,0) and -2q @ (0, a,0) 

are a physical octupole plus a dipole . Only two of the diagonal elements of  

are nonzero. All the off diagonal elements vanish. Verify these statements. 

ˆ2q a k i jQ

 

15. Consider a solid sphere of radius R and charge density 0 (
 r/R) cos. Compute the 

electric dipole moment of the distribution and find the leading non-zero term in the 

expression for the electric field for points on the polar axis with z >> R and on the x 

axis in the equatorial plane with x >> R. 
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16. Consider a cylindrical shell of radius R, height h and charge density 0 (
 z/h) that is 

concentric with the z axis and the x-y plane as its midplane (the cylinder lies between z 

= -½h and + ½h). Compute the electric dipole moment of the distribution and find the 

leading non-zero term in the expression for the electric field for point on the z axis with 

z >> R and on the x axis in the mid-plane with x >> R. 
 

17. Consider starting with equal, but opposite pairs of dipoles with separations  

oriented along each of the Cartesian directions. Separate the pairs by displacements of 

magnitude  in each of the three Cartesian directions. Make sketches to identify and 

count the distinct charge distributions that are formed. The final reduction from six to 

five independent moments follows because all the moments through quadrupole* 

vanish for the distribution of charges:  -6q at the origin plus six charges q 

at 2 2 2
ˆˆ ˆ; ;i j     k . Verify that all the moments through quadrupole vanish for this 

distribution. Discuss the results in the context of the number of independent 

quadrupole moments.  

* The distribution: q at 2 2 2
ˆˆ ˆ; ;i j     k  is the best approximation to a uniform spherical shell of radius ½ 

 and net charge +6q that can be made using six point charges. What is the electric field due to a uniform spherical 

shell of radius ½  and net charge +6q concentric with a point charge -6q in the region outside the shell? 

 

18. It was claimed that translating a charge distribution does not change its lowest non-

zero multipole moment, but can change the values of all the higher order multipoles of 

the distribution. Consider a physical dipole:  q at 2 î   and -q at 2 î  . Compute the 

monopole, dipole and quadrupole moments of the distribution. Next, consider the 

translated physical dipole:  q at  2
ˆ ˆi j  and -q at  2

ˆ ˆi j  .  Compute the monopole, 

dipole and quadrupole moments of the distribution. Prepare a drawing displaying the 

initial and the translated charge distribution. Deduce the charge distribution that must 
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be added to the initial distribution to yield the translated distribution. Compute the 

monopole, dipole and quadrupole moments of that added distribution. In general, 

translating a multipole moment can be accomplished by adding a distribution with the 

next higher multipole pus even higher order multipoles. 

19. Definition:  
     2 2

1 1
( , , ; , , ) ( ; )D x y z x y z D r r

r r 2
x x y y z z

     
       

 
  , 

The field coordinates x,y,z are fixed, a Taylor's series expansion in x', y', z' about (0,0,0) 

provides an approximation of the source coordinate dependence of .    [x' = x1', 

y' = x2' and z' = x3' ] 

( ; )D r r
 

    
23 3

1 , 10 0

1
( ; ) ( ;0) 0 0 0 .....

2!i i
i i ji i jr r

D D
D r r D r x x x

x x x  

         
     
 

  
j  

Compute 
0i r

D

x



 

and 
2

0i j r

D

x x



   

. Give the expansion for D(x,y,x,x',y',z') about 

correct to second order. 0r 


 

20.)  Given point charges on the z-axis:  2 q at , - q at  and  - q at .  ˆ0k ˆa k ˆa k

a.) Find the net charge and the net dipole moment of the distribution. 

b.) Compute all the quadrupole moments of the distribution. 

c.) Give the form of the potential for points (x, y, z) that are far from the origin 

compared to a. 

d.) Find the electric field on the z axis for |z| >> a. 

e.) Find the electric field on the x axis for |x| >> a. The field on the positive x - axis is 

weak and in the x - direction. Justify this result.  

f.) The net electric field flux away from the distribution is zero as the net charge is zero 

(Gauss’s Law).  The field on the positive x - axis is weak and in the x - direction. Using 

this fact, the ideas of flux and of symmetry, what is the expected direction of the field 

on the z - axis. 
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21.) As an extension to the previous problem, use the Coulomb's Law method to 

compute the electric field at points on the x axis and at points on the z axis. Use the 

binomial theorem to extract the leading order contribution to the electric field for large 

x and z. Note that the multipole expansion provides a method to calculate the leading 

contribution to the field at all distant points (|r| >> a). 
 

22.) A finite multipole has its base multipole moment plus higher multipole moments. 

A charge distribution with inversion symmetry has even moments only; one that is odd 

under inversion has odd moments only. A dipole with its plus and minus charges 

symmetrically located (an odd symmetry distribution) has a base dipole moment plus 

odd order higher moments. A point charge at the origin is a pure monopole.   

Consider the charge distribution 2 q at , - 2 q at  and  - q at . Represent the 

distribution as the sum of a monopole at the origin, a dipole with its plus and minus 

charges symmetrically located and a quadrupole distribution.  

ˆ0k ˆa k ˆa k

NOTE: The symmetrically located dipole has a dipole moment and a leading correction 

that is octupole. The quadrupole has a base quadrupole moment and corrections that 

begin with hexadecupole if the charge distribution is symmetric. If the distribution has 

mixed symmetry, there can be octupole corrections as well. 

24. Consider the array of charges:  

{+ q at (a, a, a), + q at (- a, - a, a), - q at (- a, a, a), - q at (a, - a, a)} plus 

{- q at (a, a, - a), - q at (- a, - a, - a), + q at (- a, a, - a), + q at (a, - a, - a)} 

Give all the moments of the distribution through quadrupole. Argue for your 

answers if possible rather than computing them brute force. 
 

25. Show that the dipole moment of a charge distribution is invariant when the origin 

for its calculation is shifted if the net charge of the distribution is zero. Shifting the 



 

1/31/2010  Electric Multipole Expansion MultiPol-40 

origin is equivalent to changing the location of a charge q from r
  to where dr d 

 
 is 

a constant vector.  
 

26. Show that the quadrupole moments of a charge distribution are invariant when the 

origin for its calculation is shifted if the net charge and dipole moment of the 

distribution are zero. Shifting the origin is equivalent to changing the location of a 

charge q from r
  to  where r d 


d


 is a constant vector.  In general, the 2n - pole 

moments of a charge distribution are invariant under a shift of origin if all the lower 

order multipole moments of the distribution vanish.  

Hint: Consider the new coordinate values to be primed. 

2 23 ( ) 3 ( )ij ij ij ij
sources sources

i j i jQ q x x r Q q x x r       
 

                  

2and ( ) ( )j j jx x d r r d r d       
  

 where d


 and its components are constant. 

Lesson learned: Always begin by writing down the definitions. 
 

27. Critical Observation:  Consider the expression 

 3( , ) ( , , , , , )
k dq

F r r F x y z x y z r r
r r


      



    
   

The function  is a two-point function. It depends of the coordinates of the field 

point and those of the source point 

( , )F r r
  

r


r
 . The charge dq  is at the source point and so 

carries the source subscript. When one evaluates the electric field, an integral over 

sources of the form below is executed. 

 
3

3

( )
( , ) Result(??)

sources sources

k r d r
F r r r r

r r

  
   

 
    
   

Upon which variables does the Result depend after the 3d r  integration? 
 

28. The expansion of 1
r r


   has been expressed in terms of Legendre polynomials. 

Note that  2 2 2ˆ ˆ ˆ ˆ2 ( ) 1 2 (r r r r r r r r r a a r r           
 

)  where a = r/r for r > r’. Note 
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that  is the cosine of the angle between the directions of the vectors. Consider the 

functions 

ˆ ˆr r

2
1

1 2 cosa a  
 where a < ½. Use the binomial theorem to expand this function 

by identifying x as a2 – 2 a cos. Expand the expression to second order in x. (Note 

that this process generates all contributions up to second order in a plus some terms of 

order a3 and a4.) Collect the terms by powers of a.  Identify the coefficients of a0, a1 

and a2. Note that the terms of order a3 and a4 should be discarded because not all terms 

of those orders have been calculated. It should be clear that an expansion to order xm is 

required to get all the terms of order am. Some of the terms through order a2m will be 

generated, but not all of them!  Expansions should always be reported correct to a 

given order. That is: the expansion should include all terms up to and including that 

order and none higher. Compare your results to the assertion that: 

0
2

1
1 2 cos

(cos )m
m

ma a
a P






 
     for a < 1.

Note that:     P2(x) = 3/2 x
2 - ½  P2(cos) = 3/2 cos2 - ½;      P0(x) = 1;     P1(x) = x 

Use the assertion to show that 
1

0

1 ( )
(cos )

m

mm
mr r

r
P

r





 


    for r > r.

****  Add problems on the energy of a distribution in an external potential field. 
 

29. A potential for a uniform electric field has the form 0 0( )V r V E r  
  . Use the 

potential energy formula 
charges

( )U q V r 


    to compute the potential energy of a dipole 

consisting of a charge +q at ½dr 
   and a charge –q at ½dr 

  . Express your result in 

terms of p q
 

k̂

 and . Next consider a quadrupole consisting of q at a  , -2q at 0  

and +q at a . Compute its potential energy. 

0E


k̂ k̂

 

30. Consider a quadrupole (q at a  , -2q at 0  and +q at a ) and a dipole (q at 

 and –q at . Use the far-field approximations (d >> a or ). a.) 

k̂ k̂ k̂

ˆ( ½ )d  k k ˆ( ½ )d  
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Compute the energy of the dipole in the field of the quadrupole. b.) Compute the 

energy of the quadrupole in the field due to the dipole. 

c. Compute the force on the dipole due to the field of the quadrupole 

( ( ) zF p E q 
  

    E


 for this case.). Calculate the work required to move the dipole 

from  to d with its orientation fixed. d. Start with the dipole at infinity on the z 

axis, but oriented in the x direction. How much work would be required to move it into 

d  along the z axis with its orientation fixed? How much work would be required to 

rotate the dipole to lie along the z axis keeping its center fixed ar d ? 

k̂ k̂

k̂

k̂

 

31.) Use the base formula that 4collection
pairs

i j

o ij

q q

rU    to repeat the energy calculations for 

parts a and b in problem 30. Use the fact that a and  are small to cast differences in 

terms of derivatives. 
 

32.) Consider the charge distribution: a single point charge q located at d .  k̂

a.) Compute all the moments through quadrupole order and give the far-field expansion 

of the potential through quadrupole terms. 

b.)  In the Laplace equation section of this handout series, the potential of a point 

charge at d  is shown to be: k̂

0
2 2 2

0

( 1)
0 4

 ( , , ) ( , ) (cos )
4 ( )

q q d
V x y z V r P

rx y z d 
 








 
    

    







. Write out the first 

three terms in the expansion of the left and compare them with the far-field expansion 

of part a. Use the standard relation z = r cos. 

P0(z) = 1P1(z) = z;   P2(z) = 3/2 z 

2 – 1/2 

c.) What order multipoles would by non-zero in the complete expansion of the 

potential of a single point charge located at d . 
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33.  Four charges are located as shown: 
 

  - q @ (0,0,a) 

  - q @ (0,0,-a) 

    q @ (0,0,0) and 

   2q @ (0,a,0) 

23 ( )i j ijq x x r   


    x

y

z

-q

-q

q 2q

 

Show that this distribution can be decomposed into i.) the net charge at the origin, ii.) 

the net dipole moment configured* to be centered about the origin and iii.) two basic 

quadrupoles. The quadrupoles are centered although the highest order multipoles in a 

decomposition are not necessarily centered. The only positions to be used as charge 

locations are the actual positions of charges, the r


, and there reflected positions, the 

r


. 

Recall that a basic Qzz quadrupole contributes +4qa2 to Qzz 

and -2qa2 to Qxx and Qyy. Its skew moments vanish. Use 

this to motivate that the quadrupole moments for the 

distribution above are Qyy = - Qzz = 6qa2; Qxx = 0; all skew 

moments vanish. 

 

The other answers: qtotal  = q; ˆ2p qa j


 
 


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