
The Laplace Equation – Solutions & Applications 

Background 

 Differential Equations handout 

 PDE Solution by Separation 

Concepts of primary interest: 

 Absence of internal extrema 

 Average property 

 Uniqueness conditions 

 Product-form trial solution 

 Separation constants 

 Sets of orthogonal functions

 Locally orthogonal coordinate systems 

 Discrete and continuous eigenvalue spectra 

 **** ADD  properties of Legendre and Ym's 

Sample calculations: 

 Potential due to a point charge averaged over a sphere 

 Potential due to a ring of charge at points off axis 

 Boundary value matching on a spherical surface 

Tools of the trade: 

 Sines and cosines of evenly spaced arguments 
 

    The Laplacian operator appears in a multitude of partial differential equations 

describing physical situations. Examples of Laplace and Poisson’s equations are to be 

presented primarily in the context of electrostatics. Maxwell’s equations, specialized 

to electrostatics, describe the physics of interest. 
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The conclusion is that the electrostatic potential obeys Poisson’s equation which, in 

charge-free space, reduces to the Laplace equation: 

                                                     2 ( ) 0V r 


.                                          [SL.1] 

Solutions to the Laplace equation have two related properties that are of interest.   

Property one: A function satisfying the Laplace equation in a region does not have a 

local maximum or minimum at an interior point in that region.  Rather, all extrema 

occur on the boundary of that region. The situation is a generalization of endpoint 

extrema for a function of a single variable. 

Property two: A solution to the Laplace equation in a region assumes a value at each 

point that is the average of its values at (a full set of equally distant) points located 

symmetrically around the point of interest.  The statement of property two is not very 

precise; its meaning becomes clear as examples are presented.   

 

Laplace in 1D:     In Cartesian coordinates, the Laplace equation is:  
2 2 2

2
2 2 2( ) 0

V V V
V r

x y z
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
 

Following the little steps approach, we begin with the equation in one dimension:  
2

2
0

d V d dV

dx dx dx
   
 

. 

The plot of V(x) has a constant slope. If V(x) satisfies the equation in the open interval 

(a, b), then V(x) = m x + b and there are no relative maxima or minima in that open 

interval.  The only extrema are the end-point extrema V(a) and V(b).  Further, given x1 

and x2 in the interval (a, b),  1 2 1 2
2 2

( ) ( )x x V x V x
V

 
 , the value of the potential at ½ (x1 + 

x2) is the average of the value of the potential at the two equidistant points x1 and x2. 

 

Laplace in 2D:     In Cartesian coordinates, the Laplace equation is:  
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If the values of V(x,y) is to be a local maximum, then both 
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is not possible for a solution of the Laplace equation: 
2 2

2 2
0

V V

x y

 
 

 
. Maxima of V(x,y) 

can be found only at locations on the boundary of the region in which V(x,y) satisfies 

the Laplace equation.  Clearly, an analogous statement holds for minima.  As a 

motivation for the average value property, approximations for the various derivatives 

are given in terms of the values of V(x,y) on a square grid of points laid out as (x+n, 

y+m) where m and n are integers. 
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After making analogous approximations, the approximate second partial w.r.t. y is: 
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  

Substituting these relations into the Laplace equation yields the Relaxation Method 

approximation for the value of the function V(x, y) on a 2D square grid in terms of its 

values at the four nearest neighbor points. 

4
( , ) ( , ) ( , ) ( , )( , ) V x y V x y V x y V x yV x y         

The value of the solution V(x,y) is approximately the average value of V at four points 

that are equally distant from (x,y) along each of the four coordinate directions. This 

result above is the relaxation method approximation; it is not the precise average of a 

full set of values at symmetrically-located, equally-distant points.   
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The full average of a complete set of equidistant points is the average of the values on 

a circle concentric with the point of interest. That average can be computed as: 

                            
2

0

1
2( , ) ( cos , sin )RV x y V x R y R R d



                             [SL.3] 

(Note: V(x,y) must satisfy the Laplace equation everywhere within the circle.) 

 

While not exact, the relaxation method is a useful numerical technique for 

approximating the solution to the Laplace equation when the values of V(x,y) are 

given on the boundary of a region. 
 

The 2D Laplace problem solution has an approximate physical model, a uniform 

elastic membrane held at heights V(x,y) on the boundary of the x-y region in which the 

Laplace equation is satisfied (with all vertical displacements and slopes kept small).  

As a model, the elastic membrane facilitates visualizing the absence of local extrema 

and the average value property. 
 

Laplace in 3D:     In Cartesian coordinates, the Laplace equation is:  
2 2 2

2
2 2 2

( ) 0
V V V

V r
x y z

  
    

  
 . 

By the arguments above, if one of the second derivatives is positive, then at least one 

of the others must be negative ruling out the possibility of extrema at an interior point.    
 

The relaxation method approximation for a function evaluated on a cubic grid of 

points {x + k, y + m z + n can be extended to:  

6
( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , )
V x y z V x y z V x y z V x y z V x y z V x y z

V x y z
            

This form is an approximate average property with the exact form paralleling that for 

two dimensions.  A full set of equidistant point is a concentric spherical shell in three 

dimensions. Assuming that V satisfies the Laplace equation at all points within the 
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sphere, the average value of V on the surface of the sphere is equal to the value of V at 

the center of that sphere. 

2

22

0 0

1
4( , , ) sin ( sin cos , sin sin , cos )RV x y z R d V x R y R z R

 

 d            

Sample Calculation:  The potential due to a point charge averaged over a sphere: 

For this example, the region inside the sphere is charge-free so the potential satisfies 

the Laplace equation in that region. Examining the average property for this case: 

q

Sr


SPr


Pr


dAR

A point charge is located a distance z up the 
polar axis.  The average value of the potential 
due to that charge is to be computed over the 
surface of a sphere of radius R centered on 
the origin.  The distance from the charge to
patch on the surface of the sphere is, by the 
law of cosines, 

 a 

2 2 2 cosR z z R   . The 
potential due to q at the patch is: 
  

2 2
04 2

q

R z z R cos   
. 

patch patch

1
ave
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V V
A

  dA  

The average value of the potential over the sphere is computed as: 
2 2

2 2 2 2 2
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The integral yields to the change of variable u = R2 + z2 – 2zR cos and du = 

2 z R sin d.  Making the corresponding changes to the limits of integration, 

    

Vave 
q

2 4  0 2 z R

du

u1/ 2

z R 2

z R 2

 
q

2 4  0 2 z R
2 u1/ 2 

z R 2

z R 2

 

The square root represents a distance requiring that the positive root be chosen leading 

to distinct algebraic forms for z > R and for z < R, that is: for charges outside the 

sphere and for charges inside the sphere. 
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The ‘q outside’ result is of immediate interest as the potential is to satisfy the Laplace 

equation inside the sphere requiring that the region inside is charge-free.  In this case, 

the average of the potential due to q over a complete set of points equidistant from the 

center of the sphere is Vave = (q/4oz), which is exactly the potential at the center of the 

sphere due to the charge q.  It follows from superposition that the potential at the 

center of the sphere due to an arbitrary charge distribution outside the sphere satisfies: 

. centerave on shellV V

 

 

Pierre Laplace: French physicist and mathematician who put the final capstone on 

mathematical astronomy by summarizing and extending the work of his 

predecessors in his five volumes: Mécanique Céleste (Celestial Mechanics) (1799-

1825). This work was important because it translated the geometrical study of 

mechanics used by Newton to one based on calculus, known as physical 

mechanics. He invented gravitational potential and showed that it obeyed the 

Laplace equation in empty space. 
 
 Eric W. Weisstein 

 http://scienceworld.wolfram.com/biography/Laplace.html, a Wolfram site 

 

Linearity and Uniqueness: 
 

The solution to a problem in classical physics should exist and should be completely 

determined by an adequate specification of initial or boundary conditions.   

Establishing conditions under which this assertion can be proven for the Laplace 

equation is simplified because the Laplacian is a linear differential operator.  

An operator L that operates on a space of vectors is linear if,  L [ 1a v b v 2 ] = a 

L [ 1v ] + b L [ 2v ] where a and b are scalars and |v1 and |v2 are vectors .  
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Our two vectors are the two differentiable functions 1( )V r
  and . 2 ( )V r



                                                          [SL.4] 2 2
1 2 1 2( ) ( ) ( ) ( )aV r bV r a V r b V r          2 

Clearly any linear combination of solutions to the Laplace equation  is also 

a solution to the Laplace equation.  The discussion can be extended to cases with 

source charges and Poisson’s equation 

2 ( ) 0V r 


0

2 ( )V r 
  

 in which case the difference 

between any two solutions to Poisson’s equation for the same charge distribution is a 

region is a solution to the Laplace equation in that same region.   
 

The celebrated principle of superposition (for linear operations) states that 

1( )V r
  is a solution to Poisson’s equation with a source charge density 1( )r   

and  is a solution to Poisson’s equation with a source charge density 2 ( )V r


2 (r ) 
 then  is a particular solution to Poisson’s equation with 1 2( ) ( )aV r bV r

 

a source charge density: 1 2( ) ( )a r b r 
 

.  The boundary conditions are to be 

met by adding a solution to the Laplace equation.  This approach can be 

based on the known solution to Poisson’s equation. 

                    
/

3
2 ( )

( ) ( ) ( )
4

all r

s r d r
V r s r V r

r r
     


   
                    [SL.5] 

 

Exercise: Give the expression for the Laplacian of the electrostatic potential. Replace 

the source term ( )s r


 by its electrostatic value in equation [SL.5]. 

 

Simple uniqueness given boundary values: If the value of the solution to the 

Laplace equation is given at every point on a closed surface bounding the region of 

interest then the solution in the region is unique.  A proof by contradiction (reductio 

ad absurdum) follows.  Assume that there are two distinct solutions  and 1( )V r


2 ( )V r
  

that satisfy the equation and the boundary conditions. Define the function: 
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1 2( ) ( ) ( )U r V r V r 
  

.   Clearly, ( )U r
  satisfies the Laplace equation and is equal to zero 

everywhere of the closed surface that bounds the region of interest.  Then ( )U r
  must 

vanish everywhere as a solution to the Laplace equation has all its extrema on the 

boundaries.  That is:  is both less than or equal to 0 and greater than or equal to 

zero everywhere in the enclosed region.  The conclusion is that V r  

throughout the enclosed region, and hence there is no second distinct solution. 

( )U r


2 ( )V r


2 1( ) V


( ) 0r 


 

The region of interest may be multiply connected with a bounding surface consisting 

of two or more parts.  Examples are the region between to concentric spheres or the 

region inside a Hershey's with almonds but outside the almonds.  The bounding 

surface is the union of all the bounding surface segments. 
 

More general conditions for uniqueness follow by assuming that there are two 

solutions  and  that satisfy the Laplace equation and the boundary 

conditions. Defining the function: 

1( )V r


1 2( ) ( ) ( )U r V r V r 
   .  A product rule states that: 

2( ) ( ) ( ) ( )U r U r U r   
     

( )U r 
 

 
( )U r


U r  

Using Gauss’s theorem relating the surface integral of the normal component to the 

volume integral of the divergence of the vector field,  
2

ˆ( ) ( )U r U r n


 
  ( )U r ( ) ( ) ( ) ( ) 0

V V
d U r dV U r U r dV U r dV 

         
       

V V
A  

 
 

where the last term vanishes as U satisfies the Laplace equation.  It follows that: 
2

ˆ( )U r ( ) ( ) 0
V V

U r n dA U r dV


     
     

The right hand side is positive definite, and it can vanish only if the gradient is 

everywhere zero.  That is: ˆ( ) 0
V

U r n dA


( )U r   
   requires that  is constant. ( )U r



 

Boundary Condition Cases: 
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Dirichlet:  The solutions  and 1( )V r


2 ( )V r
  have the same value at each point on the 

boundary.  Conclusion:  = V r1( )V r


2 ( )
 ; the solution is unique. 

 

Neumann: The solutions  and 1( )V r


2 ( )V r
  have the same normal derivative 

ˆ( )dV
dn V r n 

 
 at each point on the boundary.  Conclusion: 1( )V r

  =  + c; the 

solution is unique up to an additive constant as 

2 ( )V r


( )U r
  must be constant. 

 

Mixed: The solutions  and 1( )V r


2 ( )V r
  have the same value at some points on the 

boundary and have the same normal derivative at all other points on the boundary.  

Conclusion:  =  + c; the solution is at least unique up to an additive 

constant. The solution is unique if the value of the solution is specified at any point 

on the boundary. 

1( )V r


2 ( )V r


 

For any of the conditions listed, ˆ( ) ( ) 0
V
U r U r n dA


  
   which requires that ( )U r

  is 

constant. Here,  represents the closed surface that bounds the volume V. V
 

Conductors with known net charge: Physical insight provides an additional situation 

in which uniqueness can be established.  Suppose that mixed conditions hold on all 

segments of the boundary except for those bounding embedded conductors with 

known net charge. The contributions to ˆ( ) ( )
V

U r U r n dA


 
   vanish for surface 

elements on which the mixed conditions are met.  Equilibrium requires that the 

potential is constant ( ) on the surface of each 

conductor, and Gauss’s Law specifies 

1 1( ) ( )
S

V r V r n 
  1 1ˆ ( )

i
i i

S S
dA V V r n dA  

   ˆ

1 ˆ( )
i iS S

V r n dA 2 0
ˆ( ) iqr n dAV        

     for each 

conductor surface segment Si ensuring that: 
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1 2 1 2 1 2 0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ 0

i i i
i i i i

i i i i
i i

S S SS S S S

S S S SS S
i iq q

U r U r n dA U U r n dA V V V r n dA V r ndA

V V E ndA E n dA V V  

  
 

           

           

          

   

 

       

 
   

 

ˆ
 

Recalling that 
2

ˆ( ) ( ) ( ) 0
V V
U r U r n dA U r dV


     
     and that we have shown that  

, we conclude that the difference between two solutions for the 

potential due to an array of conductors each with a specified net charge is at most a 

constant. 

ˆ( ) ( ) 0
V

U r U r ndA


  
 

 

Uniqueness Summary: Thus ˆ( ) ( )
V

U r U r n dA


 
  vanishes on the boundary segments 

where either the potential or its normal derivative is specified, and 

 vanishes on the boundaries of embedded conductors with 

specified total charge under electrostatic conditions. Again, any two solutions 

ˆ( ) ( )
V

U r U r n dA


 
 

1( )V r
  

and  can differ by at most a constant. We say, “the solution is unique up to a 

possible additive constant”. 

2 ( )V r


 

Property three: A solution to the Laplace equation is unique (up to a possible 

additive constant) is any one of the condition sets discussed above is met. 
 

Conditions have been established under which the solutions to the Laplace equation are unique at 

least up to an additive constant. For many physical applications such as the problems in 

electrostatics, the additive constant does not change the measured fields and hence is of no 

consequence. That is: the physics of the problem is unique if any one of the four condition criteria 

is met. 

 

Partial Differential Equations:  Plan of attack 
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We solve partial differential equations by separating them into collections of ordinary 

differential equations (ODEs).  Then the established methods for attacking ordinary 

differential equations are unleashed on the ODEs.  As an example, the Laplace 

equation is to be studied in Cartesian, cylindrical and spherical coordinates. 

                  
2 2 2

2
2 2 2

( ) 0
G G G

G r
x y z

  
    

  
         Laplace equation            [SL.6] 

Basically, it is the sum of the second derivatives with respect to distance of the 

function in three orthogonal directions.  This form is open to separation in any 

coordinate system in which the three coordinate directions at any point in space are 

mutually orthogonal (perpendicular).  The requirement is that locally (at each point) 

the coordinate directions are orthogonal.  Cartesian coordinates is the only system 

with coordinate directions that are globally orthogonal.  
 

The Helmholtz equation arises when time dependence is added to the mix. When it 

arises, work through the separation steps carefully and track the changes. 

     
2 2 2

2 2
2 2 2

( ) ( ) ( )
( ) ( )

G r G r G r
G r k G r

x y z

  
     

  

   
        Helmholtz Equation    [SL.7] 

 

Cartesian Coordinates: Step-by-step solution of the Laplace equation 
 

Step One:  Assume that the solution can be written as a product of three functions 

each of which depends on only one of the three coordinates. 

G(x, y, z) = X(x) Y(y) Z(z)  
 

Step Two:  Allow the differential operator to act on the assumed form. 

 
2 2

2
2 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

X x Y y Z z
X x Y y Z z Y y Z z X x Z z X x Y y

x y

  
   

 

2

2z



 

The partial derivatives may be replaced by totals as each function depends on a single 

coordinate variable. 
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Step Three:  Divide by: X(x) Y(y) Z(z), the form assumed for G(x,y,z).  

                    
2 2 2

2 2

1 ( ) 1 ( ) 1 ( )
0

( ) ( ) ( )

d X x d Y y d Z z

X x dx Y y dy Z z dz2
                   [SL.8] 

 

Step Four:  Assign separation constants.  Each term above is independent of the 

coordinates upon which the other two terms depend. These conditions require that 

each term equals a constant, a value independent of (x, y, z). That is: 

                                       
2

2

1 ( )

( ) x
d X x

C
X x dx

                                   [SL.9] 

where Cx  is a separation constant independent of x, y and z. The set becomes: 
2

2

1 ( )

( ) x
d X x

C
X x dx

        
2

2

1 ( )

( ) y
d Y y

C
Y y dy

        
2

2

1 ( )

( ) z
d Z z

C
Z z dz

     or 

2

2

( )
( )x

d X x
C X x

dx
        

2

2

( )
( )y

d Y y
C Y y

dy
        

2

2

( )
( )z

d Z z
C Z z

dz
  

A supplemental requirement is that: Cx + Cy + Cz = 0 [SL.10]. The condition [SL.10] 

ensures that the sum of the terms in step three is zero as required by the Laplace 

equation.  The condition requires that if one separation constant is positive then at 

least one is negative.  A negative separation constant leads to sine and cosine solutions 

while a positive separation constant leads to real (growing and decaying) exponentials.   

A point of special interest is the relationship between the allowed values of the 

separation constants and the separation of the boundary points. Boundary 

conditions at points separated by a finite interval set a discrete spectrum of allowed 

values for the associated separation constants that are sometimes called eigenvalues.  

Boundaries separated by an infinite interval admit a continuous spectrum of 

separation values.  The transition from discrete to continuous spectra follows 

smoothly as the discrete values become more closely spaced as the linear extent of the 

interval increases. 
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Exercise: There is a very special case in which Cx = Cy = Cz = 0. In this case show 

that X(x) has the form m x + b where m and b are constants. Give the general form of 

V(x, y, z) in this special case. Give the form of the electric field described by this 

V(x, y, z). Find the specific form for an electrostatic potential that corresponds to a 

uniform electric field: .        Recall: 0
ˆE E j


E V 
 

 

 

CAUTION: The zero valued separation constant solutions are often ignored. Be sure 

to consider them whenever you begin the study of a new problem. 

 

Cartesian Sample: 2D Electrostatics. 

A problem can be defined to be in two dimensions, or, equivalently, it can be stated 

that there is no z-dependence.  In either case    2 2( , ) ( ) ( ) 0G x y X x Y y     leads to: 

2

2

( )
( )x

d X x
C X x

dx
        

2

2

( )
( )y

d Y y
C Y y

dy
               0x yC C 

It is convenient to set Cx =  k2 and Cy = k2  to enforce the condition Cx + Cy = 0. 

 
2

2
2

( )
( ) 0

d X x
k X x

dx
           

2
2

2

( )
( ) 0

d Y y
k Y y

dy
   

The +k2 form leads to sines and cosines and is chosen for the coordinate for boundary 

conditions that require matching the form of a function as that can be accomplished 

using a Fourier series expansion. The –k2 form leads to real (growing and decaying) 

exponentials and is often the correct choice for a coordinate that has an infinite range 

plus the requirement that the solution vanish for arguments that are large positive (or 

negative).   
 

Advance Notice:  In the limit that the period for the Fourier series 

becomes infinite, the spectrum of eigen-frequencies becomes 

continuous and the solution series morphs into a Fourier transform. 
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Typical terms in a solution have the forms: , 

 and 

sin( ) cos( ) kx kx
k k k kA ky B ky C e D e      

E F x G H ysin( ) cos( ) ky ky
k k k kA kx B kx C e D e                in two dimensions.  

The spectrum of separation constants may be different depending on whether the 

terms have trigonometric functions for the x direction or for the y direction. The 

spectra are set usually by adjusting arguments of the trigonometric functions to meet 

boundary conditions. The spatial frequencies k usually are set so the spatial extent in a 

direction is a multiple of either one-half the period or the full period of the 

trigonometric functions. Alternative representations arise if complex exponentials are 

used to represent the sines and cosines. The dependence on the other variable is 

expressed using ekx and e-kx or, for problem that are symmetric or anti-symmetric, the 

corresponding combinations of the real exponentials, cosh(kx) and sinh(kx), are 

chosen. 

 

General 2D Cartesian Solution: 

1

1

( , ) [ ][ ]

sin( ) cos( )

sin( ) cos( )

m m

n n

m m m m m m
m

n n n n n n
n

k y k y

k x k x

G x y A B x C D y

E k x F k x G e H e

S e T e U k y V k y











     

     

  

  

  





  [SL.11] 

The game is to find reasons to exclude as many of the terms in the general solution as 

possible and then to try to fit the boundary conditions with the remaining terms. The 

terms [A + B x][C + D y] are to be called the zero frequency terms. 

 

Every term in the general solution satisfies the Laplace equations. So any linear 

combination of them satisfies the Laplace equation. If a combination of terms can be 

found the satisfies a set of boundary conditions sufficient to meet the requirements for 

uniqueness is meet, THE SOLUTION has been found. The solution of the Laplace 
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equation is unique given Dirichlet, Neumann or mixed conditions. By unique, we 

mean unique except for the possibility of an additive constant. The point is that no 

matter how ad hoc the matching process seems, it generates THE SOLUTION if the 

boundary conditions can be matched. 

 

Exercise: Generate the general form of the solution to the Laplace equation in three 

dimensions and Cartesian coordinates. Include the cases in which one separation 

constant is zero. 
 

The standard first problem is a (2D) rectangular box* with conducting sides. Three 

sides are held at zero potential and the fourth (insulated from the others) is held at Vo.  

In the context of the uniqueness criteria of Dirichlet, the potential has been specified 

everywhere on the boundary so the potential is uniquely determined inside that 

boundary. If a solution is found that satisfies the Laplace equation in the interior and 

the required values on the boundary, it is the unique solution for the problem. (* The 

corresponding 3D problem is an infinitely long conducting channel of rectangular 

cross section with no z dependence.) 
 

Vo 0

0

0

x

y

y=b

x=a
 

The y dependence is distinct and runs over a finite 

range which suggests using Fourier methods. Choose 

Y(y)= Ak sin(ky)+Bkcos(ky). A typical solution term *: 

( , ) sin( ) cos( ) kx kx
k k k k kV x y A ky B ky C e D e         

*As the Laplace equation is linear, a sum of terms  

which are individually solutions is a solution. The next problem is to find the 

spectrum of k-values that is appropriate for the problem.  The boundary values must 

be matched. 
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*The condition Y(0) = Y(b) = 0 eliminates the zero separation constant solution. The 

trigonometric forms are chosen for the y dependence because we wish to fit Vo(0,y), a 

function of y, and we know that Fourier series methods are up to that task. 
 

y = 0:   V=0.   Bk = 0.  Can’t have cos(ky) terms; not zero for y = 0. 

y = b: V=0.     sin(kb) = 0     k = m (/b)  where m is an integer index 

x = a : V=0.                   ( / ) ( / ) 0m a b m a b
m mC e D e   ( [2 ]/ )m a b

m mD C e   

use:  ( / ) (2 / ) ( / )( )m m
m x b m a b m x bX x C e e e    

    

x = 0 : V=Vo .   (2 / )
0

1 1

sin( ) 1 sin( )m a b
m m m

m m

m y m y
b bV a A C e  

 

 

       

The condition in line two above  k = m (/b) illustrates that a finite range for a 

coordinate leads to a discrete eigenvalue spectrum.  The smaller the range b of the 

variable y is, the more widely spaced are the eigenvalues (separation constants) for 

the y dependence differential equation. (In quantum mechanics, a particle confined 

in a narrower well has more widely spaced energy eigenvalues.) 
 

The last condition directs that the Fourier sine series for a constant between 0 and b be 

computed using only sines (Bk = 0) which are anti-symmetric functions.  Equivalently, 

the Fourier series for the anti-symmetric square wave is to be computed (V(0,y) = - Vo 

for –b < y < 0 and = +Vo for < y < b)  . (See the Fourier series handout for details.) The 

point is that the set of all sines of the arguments ( m y
b

 ) is a complete set of orthogonal 

functions for the representation of well-behaved functions over the interval [0, b].  

(One must add a constant plus all the cosines to represent even and odd over the 

interval [-b, b].) The orthogonality provides the means to project out the coefficient of 

any one of those functions from the sum by pre-multiplying by that function and 

integrating over the range (applying the inner product procedure). 
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To isolate an, one multiplies by sin(ny/b); integrates with respect to y over its full 

range; and uses  0
sin( ) sin( ) 2

b

mn
n y m y

b b
bdy   . This result is a statement of 

orthogonality of the sines of ny/b and that the average value of sine squared is ½.

 00 0
1 1

sin( ) sin( ) sin( ) 2
b b

m m
m m

mn
n y n y m y

b b b
bV dy a dy a   

 

 
     

  
0

0 0 00

4
2 2sin( ) cos( )

0

b n

n

V
nn y

b
b

nb b
for n odd

a V dy V u
for n even

 


    


  

Matching at x = 0.     

(2 / )
0

0 1

[2 1]0
2 1

4
( ,0) sin( ) ( ) 1 sin( )k a b

k k
m k

m y k y
b bm

V
V x V A C e  


 

 
  


         

(2 / )
0

2 1

4
2 1 odd integers

( ) 1
0 2 even integers

k a b
k k

n

V
for k m

A C e
for k m

  
 

 
      
 

 

One could replace AkCk by a single constant such as Ak. Plugging in the values of AkCk 

and k, we find: 

( / ) (2 / ) ( / )

(2 / )
0

( / ) ( / ) ( / ) ( / ) ( / )

( / ) ( / ) ( / )
0

[2 1]

[2 1]

0

0

2 1

2 1

4

4

( , ) sin( )
1

sin( )

n x b n a b n x b

n a b
m

n a b n a b n x b n a b n x b

n a b n a b n a b
m

m y
b

m y
b

m

m

V

V

e e e
V x y

e

e e e e e

e e e

  



    

  











 
 



 
 

 



  

 









  
  
  

  




 

Note: n = 2 m + 1 in the lines above. The 2 m + 1 represents the odd integers 

         

 

0

[2 1]0
2 1

(2 1)

(2 1)

4
sinh

( , ) sin( )
sinhm

m y
bm

m a x
b

m a
b

V
V x y 






 
 




 



 
  
 
  

         [SL.12] 

The full calculation may seem challenging, but it is mostly bookkeeping. Be 

disciplined. Organize your work. 
 

Exercise: The general solution to the 2D Laplace equation has the form: 
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 

 
1

1

( , ) [ ][ ] sin( ) cos( )

sin( ) cos( )

m m

n n

m m m m m m
m

n n n n n n
n

k y k y

k x k x

G x y A B x C D y E k x F k x G e H e

S e T e U k y V k y











       

    




 

The solution chosen used only
1

sin( ) cos( )n n
n n n n n n

n

k x k xS e T e U k y V k y






       . Test the 

other terms to see if they could fit the boundary conditions.  

 

The slot problem follows when is a is made infinite. Adding the physical requirement 

that V = 0 for x   and 0 < y < b the potential is specified over the complete 

boundary of the slot. In the context of the uniqueness criteria of Dirichlet, the potential 

has been specified everywhere on the boundary so the potential is uniquely 

determined inside that boundary. If a solution is found that satisfies the Laplace 

equation in the interior and the required values on the boundary, it is the unique 

solution for the problem. 

Vo

0

0

x

y

y=b

 
( , ) sin( ) cos( ) kx kx

k k k k kV x y A ky B ky C e D e        ; boundary-value match. 

 

y = 0:   V=0.   Bk = 0.  Can’t have cosine terms; not zero for y = 0. 

y = b: V=0.     sin(kb) = 0    kb = m   km = m 
/b  where m is an integer index 

x  :  The solution should be well-behaved (finite).    Ck = 0. 

Hence ( , ) sin( )m m

m x
bm y

bV x y A e
 

  

3/10/2010 Handout.Tank:  Solution - Laplace Equation SL-18 



x = 0 : V=Vo .   0
1 1

sin( ) sin( )m m
m m

m y m y
b bV a A 

 

 

    

With somewhat less grief, it follows that, in the slot,  

                       
0

[2 1]( ) [2 1]0
2 1

4
( , ) sin( )

m

m x
b m y

bm

V
V x y e

 
 

  





 
              [SL.13] 

This result can be summed to yield (see Griffiths 3rd Ed., Eqn 3.37, page 132): 

102 sin( )
( , )

sinh( )
tan

y
b
x

b

V
V x y




  

  
 

 

The Rest of the Story: 

Fourier expansions are made in a rather cavalier fashion when one solves a Laplace 

boundary value problem. In this optional section, a couple of the details that justify 

the application of the Fourier methods are discussed. The fundamental frequency for 

the expansion as set by the boundary conditions is /b which should be 2/T where T is 

the period. The conclusion is that a function with period 2b is being expanded and that 

it is anti-symmetric as only sines appear in its expansion. The expansion coefficients 

could be computed using the standard Fourier series equations: 

0

2 2
2 sin ( ) sin ( )

b b

p b b bb bb p y f y dy p y f y dy 


   
       

The last step follows as the product of a sine and f(y) is an even function. 

 

Square waves come in several forms.  As an example, an odd square wave with period 

T stepping from -1 to +1 is presented. 
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y

f(y)

Vo

-Vo

-b +b 2b-2b

 

The square wave f(t) has a period of T and is extended beyond the base period to 

display the discontinuities at each multiple of T/2.  The function is represented as: 

                                    0

0

0
( )

0

V for y b
f y

V for b y




  


   
          

 

Exercise: Consider the form of each term as m increases. 
[2 1]( ) [2 1]sin( )

m x
b m y

be
    

Motivate the result the potential contributions associated with the faster y variations 

(higher m) decay more rapidly as x increases. Appeal to a property of solutions of the 

Laplace equation discussed several pages earlier. 
 

 

More general box: A rectangular box with three conducting sides held at zero 

potential and the fourth insulated side held at V(0,y).  

V(0,y) 0

0

0

x

y

y=b

x=a  

The problem develops as before, but ends with a more 

general Fourier series problem. 

(2 / )

1 1

(0, ) sin( ) 1 sin( )m a b
m m m

m m

m y m y
b bV y a A D e  

 

 

       

leading to 
0

2 sin( ) (0, )
b

n
n y

bba V  y dy . 
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An even more general box might specify a different functional form on each side of 

the box. 

x

y

y=b

x=a

V(0,y)

0

0

0

V(0,y)

x

y

y=b

x=a

V(0,y)

V(x,b)

V(a,y)

V(x,0)

y

y=b

x=a0

0 0

V(x,b)

 

As suggested by the drawing, attack the problem by superposing the results obtained 

for each of the four sides held at the prescribed function and the others at zero. The 

sine and cosine forms are used for the coordinate/side with the functional form. This 

approach is critical as the exponentials lack a convenient orthogonality relation. One 

can project out the coefficients if the expansion functions obey an orthogonality 

relation. 

 

 Even a problem as simple as 

x

y

y=b

x=a

0

0

0
x

y

y=b

x=a

Vo 0

0

y

y=b

x=a0

0 0

Vo

Vo

Vo

 

is best approached using superposition as illustrated. 
 

Boxes with symmetric boundary conditions:  
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x

y0

0

f(y)
f(y)

(a/2,b/2)

This problem requires fitting a function of y on the 

boundaries with x = a/2, so the sinusoids are to be 

used for the y-dependence.  The problem is 

symmetric in x so rather than choose the bare real 

exponentials, their symmetric and anti-symmetric 

combinations, cosh and sinh are to be employed.  

Using the even with respect to x character, the x dependence is reduced to hyperbolic 

cosines only.  The sinusoid selection is somewhat problematical. All sinusoids that 

vanish at y = b/2 are required. They may be non-zero at y = 0. The required forms are: 

                 2 2

sin[ ] 4

cos[ ] 4 1
sin[ ] sin[ ]

sin[ ] 4 2

cos[ ] 4 3

m y
b

m y
m y bm b

b b m y
b

m y
b

for m n

for m n
y m

for m n

for m n




 













 

   
  
  

           [SL.14] 

Adopting the leftmost form, a sine series is the answer with the function f(y) being 

extended to – 3b/2 anti-symmetrically about y = – b/2. The allowed km values are all 

positive integer multiples of /b.

 2
1

( , ) cosh( ) sin[ ]m b
m b

m

m x
bV x y A y




   

where  2
1

22( ) ( , ) cosh( ) sin[ ]m b
m b

m

m a
b

af y V x A y




   . 

The orthogonality relation for the shifted sines becomes: 

   /2

2 2/2 2sin[ ] sin[ ]
b

m b b
b bb

b
my y dy  


   

  

 2
1

( ) sin[ ]m b
m b

m

f y C y




   

Assuming that the Fourier coefficients Cm for f(y) has been found, V(x,y) is: 

 2
1 2

cosh( )

cosh( )( , ) sin[ ]m b
m b

m

m x
b

m a
b

V x y C y






  . 
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Summary: This example is inelegant!  A more satisfying approach is to map or shift 

the problem to one in y = y + ½ b defined for 0 < y < b. A normal Fourier sine series 

would then arise naturally. At the end, replace y with y + ½ b. Do remember that cosh 

and sinh can be used rather than the bare real exponentials to simplify the solution 

steps if the problem has even or odd symmetry. 

 

Boxes with anti-symmetric boundary conditions:  

 

x

y0

0

f(y)
f(y)

(a/2,b/2)

This problem requires fitting a function of y on the 
boundaries with x = a/2, so the sinusoids are to be 
used for the y-dependence.  The problem is anti-
symmetric in x so rather than choose the bare real 
exponentials, their anti-symmetric combination, sinh, 
should be employed. Compare with the symmetric 
case just above. 

 2
1

( , ) sinh( ) sin[ ]m b
m b

m

m x
bV x y A y




   

 

Three dimensional boxes: Separation in three dimension leads to solution terms that 

have either one oscillating factor and two real exponential factors or two oscillating 

factors and one real exponential factor.  The later case is probably the first that is 

encountered leading to a general term of the form: 

( , , ) sin( ) cos( ) sin( ) cos( )
x y x x y y x y x y

z z
k k k x k x k y k y k k k kV x y z A k x B k x C k y D k y E e F e               

The separation constant condition 0x y zC C C    leads to 2 2
x yk k  2   or 2 2

x yk k   .   

A box problem with x-extent a and y-extent b leads to  x ak m  ,  y bk n   and 

   22

mn
n m
a b   .  Problems of this complexity are too time and space consuming to 

be treated here and are reserved for homework. 

 

Cylindrical Coordinates: Separation Steps 
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Step One: Assume that the solution can be written as a product of three functions 

each of which depends on only one of the three coordinates. 
 

                                  ( , , ) ( ) ( ) ( )G r z R r Z z                                  [SL.15] 
 

Step Two: Allow the differential operator to act on the assumed form. 

 
2 2

2
2 2 2

1 ( ) 1 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

R r Z z
R r Z z Z z r R r Z z R r

r r r r z

  


                           
  

The partial derivatives may be replaced by total derivatives as each function depends 

on a single variable. 
 

Step Three:  Divide by G(r, , z) = R(r ) () Z(z).  

2 2

2 2 2

1 1 ( ) 1 1 ( ) 1 ( )
0

( ) ( ) ( )

R r Z z
r

R r r r r r Z z z


 

                         
 

 

Step Four:  Assign separation constants.  Separation is a staged process this time.  

The last term above is independent of r and  upon which the other two terms depend.  

That is:        (Straighten the derivatives for functions of one variable) 
2

2

1 ( )

( ) z

d Z z
C

Z z dz
   and 

2

2 2

1 1 ( ) 1 1 ( )

( ) ( ) z
d dR r d

r C
R r r dr dr r d


 

                 
 

Multiplying by r 
2   

                              
2

2
2

1 ( ) 1 ( )

( ) ( ) z
d dR r d

r r C
R r dr dr d


 

      
r               [SL.16] 

so that:       

             
2

2

1 ( )

( )

d
C

d 


 


 


      21 ( )
0

( ) z
d dR r

r r C r C
R r dr dr 

     
 

        [SL.17] 

The requirement of the Laplace equation on the sum of the separation constants has 

been incorporated, and Cr is expressed in terms of C and Cz in [SL.17]. The boundary 

conditions at points separated by a finite increment set a discrete spectrum of allowed 

values for the associated separation constants that are sometimes called eigenvalues.  
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For the (, the most common range for  is from 0 to 2  and the solution satisfies 

the boundary condition (2 ) = (0) as the two values of correspond to the same 

point in space.  This periodicity requirement leads to C = - m 2 where m is an integer.  

The solutions are: 

( ) sin( ) cos( )m m m m m
im ima m b m c e d e          

Note that it is the finite range of the  variable leads to a discrete rather than a 

continuous spectrum for the  separation eigenvalues. 
 

A special class of problems identifies the z separation constant as n 2 leading to: 

   2 2 2( )
( ) 0nm

nm
dR rd

r r n r m R r
dr dr

 
 
 

     and  
2

2
2

( )
( )n

n
d Z z

n Z z
dz

  

The radial equation is Bessel’s equation, and the Z(z) equation has real exponentials as 

solutions. 
 

A general solution is of the form: 

,

( ) ( ) ( ) ( )nm nm m n
n m

G r R r Z z    

                            [SL.18] ( , , ) ( ) ( )mn n nm mn n nm
m n

mim k zG r z A J k r B N k r e e    

where Jn and Nn are Bessel functions of the first and second kind. 

The determination of the allowed values knm is more complicated that was the case for 

trig functions. Refer to the Tools of the trade discussion around equation [SL.35]. See 

Wikipedia for a discussion of the orthogonality relations  

1 , ,2 2
, , 1 , ,0

( ) ( ) [ ( )] [ ( )
2 2
m n m n

m n mxJ xu J xu dx J u J u        ]m

 
   

and other properties. 

 

The techniques required for matching boundary conditions to evaluate the constants such as Amn are 

somewhat different than for the Cartesian and spherical problems.  Review the procedures in detail in 
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the Special Functions Applications handout or a reference such as Marion’s Classical 

Electromagnetic Radiation when you first encounter a cylindrical Laplace or Helmholtz problem. 

 

Exercise:  Consider the Laplace equation in cylindrical coordinates for a case with no 

 or z dependence.  Find R(r) for this restricted case.  There should be two 

independent solutions.  To find them, integrate 1
0

R
r

r r r

            
 directly.  Only one of 

the solutions follows easily from the standard trial solution: R(r) = A r n.  See the 

Differential Equations handout for details. 
 

Polar Coordinates: Reducing the problem to 2D by specifying no z-dependence leads 

to polar coordinate form of the Laplace equation. 

                                
2

2

1 ( ) 1
0

( )

R r
r r

R r r r


 

             
                    [SL.19] 

This equation separates to yield: 

 
2

2 2
2

( )
( ) and

d dR r d
r r m R r m

dr dr d
 


 
 
 

        

The  equation is trivial leading to the requirement that m be an integer to insure that 

(0) = (2 ).  The radial equation is solved by assuming the trial solution A r n with 

the result that n = m except for the case that m2 = 0 for which a direct integration of 

the radial equation gives A + B ln(r).  The  equation is trivial leading to the form of 

the general solution to the Laplace equation in 2D polar coordinates. 

A general solution that is periodic in  has the form: 

             0 0
1

( , ) ln( ) sin( ) cos( )m m
m m m m

m

V r A B r A r B r C m D m  






                 [SL.20] 

or equivalently: 

             0 0
1

( , ) ln( ) m m im i
m m m m

m

V r A B r A r B r E e F e m 






                          [SL.21]

REVIEW THIS SECTION 
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If the range of  is restricted to a wedge [1 to 2] so that there is no physical 

requirement that (1) = (2). In this case, terms like   0 0 0 0ln( )A B r C D    

and 
1

sin( ) cos( )m m
m m m m

m

A r B r C m D m 






       are allowed with m chosen to be an 

integer times 2/(2-1).  
 

Note that for each distinct value of the separation constant, there are two independent solutions to 

the second order differential equation for each coordinate. Physical considerations may exclude 

one of these solutions as divergent or multi-valued functions are unlikely to represent an allowed 

behavior. The m2 = 0 solution ()= is omitted above in the case of that the angle runs through 

its full range 0 to 2.
 

Exercise:  Consider the Laplace equation in cylindrical coordinates and examine the  

equation for separation constant m2 = 0.  There should be two independent solutions.  

For non-zero m2, the periodicity condition (requires that m is an integer 

leading to the sines and cosines.
 

The Laplace equation inside a circle of radius R centered on the origin. 

A standard requirement is that a physical solution be well-behaved (has defined 

values) in the region of interest. Inside the circle includes r = 0. Note that the function 

 is not well-behaved (is multi-valued) at r = 0 and must therefore only appear 

multiplied by a factor that vanishes at r = 0. Excluding radial functions that diverge at 

r = 0, the form of an acceptable solution is reduced to: 

0
1

( , ) cos( ) sin( )m
m m

m

V r A r A m B m  



       

The boundary of the region is the circle r = R.  Assume that the values on the 

boundary is specified by an arbitrary function f(). Following standard Fourier 

techniques, the expression for the values on the boundary is multiplied in turn by each 
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of the Fourier basis functions, and the corresponding coefficient is projected out for 

evaluation. 

0
1

( , ) ( ) cos( ) sin( )m
m m

m

V R f A R A m B m   



       

2 2

0 0 0

1 1
2 2( ) ( , ) ; the average value on the circleRA f d V R R d

 

        

  
2

0
cos( ) ( )m

mRA m f d


         
2

0
sin( ) ( )m

mRB m f


 d     

 

The average value principle in 2D:  At the center of the circular region, 

 
0

1

2

0 0

1
2

( , ) cos( ) sin( )

(0, ) ( , )

m
m m

m

R

V r A r A m B m

V A V R R d




 

  





     

 




 

The value at the center is the average of the values on the circle of radius R concentric 

with that point (the average over a complete set of symmetrically located equally 

distant points). 
 

Spherical Coordinates 
 

Step One:  Assume that the solution can be written as a product of three functions 

each of which depends on only one of the three coordinates. 
 

                                      ( , , ) ( ) ( ) ( )G r R r                                  [SL.22] 
 

Step Two: Allow the Laplacian operator to act on the assumed form. 
 

 2 2
2 2

2

2 2 2

1 ( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) sin

sin

1 ( )
( ) ( ) 0

sin

R r
R r r R r

r r r r

R r
r

( )     
  


 

                                
   

     

 

Step Three:  Divide by R(r) () (), the form assumed for G.  
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2
2

2 2 2 2

1 1 ( ) 1 1 ( ) 1 1 ( )
sin 0

( ) ( ) sin ( ) sin

R r
r

R r r r r r r

 
      

                                    
2

  

 

Step Four:  Assign separation constants.  Separation is a staged process this time.  

2
2

2 2

1 ( ) 1 1 ( ) 1 1 (
sin 0

( ) ( ) sin ( ) sin

R r
r

R r r r

 
      

                              

)
  

Multiply by r2 to separate r from  and

21 ( )

( ) m
d dR r

r C
R r dr dr

   
       

2

2 2

1 1 ( ) 1 1 ( )
sin

( ) sin ( ) sin mC
 

      
                     

  

Multiplying by sin2 to separate  and      (Straighten the derivatives when equations 

are in one variable.) 

        
2

2
2

1 ( )

( )

d
m

d


 


 


;      

2

2

1 ( )
sin

sin ( ) sin m
d d m

C
d d


    

       
    [SL.23] 

2
2 2

2

( ) ( ) ( )
( ) 2 ( ) 0m m

d dR r d R r dR r
r C R r r r C R r

dr dr dr dr
      
      

                             
2

2

1 ( )
sin ( ) 0

sin sinm
d d m

C
d d

 
   

        
   

             [SL.24] 

2
2

2

( )
( ) 0

d
m

d

 



    

The boundary conditions at points separated by a finite increment set a discrete 

spectrum of allowed values for the associated separation constants that are sometimes 

called eigenvalues.  For the  equation, a standard situation is that  runs from 0 to 2  

and that (2 ) = (0) as the two values of correspond to the same point in space.  

This periodicity requirement leads to separation constants  - m 2 where m is an integer.  

The solutions are: 

( ) sin( ) cos( )m m m m m
im ima m b m c e d e          

Note that: the finite range of the  variable leads to a discrete rather than a continuous 

spectrum for the  separation eigenvalues.  More over as the range of  is also finite, 
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 the overall separation constant Cm also has a discrete spectrum of allowed values:  

( +1) where  is a non-negative integer. (The values of are discussed in the 

orthogonal polynomials handout.) 
 

The  equation is that for the associated Legendre polynomials, the (cos )mP  . The 

normalized combinations of the  and  solutions form the spherical harmonics (the 

YLMs). There is a second solution to the  equation that exhibits singular behavior 

(blows up; infinite) and thereby fails the test to have the character of physically 

allowed solutions. We will pretend that we never heard of it or thought about it.

                      (2 1) ( )!
( , ) ( 1) (cos )

4 ( )!
m m im

m
m

Y P
m

e   

  

 
 


               [SL.25] 

The world famous YLMs are the eigenfunctions for orbital angular momentum and 

appear as the angular dependence of the hydrogen atom eigenfunctions (in the 

standard physics representation). 

The spherical harmonics or YLMs play a special role in physics because they are appropriate for all 

spherically symmetric problems. The separation-constant spectrum is determined by the finite ranges 

of the angular coordinates. That is: Spherically symmetric means that the angles range freely through 

their full domains each of which is finite leading to a universal set of discrete spectrum of separation 

constants for the angular part of all spherically symmetric problems. 
 

The general form of a solution to the Laplace equation in spherical coordinates is: 

                      ( 1)

0
( , , ) ( , )m m m

m

G r a r b r Y  




 



 
      




 
              [SL.26]

If the is no  dependence, then m 2  = 0.  This yields: 

21 ( )
( 1

( )

R r
r

R r r r
            )   and  1 ( )

sin
sin ( )

( 1


   
       

)       
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The  equation has as its solutions, the Legendre polynomials of cos (cos )P  , and 

to ensure that the solutions are defined (don’t blow up) sets the eigenvalue spectrum 

as  = ( + 1) where can assume non-negative integer values.   

 

In the absence of  dependence and restricting to solutions that are finite for  = 0 and 

, the form of a solution to the Laplace equation in spherical coordinates is: 

                       ( 1)

0
( , ) (cos )G r a r b r P 


 



 
     




                           [SL.27] 

 

Warning:   If cones of space around  = 0 and  are removed from the 

region of interest, the Q() , the irregular solutions to the Legendre 

equations, must be included in the general forms of the solutions. These 

cases are not to be treated here.  
 

Note that for each distinct value of the separation constant, there are two 
independent solutions to the second order differential equation for each 
coordinate. Physical considerations may exclude one of these solutions as 
divergent or multi-valued functions are unlikely to represent allowed 
behavior. 

 

Exercise:  Consider the Laplace equation in spherical coordinates in a case with no  

or  dependence.  Find R(r) for this restricted case.  There should be two independent 

solutions. Use the standard trial solution: A r n.  .   
 

A Few Properties of the Legendre Polynomials 

Orthogonality:           
1

1

2

2 1
( ) ( )mP x P x dx m



 
   
                                      [SL.28] 

                       
0

2

2 1
(cos ) (cos ) sinm mP P d


    


   
   

 

Normalization: P(1) = 1  integers       P(cos[0]) = 1  integers   
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  ( )P x  (cos )P   

0 1 1 
1 x  cos  
2 23 1

2 2x    23 1
2 2cos   

  

P3(x)= 5/2  x
3 – 3/2  x ;     P4(x)= 35/8  x

4 – 15/4  x
2 + 3/8 

Note that the nth Legendre polynomial has symmetry (-1)
n
 and has xn as its highest 

power.  Each polynomial is a sum of either odd or of even powers. 
 

Allowed Characteristic Behaviors: 

( 1)

0
( , ) (cos )G r a r b r P 


 



 
     




 

Each term in the expansion of G(r, ) represents an independent characteristic 

behavior solutions to the Laplace equation in spherical coordinates of azimuthally 

symmetric (no  dependence) solutions with  ranging from 0 to . The positive 

power terms a r
 P(cos) are examined first.

ao r
0 Po(cos) = ao, a constant: One characteristic behavior of the potential is to be a 

constant in a region of space such as inside a conductor. (Recall that the electrostatic 

potential satisfies the Laplace in charge-free space.) 
 

a1 r
1 P1(cos) = a1 r cos = a1 z, a linearly varying potential: Equivalently, the 

potential describes a uniform electric field in the z direction ( 1
ˆE a  k


). A region of 

uniform electric field is also an allowed characteristic behavior. 
 

Attacking the inverse power b r -(+1) P(cos) terms, bo r -1 Po(cos) = bo r -1. This  = 

0 potential term is just that of a monopole, a point charge or of any region exterior to a 

spherically symmetric charge distribution in otherwise empty space. (Again, it must be 

exterior to the charge distribution because the potential only satisfies the Laplace 

equation in charge-free regions.) 
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b1 r -2 P1(cos) = b1 r -2 cos:  The cos factor is appears in vector dot products. This  

= 1 potential term is just that of a dipole oriented along the z - direction. 

2 20 0 0
1 1 13 2

ˆ cos
(cos ) (cos )

4 4 4
p k r p p

r P b r P
r r

  
     

 

  

   


 

b2 r -3 P2(cos) = b2 r -3 [ 3/2
 cos2½ b2 r -5 [ 3 z 2 – r 2 : This  = 2 potential 

term is just that of a zz Quadrupole ( Qxx = Qyy = - ½ Qzz). The potential due to 

equal and opposite dipoles that lie on the z-axis and that are displaced from one 

another along the z-axis. 
 

The multipole expansion was a large r expansion valid in the charge-free region 

outside the charge distribution, the same region in which the ( 1)

0
(cos )b r P 


 


  




 

form is the allowed representation for a potential that vanishes at infinity. The th term 

in the expansion represents the 2- multipole with azimuthal symmetry (no 

 dependence). The z – dipole and the zz – quadrupole are azimuthally symmetric 

(unchanged by rotations about the polar axis; independent of ).
 

Sample Calculations for Problems with Azimuthal Symmetry:  

The trial solution: ( 1)

0
( , ) (cos )G r a r b r P 


 



 
     




 

The first two examples match boundary conditions along the line  = constant.  In the 

case of three-dimensional problems, matching on a boundary surface is the norm. 

With azimuthal symmetry, the problems have two free variables, and the boundaries 

become lines in r -space. These  = constant examples are usually presented second. 

They are treated first only to ensure that they are not lost in the almost exhaustive list 

of examples with a single spherical shell boundary or r = constant examples.  
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Coefficient Matching:  

(1) On an r = R boundary, the  dependence is in play, and the procedure is to note 

that the Legendre polynomials P(cos) are mutually orthogonal so the coefficient of 

each Legendre polynomial must match across the boundary.  

(2) Along a  = constant boundary, the procedure is to find cause to restrict the 

solution either to only non-negative or to only negative powers of r. The various 

powers of r are linearly independent (not as good as orthogonal, but still good 

enough) so the coefficients of each power of r must match across a constant  

boundary. In the case of a  = 0 boundary, use P(cos) =1 for all . 

The argument that only positive powers of r can appear in an inside solution V<(r,), 

is that the solution must be well-behaved (not divergent) at r = 0. The argument that 

only negative powers can appear in an outside solution V>(r,) is equivalent to 

applying the matching condition V = 0 at r = . The two pieces of the solution 

( 1)

0
( , ) (cos )G r a r b r P 


 


      




 require matching the value at two distinct 

surfaces or matching the value plus the normal derivative on one surface. Again, 

surfaces are lines in r -space for problems with azimuthal symmetry. 

r -  Boundary Value Matching Map
A boundary value matching map for 
problems with azimuthal symmetry 
 match along a line in r -  space. Infinity 
is drawn at a finite distance for convenience. 
Matching a finite behavior at r = 0 means that 
inverse powers are excluded all b = 0. 

Matching a vanishing behavior at r =  
excludes positive powers of r in the large r 
region. The point charge potential example 
matches along large and small r lines for 
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 = 0.   
Use the well-behaved pieces in each region. 


No a r for r infinite

Match a R & b R-( +1)

No b r-( +1) for r = 0

r = infinity edge

r = 0 edge           

r = R

r = 0

r = 

 
( 1)

0
(cos )a r b r P 


 


     




 

 

The point: All the terms in ( 1)

0
( , ) (cos )G r a r b r P 


 



 
     




 are allowed 

solutions of the Laplace equation in spherical coordinates with the angle  
running over its full range. All of the terms in this expression must be included 
unless a reason can be found to exclude them. The inside region includes the 
point r = 0 at which all the r-(+1) diverge and hence are not physically acceptable. 

In the outside region, r  leading the usual expectation that the potential 
should approach zero; the terms like r do not meet this expectation and are 

excluded in the usual cases. Those terms may be present if there is an external 
applied field.

 

Comment on Boundary Value Matching:  The normal requirement to ensure 

uniqueness is that the boundary values be matched on a surface that encloses the 

region of interest. For the case of azimuthal symmetry, surfaces in three dimensions 

are represented by lines in r -  space. For problems in which the potential or a charge 

density is specified on an r = constant surface, the potential satisfies the Laplace 

equation at points infinitesimally distant from the surface on which the charge exists. 

As long as the charge density is no more singular than a surface density, continuity 

can be used to argue that we essential match the values of the inside (r < R) and 
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outside (r > R) solution values on the r = R surface. The resulting solution does not, in 

general, continue analytically1 across the surface, but it is well-behaved in the 

connected regions bounded by constant r and constant  surfaces in which the Laplace 

equation is obeyed(in which the charge density  = 0. For our examples that region 

is bounded by the r = R surface and the surface at infinity of the point at the origin. 

The point at the origin is a degenerate surface, the limit of a concentric spherical 

surface as r  0. The inverse powers cannot appear in the small r region as they 

correspond to having multipole sources at the origin, a region assumed to be charge 

free. Another choice for a separating surface would be  = constant. As   0, this 

surface devolves into a degenerate case, a line along the z – axis.  
 

Examples matching along a constant  line in r -  space: 

Matching on a constant  line (or surface) is less demanding because we have already 

eliminating the irregular angular functions, the ones that diverge at  = 0 and at  = . 

No N(cos)’s. Not this:   ( 1)

0
(cos ) (cos )a r b r c P d N 


 


        




 

Only this:  ( 1)

0
(cos )a r b r P 


 



 
    




 

Sample Calculation:  The potential due to a point charge on the z-axis 

The potential due to a point charge q located at is given by: ˆd k

                           
2 2

0

( , , )
4 (

q
V x y z

2)x y z d


  
                               [SL.29] 

For points on the + z-axis, [SL.29] becomes 

2
00

(0,0, )
4 ( )4 ( )

q q
V z for z

z dz d 
 


d

                                          

 

 
1 The radial derivative of the potential may not be defined at r = R. A function is analytic at a point if it has a convergent 

Taylor’s series representation in a neighborhood of that point.  in an open interval (R-1, R+2). 
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The form for z > d can be rewritten as: 

0

1
(0,0, ) 1

4
d z

q
V z for z

z


    d  

Pushing onward, a binomial expansion is invoked. 

1  x 1 1 1
1! x 1  (1)(2)

2! x 2  ... (1)(2)...(n)
n! x n  ...

1 x1  x 2  ... x n  ...
 

Next, d/z replaces x to yield a series expansion for the potential; along the z-axis. 

   
0 0

21
(0,0, ) 1 .

4 4
1 ... ..

n
d z d d dz z z

q q
V z for z

z z 
         

    d

 

 

Here, the small parameter in the expansion is d/z.  This expansion must agree with the 

general solution of the Laplace equation with azimuthal symmetry in the charge-free 

region r > d for  = 0. 

( 1) ( 1)

0 0
( , ) (cos ) 0V r b r P b r for 

 
   

 

 
     

 

 
 

Recall that all the P (cos[) = P(1) = 1 for all .  

[To match along the negative z-axis, use P(-1) = (-1).] 

Along the z-axis, z = r cos = r so the two series can be compared as: 

   2

1
00 0

( 1)

0
(0,0, ) 1 ... ...

4 4

n
n

n
d d dr r r

q q
V z r b r

r r 






d  



              
  







 

The two series are equal if 
04

q d
b






  for all  which leads to the expression for the 

potential valid everywhere in the region r > d. 

                                      
0

( 1)
0 4

( , ) (cos )
q d

V r P
r

 





 
 
 

 





                         [SL.30] 

This result is unremarkable and clearly inferior to the exact closed form solution 

[SL.29] that was the basis for the original expansion. The example can be used to 

show that the expansion approach does work.   
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Numerical validation: Consider 
2 2

0

( , , )
4 (

q
V x y z

2)x y z d


  
 with d = 1, r = 10, 

 = 45o and  = 0. 
2 2 210 10 00 2 2

( , , )
44 ( ) 0 ( 1)

q q
V x y z


 

  
1.072989 . Using the series 

expansion, ½

0 0
( 1) ( 1)

0 04 4

1
( , ) (cos ) (2 )

10

qq d
V r P P

r 
  

 

 
 

   
   
  

  
 

  
 

. Stop at 6. 

Mathematica: N[Sum[LegendreP[m,1/Sqrt[2]]/10^(m+1),{m,0,6}],10] =   0.1072989371. 
 

An important result can be developed if the final expression is made portable, put in 

coordinate independent form or vector notation.  The source charge is at position r  

and the point at which the potential is to be evaluated is r


. The angle  is between the 

direction from the origin to the source and the direction from the origin to the field 

point so: ˆ ˆcos r r    .  The portable form for r r  is: 

                   
 

0 0
( 1)

0
.

4 4
ˆ ˆ( , ) ( )

| |

rq q
V r P r r

r r r 







 
 
 


 

 





                          [SL.31] 

This result establishes the identity used in Griffiths (Eqn 3.94) as the basis for 

multipole expansions.     
 
( 1)

0

1 ˆ ˆ( ) for
| |

r
P r r r r

r r r







  

 





      [SL.32] 

Vector Space Concept: The set of functions z 
–m or equivalently r-m are linearly 

independent and a basis for functions that vanish as r  . This independence means 

the expansion coefficients in the representation of any (vector) function are unique so 

that the coefficients must match term-by-term.        
04

q d
b






  for all  
 

Problem VS10.) A vector is expanded in terms of a basis set as  

1 2i i iI a e b e c e   3   where the constants ai, bi, and ci are scalar values and 

1 2 3{ , ,e e e } is a basis set. Show that the components of the vector, the values ai, bi, 

and ci, are unique. HINT: Review the definition of a basis set. 
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Sample Calculation:  The potential due to a ring of charge on the z-axis 

A useful example follows from the expression for the potential of a uniform ring of 

charge of radius a concentric with the origin in the x-y plane at points along the z-axis.
  

 
1/22

2 2
00

(0,0, ) 1
44

a
z

Q Q
V z

za z 


 
   


 for z > a 

 

              
0

0

1/2

311
2 22

2

2 2*2 2*1 3 2 1
1! 2!

...
2 !

4

4

0,0,( ) 1

1 ... ...n

nn

a
z

a a
z z

a
zn

Q

z

Q

z

zV






   

    

      


 

 

Matching along the z-axis for z > a: 

( 1) ( 1)

0 0
( , ) (cos ) 0V r b r P b r for 

 
   

 

 
  

    
 

   

   
0 0

2

0 2(2 1)
14 4

2 1 !!
( , ) (cos ) 1 (cos )

2 !r

Q Q a
V r P P

r 
  






  
       


   










  

The form includes the double factorial notation which is defined as: 

n!! =(n)(n – 2) )(n – 4) … terminating at 2 or 1. 

Much has been gained in this case.  The original expression is only valid on axis, but 

the final expression, an infinite series, is convergent at points on and off the axis in the 

entire region r > a.  
 

Exercise:  Explain why the expansion for the potential of the ring only includes 

Legendre polynomials of even index.  What is 0(cos )P  ?
 

 

It is possible to form expansions valid for r < a for the two sample calculation 
problems above using the same methods.  It is not possible to join the solutions 
smoothly at r = a however.  There is singular charge density* at r = a, and thus the 
potential does not satisfy the Laplace equation at all points for which r = a.  A 
Laplace solution just does not work at r = a. Note that the convergence of each 
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series becomes problematic as r approaches a from above or below. The potential is 
continuous across a sheet of surface charge density although the normal 
component of the electric field is not. Neither the potential are the field is 
continuous at the location of a linear charge density or a point charge. 
 

Examples matching along a constant r line in r -  space:

Typical Applications: Electrostatics problems with concentric spherical boundaries.  

Note that the general solution has the form: ( 1)

0
( , ) (cos )G r a r b r P 


 


      




. For 

 a fixed r, it is a linear combination of the Legendre polynomials of cos, the P(cos). 

For this reason, the procedure is to express any functional dependence on 
 as a linear combination first of powers of cos and then of the P(cos).  

(  use linear vector space methods.)               
0

( ) (cos )f c P 



   


 

Avoid representations that involve products of the P(cos)  unless you know they are 

desired. However, you can always multiply or divide terms by Po(cos) as it is just 1. 



Match the value at r = R:  A problem may have a boundary at r = R leading to 

solutions for inside solutions which are to be valid for 0 < r < R and solutions for 

outside which are to be valid for R < r < . The solutions are to be matched (set 

equal) at r = R.  The values of the potential must match at the boundary because a 

discontinuity in the potential corresponds to an infinite electric field which is can only 

occur for a charge density more singular that a surface charge density1. 

inside: 
0

( , ) (cos )V r a r P 



   




   and outside:   ( 1)

0
( , ) (cos )V r b r P 


 


   




 

Matching at r = R: 

                                           
1 As models, dipole surface layers give rise to potentials that are discontinuous across the layer. The lipid membrane 

enclosing a cell in the body may have a potential difference of several tens of millivolts across its thickness which is 

modeled as small. 
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( 1)

0 0
( , ) (cos ) ( , ) (cos )( , )V R a R P V R b R PV R   

 
 

 
       



 
  

Matching the inside and outside solutions at r = R, requires that: 2 1b a R  
 . 

If two expansions in terms of the Legendre polynomials are equal over the domain  

0 <  < , then the coefficients in the expansions are equal index value by index value. 

0 0
(cos ) (cos ) for 0A P B P A B   

 

 
           

 
  

The coefficients in two linear combinations of the same set of linearly independent (in this case: 

mutually orthogonal) functions must be equal term-by-term. See the Vector Spaces handout. 

If the potential V(R, ) is specified then simple matching at r =R sets the values of the 

a and b. The well-behaved requirement at r = 0 (r = ) restricts the solution to a r
 

(br
-(+1)) in the inside (outside) region. 

 

For example, if V(R, ) = 
0

(cos )v P 



  


, then a = v R
  because the coefficients of 

the P(cos) must match term-by-term as they are linearly independent (in fact, they  

are orthogonal). If the expansion of V(R, ) is not known, one must project out the 

expansion coefficients. To find vm, first multiply by Pm(cos) and then exercise the 

inner product. 

 0 00 0

2
2 1(cos ) ( , )sin (cos ) (cos )sin mm m mP V R d v P P d v

 
        

 

 
      

 
 

 

  0

2 1
2 (cos ) ( , )sin m

m m
m m

m P V
v P V R d

P P


        [SL.33] 

Boundary Value Matching with thick shell regions D < r < L: 

Matching across thick shells is much more tedious than matching on a single spherical 

surface. Expect one problem per semester of this type. 

0
( , ) (cos )V r a r P 




   




                          for r < D 
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 ( 1)

0
( , ) (cos )shellV r c r d r P 


 


    




      for D < r < L 

( 1)

0
( , ) (cos )V r b r P 


 


   




                    for r > L 

Match at D:  

 ( 1)

0 0
( , ) (cos ) ( , ) (cos )shellV D a D P V D c D d D P  

 
 

 
        

 

 
  

Match at L:  

 ( 1) ( 1)

0 0
( , ) (cos ) ( , ) (cos )shellV L c L d L P V L b L P   

 
   

 
        

 

 
 

The conditions for each  are: 

                                                  
( 1)

( 1) ( 1)

a D c D d D

c L d L b L

 

  

 

 
  

  

 

 
                        [SL.34] 

It may be necessary to match the normal (radial) derivatives as well to complete the problem. 

No b r-( +1) for r 0

r = infinity edge

r = 0 edge       

r =L= R2

r = 0

r = 

Allow a r and b r-( +1)

No a r

r =D= R1

 

        D = R1 < r < R2 = L 
 

The point: All the terms in ( 1)

0
( , ) (cos )G r a r b r P 


 



 
     




 are allowed 

solutions of the Laplace equation in spherical coordinates with the angle  
running over its full range. All of the terms in this expression must be included 
unless a reason can be found to exclude them. The inside region includes the 
point r = 0 at which all the r-(+1) diverge and hence are not physically acceptable. 
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In the outside region, r  leading the usual expectation that the potential 
should approach zero; the terms like r do not meet this expectation and are 

excluded in the usual cases. Those terms may be present if there is an external 
applied field.

 

Conditions on the normal derivative:  The normal derivative on the surface a sphere 

is the partial derivative with respect to r. Further, it is the negative of the radial 

component of the electric field.  It is the normal component of the electric field that 

appears in the integral representation of Gauss’s Law and that has a boundary-value 

matching requirement linked to the local surface charge density. Allowing for 

differing dielectric (constant r) properties in the interior and exterior regions, the 

possible sets of matching condition include:  

; 0 ,r r total r r r r r r r r frE E E E E E ee                 
         

; 0 ,total r r r r free

V V V V V V

r r r r r r
      

     
     
 

     
     

     


ee

. 

These boundary conditions are developed in another section of this note set. 
 

Boundary Matching Conditions: 

BC1.) At each constant R boundary, match the value of the inside solution to the value 

of the outside solution. As the solutions approach the boundary, the inside coefficient 

of each Legendre polynomial must approach the same value as does the outside 

coefficient in the outside solution. 

BC2.) Apply the conditions on the normal derivative of the potential (which is the 

negative of the radial component of the electric field) if dielectric properties are 

specified or a surface charge density is specified or sought. A conducting material 

specified that the electric field vanished inside and hence specifies a boundary 

condition on the normal derivative of the potential. 

; 0 ,r r total r r r r r r r r frE E E E E E                 
         
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; 0 ,total r r r r free

V V V V V V

r r r r r r
      

     
     
 

     
     

     
  

 

Sample Calculations with an r =R Boundary: 

SC1. A spherical shell at potential Vo: 

An insulating spherical shell has a surface charge that makes the shell an 

equipotential with potential Vo. Space is charge-free for r < R and for r > R. 

The electrostatic potential satisfies the Laplace equation in charge-free space so: 

( 1)

0
( , ) (cos )V r a r b r P 


 



 
     




 

The potential should remain finite in charge-free space and should approach zero at 

large distances from a finite charge distribution. 

inner region:   
0

( , ) ( , ) (cos )V r V r a r P  



    




      (r < R) 

outer region:   ( 1)

0
( , ) ( , ) (cos )V r V r b r P  


 


    




    (r > R) 

The two solution must agree at r = R. A discontinuous potential would require an 

infinite electric field which is not physical.  

0
( 1)

0 0
( , ) (cos ) ( , ) (cos )V R a R P V V R b R P   

 
 

 
       



 
  

The P(cos) form an orthogonal set of functions so the coefficients must match term-

by-term. (  a R
 = b R

-(+ 1) for all .)   As Vo = Vo Po (cos), all the a and b vanish 

except for ao = Vo and bo = Vo R. Substituting, 

inner region:   0 00( , ) ( , ) (cos )V r V r V P V           (r < R) 

outer region:    0 0( , ) ( , ) (cos )RrV r V r V P        (r > R) 

The potential is Vo everywhere on the spherical surface bounding the region r < R and 

the potential has all its extrema on the boundary. Hence the potential has the constant 
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value Vo at all points inside the shell. In the exterior region, the potential is that of a 

point charge q = 4 o R Vo. The potential is between the values V(R) = Vo and V() = 

0 in the region r > R. Note that neither the potential imposed on the shell or the shape 

of the shell has any angular dependence. As a result the solution throughout space is 

independent of angle. The solution only has Po(cos character. It’s spherically 

symmetric. 

Exercise: Use the solution to SC1. Compute the electric field inside and outside the 

shell r = R. Use the form of the field outside and Gauss’s Law to compute the net 

charge on the shell. 
 

SC2. A spherical shell at potential Vo cos2: 

An insulating spherical shell has a surface charge that makes the shell and 

equipotential with potential Vo. Space is charge-free for r < R and for r > R. 

The electrostatic potential satisfies the Laplace equation in charge-free space so: 

( 1)

0
( , ) (cos )V r a r b r P 


 



 
     




 

The potential should remain finite in charge-free space and should approach zero at 

large distances from a finite charge distribution. 

inner region:   
0

( , ) ( , ) (cos )V r V r a r P  



    




      (r < R) 

outer region:   ( 1)

0
( , ) ( , ) (cos )V r V r b r P  


 


    




    (r > R) 

The two solutions must be equal at r = R. A discontinuous potential would require an 

infinite electric field. Point charges and lines of charge can cause localized infinite 

fields. A finite surface charge density cannot. 

2
0

( 1)

0 0
( , ) (cos ) cos ( , ) (cos )V R a R P V V R b R P    

 
 

 
       



 
  
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The P(cos) form an orthogonal set of functions so the coefficients must match term-

by-term. As Vo cos2= Vo [
1/3 Po(cos) + 2/3 P2(cos)], all the a and b vanish except 

for ao, a2, bo and b2. Matching the coefficients term-by-term: 

2
0 0 0 2

( 1)

0 0

1 2
3 3(cos ) cos (cos ) (cos ) (cos )a R P V V P P b R P   

 
 

 
         



 
  

ao = 1/3 Vo; a2 = 2/3 Vo R 
-2; bo = 1/3 Vo R; b2 = 2/3 Vo R 

3 

inner region:    2

0 00 2
1 2
3 3( , ) (cos ) (cos )r

RV r V P V P           (r < R) 

outer region:      30 00 2
1 2
3 3( , ) (cos ) (cos )R Rr rV r V P V P         (r > R) 

Note that the shape of the shell (spherical) has no angular dependence so all the 

angular behavior of the potential is imposed by the surface charge distribution. That 

distribution has Po(cos and P2(cos characters, and, as a result, the solution 

throughout space has Po(cos character and P2(coscharacter only.

Exercise: For the case of SC2, the potential is between 0 and Vo (a positive value) on 

the surface r = R. Show that the potential is between 0 and Vo for r < R. 
 

SC3. A spherical shell with surface charge density o cos: 

An insulating spherical shell has a radius R and a surface charge density o cos. 

Space is charge-free for r < R and for r > R. The electrostatic potential satisfies the 

Laplace equation in charge-free space so: 

( 1)

0
( , ) (cos )V r a r b r P 


 


      




 

The potential should remain finite in charge-free space and should approach zero at 

large distances from a finite charge distribution. 

inner region:   
0

( , ) ( , ) (cos )V r V r a r P  



    




      (r < R) 
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outer region:   ( 1)

0
( , ) ( , ) (cos )V r V r b r P  


 


    




    (r > R) 

The two solution must be equal at r = R. A discontinuous potential would require an 

infinite electric field. A finite surface charge density does not cause an infinite field.  

( 1)

0 0
( , ) (cos ) ( , ) (cos )V R a R P V R b R P   

 
 

 
      



 
  

Matching the coefficients of the Legendre polynomials term-by-term, (2 1)a b R   
   

for all . This result is general and reflects only the requirement that V(r, ) must be 

continuous at r =R. The charge is the source of the potential, and its distribution sets 

the values of the various b. Gauss’s Law provides the connection between the normal 

component of the electric field and the surface charge density. 

( ) ( )
( , ) ( , ) orr r

r R r R

V V
E R E R

r r

    
 

 
 

  

 
   

 
   GAUSS 

Computing the derivatives: 

0
( , ) (cos )V r a r P 




   




      1

0
(cos )

V
a r P

r


 







   



  

( 2)1

0 0
(cos ) (cos )

r R

V
a R P b R P

r
 





 
 

 


 

     


 
   

( 1)

0
( , ) (cos )V r b r P 


 


   




          ( 2)

0
[ ( 1)] (cos )

r R

V
b R P

r







 




  

   



  

Evaluating the difference normal derivatives: 

0 1
( 2)

0
(2 1) (cos ) ( (cos

r R r R

V V
b R P P

r r
      

 
 
 

 


 



 
     

    



   

Matching the coefficients of the P(cos term-by-term,  

                 3 b1 R
 -3 = o

-1 o and a1 = b1 R
 – 3 or  

3

1 1;
3 3

R
a b

 
 
 

 

  . 

1
cos

( , ) (cos )
3 3

r r
V r P

   
 

  

 

  ;   
3 3

2 21
cos

( , ) (cos )
3 3

R R
V r P

r r

   
 

  

 

   
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The potential inside corresponds to a uniform electric field: ˆ
3

E k



 



 


. The exterior 

solution has the dipole potential form for a dipole 0
ˆp p k


. 

3 2

cos
4 4dipole

pp r
V

r r


   


 

 
 

  for 
3

0

4ˆ ˆR
p p k k

  


 . 

The potentials in the two regions only have P1(cos) character. The spherical shell 

does not contribute any angular dependence, and the charge distribution is pure 

P1(cos) in angular character. Hence only P1(cos) character occurs. 

 

Sanity checks do not prove that a result is correct. They merely establish that the 

proposed result is not as horribly wrong as it could be. 
 

Sanity Check 0: Check the dimensions of the results. The relation 

( )
( , ) ( , )r rE R E R

  


 



   

shows that the field has the same dimensions as charge density divided by the 

permittivity of free space. Our result for the field inside the shell ˆ
3

E k



 



 


 has the 

correct dimensions. Examining the potential expressions, cos
( , )

3

r
V r

 


 



  and 

3

2

cos
( , )

3

R
V r

r

 


 



 , both have the dimensions of length times electric field (length * 

charge density divided by the permittivity of free space) as expected. () 
 

Sanity Check 1: Verify that the dipole moment of the charge distribution has the 

value claimed. 

    2 2

0

ˆˆ ˆcos sin sin cos sin sin cosp dq r dA r R d d R i j k
 

          
       
    


34 ˆR

p k
 


      () 
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Sanity Check 2: Verify that the electric field due to the charge distribution has the 

value claimed at the center of the shell. (It would be difficult to show that the field is 

uniform with that value everywhere inside!) Thin d slices of the spherical partition 

the source into a stack of rings perpendicular to the z axis. 

The field due to a uniform circular ring of charge with radius a at a point a distance d 

along a perpendicular to its plane at its center is: 

in 2 2 3/2
ˆ( )

4 [ ]
ring

r g

q d
E a

a d 





way

d

 

Slicing the charged spherical surface into d rings, the charge of each ring is: 
2

0 cos 2 sinringq dA R           

The factor 2a d 2  is the distance from the source charge to field point. All the 

sources are on the spherical shell and the field point is its center  2a d 2 =R. A 

sketch shows that d = R |cos| and that the direction normally away from the ring is 

cos ˆ
cos

k




 

. Assembling the mess: 

  
2

0 0
30

cos 2 sin cosˆ ˆ(0 )
4 3

R d R
E k k k

R

        ˆ
   

 


       () 

0 00

( ) ( 2)

0
(cos ) sin ( 1) (cos ) (cos ) sinm mP d b R P P

  
 d      


 


   




  

 
  00

2 1

2 2

( 2)
( ) (cos ) sinm m

m

m

mR
b P



 d   






   

 

Exercise: A spherical conductor is an equipotential. Show that the relation: 

0
( 1)

0
( , ) (cos )V R b R P V 


 


   




 

requires that all the  except for 0b  00b V R .  Alternatively, in the absence of an 

applied field, the symmetry is completely spherical so 0( )   , a constant. Using 

0( )    show that 
04( ,V r ) Q

r  . Matching to find the interior solution shows that V 

>(R,) = Vo. Why is this result expected?
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Thin Insulating Charged Shell: (No externally applied field.) 

If r = R is a thin insulating spherical shell with an azimuthally symmetric surface 

charge density (), then    
0

( )V V
r r r r

r R r R
E E  


    

  
      .  The continuity 

condition still applies so that: 2 1b a R  
 .  Computing the derivatives term by term, 

applying the continuity equation and finally projecting out the coefficients am leads to 

the result 

0( 1)
02

1 ( ) (cos ) sinm mmR
a P d




         this result appears to valid  

The proof of the relation is a problem below.
 

Dielectric Sphere: (No externally applied field.) 

If the region r < R is filled with a uniform linear dielectric with constant r1 and the 

region r > R is filled with a uniform linear dielectric with constant r2 , then 

2 1 2 1 0

( )free

r rr r r rr R r R

V V
r rE E

 
    

 

  
     .  Here, free is the free surface charge 

density on the insulating dielectric sphere.  The continuity condition still applies so 

that .  Computing the derivatives term by term, applying the continuity 

equation and finally projecting out the coefficients am leads to the result 

2 1b a R  


  0
1 2 2

( 1)
02

2 1 ( ) (cos ) sinfree
r r r

m mmm R
ma P d



   
   

 
  

 
   

this result has not been verified 
The proof of this result is a problem below. 
 

Applied External Fields:  Consider problems with spheres immersed in what had 

been a uniform applied electric field .  The immersed materials alter the field 

locally, but, in the limit of large distances, the potential and electric fields approach 

the externally applied value of Vo – Eo z for the potential plus terms that vanish as 

r  . 

0
ˆE k
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0 0 0 0 0 0 1( , ) cos (cos )extV r V E z V E r V E r P        . 

The constant V0 is set to zero corresponding to zero potential at r = 0.  The allowed 

exterior (r>R) solution becomes: 

0
( 1)

0
( , ) cos (cos )V r E r b r P  


 


    




. 

Potential due to the distant external charges plus that due to induced charges on the shell. 
 

Conducting Shell: (In a uniform applied field) 

If r = R is the outer surface of a conducting sphere, then V(R) = 0.  Applying this 

condition,  

   0 1 00 1
( 1)1 2

2 0
( , ) (cos ) (cos ) (cos ) 0 0 (cos )V R b R P b R E R P b R P P    

 
  

 
        



 
 

Hence  except for .  The final result becomes: 0b 
3

01b E R

3 3

0 02 2 1( , ) cos (cos )
R R

V r E r E r P
r r

      
      

   
 

This result is just the external potential plus the additional potential due to the electric 

dipole moment induced on the sphere. 
 

Note that each (cos )P   represents a distinct, orthogonal angular behavior.  Absent the applied field, the 

problem was perfectly spherical (only 0 (cos )P   behavior).  The applied field imposed a 1(cos )P   

disturbance.  Only 1(cosP )  behavior was induced as a result.  If the initial problem had possessed a 

2 (cos )P   character, then imposing a 1(cos )P   disturbance could have linked to characters 1(cosP ) , 

2 (cos )P   and 3(cos )P   following the same rules as the addition of angular momenta under the vector 

model.  In the previous examples without an applied field, the angular dependence was imposed by the 

charge distribution. 
 

Vector Model:  If vectors of magnitude A and B are added, the resultant has a magnitude in the range |A-

B| to A+B.  In the case of Legendre polynomials, only integer index values are meaningful. 

initial disturb answer initial disturb         or 

; 1; 2; ... ;answer initial disturb initial disturb initial disturb initial disturb                
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Dielectric Sphere: (In a uniform applied field) 

If the region r < R is filled with a uniform linear dielectric with constant r1 and the 

region r > R is filled with a uniform linear dielectric with constant r2 , then 

2 1 2 1 0

( )free

r rr r r rr R r R

V V
r rE E

 
    

 

  
     .  Here, free is the free surface charge 

density on the insulating dielectric sphere.  The continuity condition still applies so: 

.  Computing the derivatives term by term, applying the continuity 

equation and finally projecting out the coefficients am leads to the result (for 

2 1b a R  


1m  ):

   
0

1 2 2
( 1)

02
2 1 ( ) (cos ) sin 1free

r r r
m mmm R

ma P d m


   
    

 
  

 
   

this result has not been verified 

The result for a1 can be derived using the external potential representation: 

0
( 1)

0
( , ) cos (cos )V r E r b r P 


 


    




 .   The proof of the relation is a problem for 

which free =0.  The result gives the addition to a1 due to the external field.  The result 

with a free charge density free would follow from superposition of the external field, 

zero-charge problem and the non-zero free charge problem in absence of an external 

applied field. 
 

Sample Calculation: The Complete Conducting Sphere in a Uniform External Field. 

 

A prefect conducting sphere at the origin by itself is spherically symmetric; it only has 

Po(cos) character.  A uniform field in the z-direction  corresponds to a potential 0
ˆE k

0 0 0 0 0 0 1cos (cos )ext ext extV E z V E r V E r P      .  Using the freedom to adjust the 

potential by an additive constant, the potential at the origin is chosen to be zero 

eliminating the constant and with it the Po(cos) character of the external potential. 
 

Placing the finite (radius R) sphere in the external field 

perturbs the potential, but it only adds terms that vanish 

3/10/2010 Handout.Tank:  Solution - Laplace Equation SL-52 



 

for large r.  Hence the total potential must be of the 

form: 0 1
( 1)

0
( , ) (cos ) (cos )V r E r P b r P  


 


    




 

Matching the solution to the equipotential conductor at r 

=R.  

0 1
( 1)

0
( , ) 0 (cos ) (cos )V R E R P b R P  


 


     




 

Matching the coefficients of the Legendre polynomials on both sides of the equation 

yields .  The coefficient equation for P1(cos) is: 0 = - Eo R + b1 R
-2 0b     1

leading to b1 =  Eo R
3 The potential becomes: 

3 3
0 0

0 1 1 02 2( , ) (cos ) (cos ) cos
E R E R

V r E r P P E r
r r

    
 
 

        

The charge density of the surface of a conductor is related to the field just outside the 

conductor by Gauss’s Law.    

0 0 0n r r R
V

rE E   



    

0 0 0 1 0 0 1 0 0 1 0 0( ) (cos ) 2 (cos ) 3 (cos ) 3 cos
r R

V
r E P E P E P E         




       

This charge density corresponds to a separation of positive and negative charge and 

hence indicates that the sphere has an electric dipole moment. 

3 2( ) ( )i i
charges i

p q r r r d r r r d r     
     

 

For the case of the sphere above:  

2

2 2
0 00 0

( )

ˆˆ ˆ3 sin cos sin sin cos sin

p r r d r

E R i R j R k R d d
 



        
 



  


 

  



k

 

3
0 0

ˆ4p E R 


 

The potential due to this dipole would be: 
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3 3
0 0 0

3 3
0 0

ˆ4 c
4 4dip

E R k r E Rp r
V

r r r2

os  
   

  
 

 

or exactly the addition to the external potential due to the presence of the induced 

charge distribution on the conducting sphere.   
 

The electrostatic field is caused by charge.  The next problem is to compute the 

potential that would be caused by the surface charge density induced on the conductor.  

The potential is due to just the charge density with no thought given to the conductor 

(which has been dissolved by some strong acid). 

 

The solutions templates inside and out are: 

inside:    
0

( , ) (cos )V r a r P 



   




   and outside:   ( 1)

0
( , ) (cos )V r b r P 


 


   




 

Matching the values of the solutions at r = R, requires that The next step is 

to match the discontinuity in the normal component of the electric field to the surface 

charge density divided by the permittivity of free space. 

2 1b a R  
 

0

( )
r r

r R r R

V V
r rE E  


 

 

  
       

    22 1 ( 1)
0

( 1)
0

( ) 1 (cos ) (cos )

2 1 (cos )

a R R P a R P

a R P

    

 

  



 
 
 

  

  

 





 
   

 





 

Inserting the charge density that was induced on the conducting sphere: 

( 1)
0 0 1 0( ) 3 (cos ) 2 1 (cos )E P a R P            

 

The coefficients of the Legendre polynomials must match term by term so a1 = Eo and 

b1 = a1 R
3 = Eo R

3  with all other coefficients zero. 

0 1 0( , ) (cos ) cosV r E r P E r     ; 2 2
0 0

2 2( , ) (cos ) cosV r E R r P E R r       
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The surface charge contributes a uniform electric field  inside and the expected 

dipole field outside. In the interior (r < R) the addition of the external field and the 

field due to the surface charge makes the region field free as expected inside a 

conductor in electrostatic equilibrium.  Always remember and never forget that the 

electrostatic field is due to the charges only.  Conductors may allow charges to 

redistribute, but field is due to the charges in their final distribution.  After the charge 

distribution is static, the conductor can be removed leaving  the charge distribution  

and field unchanged. 

0
ˆE k

 

Cheap Legendre Expansions: Another charged shell 

The cheap Legendre method is presented in detail in the Tools of the Trade section 

below.  The point is that, if the surface charge density can be expressed as a 

polynomial in cos, then one can find the resulting potential without heavy lifting. 

Suppose, for example, that 2
0 0( ) sin 1 cos2          . A polynomial in cos of 

order n can be expressed in terms of the first n Legendre polynomials by inspection.  

One just matches the nth power coefficient to set the same coefficient for (cos)n in a 

multiple of Pn.  Then a multiple of Pn-1 is used to match the remainder of the (cos)n-1 

dependence and so on.   

The task: 

Express f() [sin2 in this example] as a linear combination of powers of cos. 

Match highest power (call it m) by assigning a coefficient to Pm(cos). Next 

look at the [cos]m-1 term. Add enough Pm-1(cos) to cover the [cos]m term plus 

any leftovers from the Legendre polynomials used previously to match the 

higher powers of cos.  

                                sin2 = a + b cos + c cos2 + ... + d [cos]m

gPm(cos) + h Pm-1(cos) + … + k P0(cos).
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Hence: 

2 0
2 2 2

3 31 cos (cos ) (cos )P P      .

0 2
2 ( 1)

0 0 0
2 2

3 3( ) sin (cos ) (cos ) 2 1 (cos )P P a R P                    
 

Comparison yields:  
2 4

0 0 0

0 0 0
0 02 2

2 2 2
3 15 3 1, ; , 0

0

2
5

R R R
R Ra a b b   

          

 

Not So Cheap Legendre Expansions: Another charged shell 

Suppose, for example, that () = o sin.  This form is not ‘just a polynomial’, and 

the full method must be employed – projection of coefficients by invoking the 

orthogonality relation. 

0 00 0

( 1)
0 0

( 1) ( 1)
0 0

2
2 1

(cos ) ( ) sin (cos ) sin sin

2 1 (cos ) (cos )sin

2 1 2

m m

m

m
mm

P d P d

a R P P d

a R R a

 



         

   

  



 


     

  

  



 

  

 
 


 













  

0

0( 1)
02

(cos ) sin sinm mmR
a P d




       

An enormous amount of effort (not really) yields: 

0 0 0 0 0
0 2 4 6 85 73

0 0 0 00
4 32 4096 65536256

5 35; ; ; ;R R RR
Ra a a a a   

; ....                   

It should be noted that sin is even about /2 as are the even Legendre polynomials of 

cos.  There is no odd Legendre polynomial of cos character in sin. 
 

Perturbation approach to problems that are nearly spherically symmetric: 

This topic is non-standard. You may skip to the Tools of the 

Trade Section unless your instructor directs that you read it. 
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 When boundary conditions are specified on a spherical surface, matching is relatively 

straightforward. In cases in which the boundary is slightly distorted, a perturbation 

approach can be attempted. No thought is to be given to establishing convergence. If 

the situation is one in which your good sense suggests that the small distortion should 

lead to small changes, attempt the process. The distortion should be smooth and small 

as compared to the radius of the surface. 
 

The problem statement: The potential V() is given on a surface defined by r() = R [ 

1 +  f()] where  is a small parameter. The spherical representation for potential 

fields with azimuthal symmetry is the starting point. 

( 1)

0

( 1)

0 0

( , ) (cos )

(cos )m m
m m

m

V r a r b r P

a r b r P

 

  






 



 

 

 
 

 
 

 

 



 

  

  









 

Procedure: Beginning with 0, match the solution to the boundary conditions order by 

order noting that the coefficients of each Pm(cos) must be matched in separately in 

each order. 
 

Approximate symmetry sample calculation. Given: The potential is constant (V() 

= Vo) on the surface r = R [1 +   P2(cos)]. The regions inside of and outside of this 

surface are charge free. To low order: 

   
 

00 01 0 10 11 1

20 21 2

0

2

( , ) ... (cos ) ... (cos )

... (cos ) .....

V r a a r P a a r P

a a r P

   

 
      

   




   
 

00 01 0 10 11 1

20 21 2

1 2

3

( , ) ... (cos ) ... (cos )

... (cos ) .....

V r b b r P b b r P

b b r P

   

 
  



     

   
 

Surface: 2[1 ( [1 ( ( 1) ( / 2 ...n nr R f r R n f n n f                

Matching the inside solution: 
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   
 

0 00 01 0 10 11 2 1

20 21 2 2
2

( , ) (cos ) [1 (cos )] (cos )

[1 2 (cos )] (cos ) .....

V V r a a P a a R P P

a a R P P

     

   
     

   





 

To zero order in :

0 0 0 00 0 10 1 20 2
2(cos ) (cos ) (cos ) (cos ) .....V V P a P a R P a R P        

Note that the constant Vo is written as Vo Po(cos) to make the coefficient matching for 

the Legendre polynomials explicit. It follows that aoo = Vo and that aom = 0 for m > 0.  

The matching equation is reduced to: 

 0 0 01 0 11 2 1

21 2 2
2

( , ) (cos ) [1 (cos )] (cos )

[1 2 (cos )] (cos ) .....

V V r V a P a R P P

a R P P

     

   
    

  





 

 

The terms that are first order in : 

01 0 11 1 21 2
20 (cos ) (cos ) (cos ) .....a R P a R P a R P         

All the coefficients of each P(cos) are zero on the left-hand side so  = 0 in every 

case. To first order in , the potential is constant inside. (Think!) 

1a

 

Matching the outside solution: 

 
   

0 0 00 01 2 0

10 11 2 1 20 21 2 2

1

2 3

(cos ) [1 (cos )] (cos )

[1 2 (cos )] (cos ) [1 3 (cos )] (cos ) ....

V P b b R P P

b b R P P b b R P P

    

       



 

  

      
 

To zero order in : 

0 0 00 0 10 1 20 2
1 2 3(cos ) (cos ) (cos ) (cos ) .....V P b R P b R P b R P        

Matching the coefficients of reach Legendre polynomial, it follows that boo = Vo R and 

that all other bmo = 0. 
 

To first order in : 

 0 2 0 01 0

11 1 21 2

1

2 3

0 (cos ) (cos ) (cos )

(cos ) (cos ) .....

V P P b R P

b R P b R P

    

   



 

 

  
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In a general situation, the product P2(cos) P0(cos) must be expressed as a linear 

combination of the Legendre polynomials perhaps using the cheap Legendre method. 

In this case the answer is simple: P2(cos) P0(cos) P2(cos). 

0 2 01 0 11 1 21 2
1 2 30 (cos ) (cos ) (cos ) (cos ) .....V P b R P b R P b R P               

By inspection, b21 = Vo R
 3, and all other  = 0.  1b

3
0 0 2( , ) ( ) ( ) (cos )R Rr rV r V V P      

The small distortion of the equipotential surface (a shell of conducting material) 

leaves the potential equal Vo everywhere in the interior, but it contributes a first order 

perturbation to the potential in the exterior region. 

 

EXERCISE: Why must the potential on the interior remain constant? 
 

Perturbation schemes requiring that the discontinuity of the normal derivative be 

matched to a surface charge density are significantly more involved as the normal 

itself is perturbed so the derivative must by calculated consistently to the relevant 

order of  as . No problems of this type are to be considered.ˆV n 


 

Tools of the Trade 
 

A comment on weight functions: The Legendre polynomials  described above 

satisfy the orthogonality relation. 

( )P x

1

1

2

2 1
( ) ( )m mP x P x dx 



 
   
   

 

In many standard applications, x represents cos and so after a change of variable, the 

orthogonality relation is: 

0

2

2 1
(cos ) (cos ) sinm mP P d


    


   
   

 

in which case the factor sin can be interpreted as a weight function.  The cos 
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identification is made for problems in spherical coordinates in which the volume 

element is r2 sin dr d d demonstrating the angular range d is to be weighted by 

sin as the area on the surface of a sphere in an angular range d is 2 r2 sin d

There is more land area in a 1  band of latitude at the equator than in a 1   band 

through Greenland.  Thus sin is an appropriate weight function.

 

 

Cheap expansions in terms of Legendre polynomials:  The first few Legendre 

polynomials are:  (This exercise may be more helpful if you replace x by cos.)

0 ( ) 1P x  ,   , 1( )P x x 2
2

3 1
2 2

( )P x x  , 3
3

5 3
2 2

( )P x x  x,  4 2
4

35 30 3
8 8

( ) xP x x  
8

 

The task is to represent x3 as a sum of the Legendre polynomials.  The standard 

method to extract the coefficients is to multiply by one of the polynomials, integrate 

from –1 to +1 and to invoke the orthogonality relation.  This process is brutal and time 

consuming. 

In practice xn can be represented as a sum of the polynomials or order n or less.  Even- 

or odd-ness is a distinguishing character.  So x3, as 3 is odd, requires only odd 

polynomials of order less than or equal 3.   

     33
3 1

5 3 ( )2 2( ) ( ) x x xx a P x b P x a b     

Match the highest power first:  3 35
2

1 x a x  or 2
5

a  . This choice leaves an excess 

of   1
3 3 32

5 2 5 5
( )x x P    x  which is easily remedied by adding 1

3
5

( )P x .  It 

follows that    3
3 3

32
5 5

( ) ( )x P x P x  .   

In general, after the highest power n is matched, a multiple of the n-2 polynomial is 

added to kill off the xn-2 part. Onward to n-4 and so on until the 0 or 1 is reached, and 

the task is accomplished. 
 

In many applications, x represents cos and it is functions f() that are to be 

expanded.  In special cases, the function can be re-expressed as a function of cos and 
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the cheap expansion technique can be employed. Thus one finds that f()  =  (sin2 

cos equals cos - (cos3 and P3(cos) =  5/2 (cos3 - 3/2. cos So,   f()  = - 2/5 

P3(cos) + 2/5 cos- 2/5 P3(cos) + 2/5 P1(cos). 

 

 

Conducting Spherical Shell:  Charge induced on shell; no other charge nearby. 

That is: There is an external applied field due to charges located far away that are 

inducing a surface charge distribution on the shell. This sample calculation assumes 

that the net charge of the shell is zero. Be aware of this as you consider the potential of 

the shell. 

If r = R is the surface of an conducting spherical shell, then for the field just inside 

. The external applied field is taken to be: 0rE 

0
(cos )appliedV d r P 




   




 

The total potential is the applied potential plus that due to the induced charge density 

on the conducting shell. 

( 1)

0 0
( , ) (cos ) (cos )V r d r P b r P  

 
 

 
     



 
 

 Matching at r = R,   

( 1)

0 0
( , ) (cos ) (cos ) 0V R d R P b R P 

 
 

 
     



 
   

The constant potential of the shell was chosen to be zero with little loss of generality. 

Matching the coefficient of the corresponding Legendre polynomials, b = - d R
(2 + 1). 

 (2 1) ( 1)

0
( , ) (cos )V r d r R r P   






   

 



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and just outside ( 1)

0

( )

0
(2 1) (cos )r r R

V
rE d R 

 P 



 






      

 


  which is computed by 

differentiating the series for the potential term by term.  

 

For a conducting sphere in a uniform external field Eo in the z direction, d1 = - Eo. 

Substituting, we find () = - o (- Eo) (3) P1(cos) = 3 o Eo P1(cos). This result 

agrees with our previous findings.

 

Zeros of the Bessel functions: Eigenvalues in polar coordinates 

 

The drumhead example used to introduce finding and ordering eigenvalues associated 

with Bessel functions is not a Laplace equation example, but rather it is a Helmholtz 

equation example. 

2 2( , ) ( , )r k r     ;    ( , , ) ( , )cos[ ]r t r kvt       

The drumhead satisfies a wave equation which leads to a Helmholtz equation for the 

spatial variation after the temporal dependence has been separated. 

 

The identification of the separation constants for Bessel’s functions is more involved 

than was the case for trig functions. We only consider homogeneous boundary 

conditions. Consider a vibrating circular drum head clamped along the line r = R such 

that the displacement is zero along that line. One must include all the Jn(knmR) that 

satisfy Jn(knmR) = 0. [SL.35] 

           Table: Zeros of the Bessel Functions 
0# J0(x) = 0 J1(x) = 0 J2(x) = 0 J3(x) = 0 J4(x) = 0 
1 2.40483 3.83171 5.13562 6.38016 7.58834 
2 5.52008 7.01559 8.41724 9.76102 11.0647 
3 8.65373 10.1735 11.6198 13.0152 14.3725 
4 11.7915 13.3237 14.7960 16.2235 17.6160 
5 14.9309 16.4706 17.9598 19.4094 20.8269 
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N[BesselJZero[0,3]] = 8.65373 

Examining the table, the lowest allowed values of knmR follow as 2.4048, 3.8317, 

5.1356, 5.5201, 6.3802, 7.0156, 7.5883, ... . The corresponding vibration patterns of 

the drumhead are:         http://www.youtube.com/watch?v=v4ELxKKT5Rw 

 

 

 

 

Six lowest frequency vibration modes of a circular drumhead 

Plot Jn(knm r) sin(n); m  mth
 zero  of Jn(k R);       arbitrary vertical scale

           

                       J0(2.4048 r)                                           J1(3.8317 r) sin

         

                J2(5.1356 r) sin(2                                           J0(5.5201 r)      
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                J3(6.3802 r) sin(3                                           J1(7.0156 r) sin

 

n = 0; m = 0; zm = 5.5201;Plot3D[( UnitStep[1 - Sqrt[x^2 +y^2]])BesselJ[n,zm 

Sqrt[x^2 +y^2]] ,{x,-1,1},{y,-1,1}, PlotRange  All] 
 

Use: zm from table;   sin =  x/Sqrt[x^2 +y^2]; sin2 =  2xy/(x^2 +y^2)

Sample plots to find the Bessel functions zeros graphically. 

     
Plot[BesselJ[0,r],{r,0,15}, PlotStyle  Thickness[0.007]]      Plot[BesselJ[1,r],{r,0,15}, PlotStyle  Thickness[0.007]] 
 

Bessel Fourier Series    (http://en.wikipedia.org/wiki/Fourier%E2%80%93Bessel_series) 

Because Bessel functions are orthogonal with respect to the weight function x on the 

interval [0, b], functions can be expanded in a Fourier–Bessel series defined by: 

0

( ) ~ ( / )n n
n

f x c J x 



 b  

where λn is the nth zero of Jα(x). From the orthogonality relationship: 
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1 2
10

( ) ( ) [ ( )]
2
mn

m n nJ x J x xdx J  
    

the coefficients are given by 

0

2

0

( / ) ( ) | ( / )

( / ) | ( / )( / )

b

n n
n b

n nn

J x b f x xdx f J x b
c

J x b J x bxJ x b dx

 

 

 
 

 
 

 



 

The lower integral may be evaluated, yielding: 

0
2 2

1

( / ) ( )

( ) / 2

b

n

n
n

J x b f x x d
c

b J









  x
 

where the plus and minus signs is equally valid. 
 

Warm Up Problems 

 

WUP1.  a.) Show that A sin[kx] e-cy is a solution of the 2D Laplace (Cartesian) 

equation provided that a relationship between c and k is satisfied. Identify the required 

relationship. 

b.) Show that A cos[kx] sin[kx] e 
-2ky satisfies the  2D Laplace equation. . Brute force 

works, but attempt a solution based on part a. 

 

 

WUP2. The general spherical coordinate solution for azimuthal symmetry is 

( 1)

0
( , ) (cos )G r a r b r P 


 


      




.  Each (cos )r P 

  and ( 1) (cos )r P  


 is a solution 

of the Laplace equation. Show that r cos,  r 
-2 cosr and r -3 [ 3/2 cos2 - 1/2] satisfy 

the 3D Laplace equation in spherical coordinates by direct substitution.  
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WUP3. The problem is a (2D) rectangular box with boundary points held at specified potentials. 
The sides are insulators that are charged to have the specified potentials as functions of position.  

V
2(

x)
=

V
o

(1
+

y / 1
0b

)

V
4(

x)
=

1.
2V

o
(1

+
 y / 1

0b
)

The channel has an x-y cross section of a by b, and 
the potentials along each edge are given on the 
diagram. 
a.) Find the potential at all interior points.  
b.) Find the x and y components of the electric field. 
c.) Find the x and y components of the electric field 
along the lines x = a and y = b.  
d.) What type of boundary conditions do we have? 
Choose for the types discussed as being adequate to 
ensure uniqueness. 
e.) Use 

o
E   

 
 to find the charge density at all 

points inside the box.  
f.) Show that there are no relative maxima of minima 
of V(x,y) in the interior of the channel. 

Do not forget to try a zero frequency solution. 

Problems 
 

Problems requiring the solution of the Laplace equation are presented in most intermediate physics texts.  

The problems chosen here are to complement those problems rather than to exhaustively replace or 

duplicate them.  
 

1.) Use the 2D relaxation model equation to find an approximate solution for the 

square box with one side held at Vo and the other sides held at 0.   

Submit: the spreadsheet of final values, a surface plot of the final values, and lines 

plots along the centerline row and along the centerline column. 

Setup a 21 x 21 array of cells in a spreadsheet (consider the values as 0-20).  Set edges 

to zero except for the left edge row which is to set to values of one except for the end 

positions which are to be set to one half.  Every interior cell is to compute the average 

value of its four nearest neighbor cells (up, down, left, right).   

Set cell D5 to “=(C5+E5+D4+D6)/4” 

The spreadsheet must iterate/recalculate. The number format should be set to show at 

least two paces after the decimal (0.00). Print the spreadsheet in the landscape 

orientation. What is the value at the mid point? Plot line cuts for the horizontal and 

vertical cuts through the mid point.  Pressing the F9 key executes an iteration of the 
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calculations in an Excel spreadsheet with circular references. It is instructive to step 

through the iterations and to observe the values as they relax to the solution set. Go to 

the Tools Menu to Options to Calculation. Set Manual and Maximum Iterations = 1. 

Hit F9. Repeat, repeat, …..    Increase Maximum Iterations. Continue. 

Excel Instructions for iterative solution of the Laplace equation. The procedure includes using circular 

references. Go to the Tools Menu to Options to the Calculation tab. Set Manual and Maximum 

Iterations = 1. Turn OFF recalculate on save. Build the spread sheet with zeros in all the boundary 

position. Paste zero at every interior point. Enter the average of neighbors procedure at an interior 

point (say for B6  = (A6 + C6 + B5 + B7)/4). Paste the formula at all the remaining interior points. 

Insert Menu … Chart …. Surface ….. As a new sheet. Save the worksheet and set its properties to read 

only. Open the sheet. Change the boundary conditions to be those desired. Each corner point should be 

set to the average value to the two sides meeting at that corner. Save the starting point with a new 

name. To command excel to execute an iteration set, hit F9. Repeat, repeat, ….. . Watch the values 

develop in the spreadsheet and on the chart.  Increase Maximum Iterations. Continue. 

 

 

2.) Use the 2D relaxation model equation to approximate and to plot the solution for 

the slot with the short side at Vo and the top/bottom held at 0.  Setup a 21 x 300 array 

of cells in a spreadsheet. Set edges to zero except for the 21 element left edge row 

which is to set to values of one except for the end positions which are to be set to one 

half..  Every interior cell is to compute the average value of its four nearest neighbor 

cells (up, down, left, right).  The spreadsheet must iterate/recalculate. Compare the 

results with the Griffiths result 102 sin( )
( , )

sinh( )
tan

y
b
x

b

V
V x y




  

  
 

. Consider the index 

values as 0-20 with b = 20. Pressing the F9 key executes an iteration of the 

calculations in an Excel spreadsheet with circular references. It is instructive to step 

through the iterations and to observe the values as they relax to the solution set. Go to 

the Tools Menu to Options to Calculation.  Set Manual and Maximum Iterations = 1. 

Hit F9. Repeat, repeat, …..    Increase Maximum Iterations. Continue. 
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3.) a.) Establish the relaxation approximation in three dimensions: 

6
( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , )
V x y z V x y z V x y z V x y z V x y z V x y z

V x y z
            

b.) Derive the relaxation approximation equation in 2D that is correct for points 

distributed on a rectangular grid.  That is: for points spaced by a in the x-direction and 

spaced by b in the y-direction.  Generalize your result to the form for a 3D problem on 

a rectangular a-b-c grid rather than s square grid with the points evenly spaced in the 

three dimensions. (xk, ym, zn } = { xo + k a, yo + m b, zo + n c } 

Start by finding an expression for the second derivative with respect to x using values 

on a grid of point with spacing a. For a 2D, -spaced grid, the forms are:

( )/ 2,

( , ) ( ,

x y

V x y V x yV

x 


 



)           

( )/ 2,

( , ) ( , )

x y

V x y V x yV

x 


 



 

                 
2

2

( )

2

,

( /2, ) ( /2, ) ( , ) 2 ( , ) ( ,
V V
x x

x y

x y x y V x y V x y V x yV

x

 
  

 


   




 )  

Answer:

2 2

2 2

2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

[

2[ ]

2[ ]

[
2[ ]

[ ( , , ) ( , , )]

( , , ) ( , , )]

( , , ) ( , , )]

( , , )
a b b c a c

a b b c a c

a b b c a c

c

c

b V x a y z V x a y z

a V x y b z V x y b z

a b V x y z c V x y z c

V x y z  

 

 

  

  

  







 

4.) For the slot problem, the expansion terms in the solution have the form: 

( , ) sin( )m m

m x
bm y

bV x y A e
 

 .  The boundary condition at x = 0 could be set to 

0(0, ) sin( )m y
bV y V  leading to the solution: 0( , ) sin( )

m x
bm y

bV x y V e
 

 .  Use the 

average property and the relaxation equation to explain why a higher frequency 

variation along the left boundary should lead to a more rapid decay with respect to 

increasing x. 
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Discovery Exercise for SL4:  Draw the slot with two full cycles of a sine wave across the left end. Prepare a 

second sketch using the same slot width with 5 full cycles across the left end.  Draw a line in the x direction 

than begins at one of the maxima of the sine wave near the centerline of the slot. Place points along that line 

at intervals of 0.1 of the slot height. Begin at the left end and work to the right. Sketch a circle around each 

point that is just tangent to the left end of the slot. Imagine the average of the potential values around the 

circumference of that circle. At what distance from the left end does the average begin to contain positive and 

negative values;   almost as much negative as positive. Discuss the falloff in terms of the averaging property. 

 

5.) Consider the solution to the 2D Laplace equation in polar coordinates for an 

annular region with inner radius a and outer radius b.  The potential is specified on the 

inner and outer boundaries of the region. 

                                       V(a,) = f()               V(b,) = g()

Give the sum of terms that represents the general form of a physically allowed 

solution in the annular region.  Describe a strategy for matching the boundary 

conditions to evaluate the undetermined constants in the general solution. HINT: 

Review the comments on strategies for solving Cartesian box problems. 

 

6.) In the absence of  dependence and requiring solutions to be finite at  = 0 and , 

the general form of a solution to the Laplace equation in spherical coordinates is: 

( 1)

0
( , ) (cos )G r a r b r P 


 


      




.  a.) Give the physically allowed form of the 

solution for the region inside a sphere of radius R.     b.) A point charge has a potential 

that varies as r -1 so perhaps a term like bo r
 -1 should be allowed inside. Given that V(r, 

) is to satisfy the Laplace equation in the region r< R, explain why a point charge at 

the origin is not to be allowed.  

 

7.) In the absence of  dependence and requiring solutions to be finite at  = 0 and , 

the form of a solution to the Laplace equation in spherical coordinates is: 
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( 1)

0
( , ) (cos )G r a r b r P 


 


      




.  Give the physically allowed form of the solution 

for the region outside a sphere of radius R. 

 

8.) In the absence of  dependence and restricting to solutions that are finite for  = 0 

and , the form of a solution to the Laplace equation in spherical coordinates is: 

( 1)

0
( , ) (cos )G r a r b r P 


 


      




.  Give the physically allowed form of the solution 

for the region between spherical surfaces concentric with the origin and with radii of a 

and b.  

 

SL9.) a.) Prove that if 
0 0

(cos ) (cos ) 0k k
k

A P B P for  
 

 
    


  then m mA B m  .  

Use the orthogonality relation for the Legendre polynomials to project out Aj and Bj. 

Use the projection procedure, not the vector space result that the expansion coefficients in terms of a linearly 

independent set are unique. (A mutually orthogonal set of vectors are linearly independent.)  

 
0

2
2 1(cos ) (cos ) sinm mP P d


        

b.) The Legendre polynomials of cos can be used as an expansion set for functions of 

. 

0
( ) (cos ) 0f A P for   




   


  

Use the orthogonality relation to generate an expression for the coefficient Ap. The 

procedure is analogous to that used to develop the equation to compute the Fourier 

coefficient ap. 

c.) Express sin2 as a Legendre-Fourier series.       2

0
[sin( )] (cos )A P 




   




 

10.) A Cartesian Laplace equation problem sets the infinite plane x = 0 at potential 0 

and the infinite plane x = a at potential V0.  As there is no dependence on either y or z, 

3/10/2010 Handout.Tank:  Solution - Laplace Equation SL-70 



the corresponding separation constants are zero.  Set the constant in 
2

2

( )
( )x

d X x
C X x

dx
  to the value appropriate for this problem. Find the general form of 

the solution and match the boundary conditions to evaluate the undetermined 

constants. Make a drawing to display the 1/3 V0    and 2/3 Vo equipotentials and a few 

field lines. 
 

11.)  The interior of a spherical shell of radius R is charge free, and the potential on 
its surface is described by V = Vo cos2. 

(a) Determine the functional description of V(r,) for r < R, and write down the 
function  for  r < R,    V(r, ) = 
______________________________________________ 
(b) Determine the functional description of V(r,) for r > R,   and write down the 
function for  r > R,     V(r, ) = 
_____________________________________________ 
(c) Determine the surface charge density R,on the spherical shell at r = R.   
 

11.ext) In the problem above, it results that  2

0 0

2(2) 1P

P P r R

V

V




2P



  . Repeat problem 11 

for a potential Vo cos3 to find out if     3

1 1

3(3) 1

1(1) 1
P

P P r R

V

V




3P



 
  

. If you work this 

problem, report the result to tank.                                  
 
12.) A standard slot problem with no z dependence has a solution which is a sum of 

terms of the form:   [ An eknx + Bn e-knx] [ Cn sin(kn y) + Dn cos(kn y) ]. A 

solution inside the slot valid for {0<x<∞; 0<y<a; all z} is sought.  The boundary 

conditions restrict the possible values for the symbols An, Bn, Cn, Dn and kn.   

(a) The condition that the solution is to be physically well-behaved as x  ∞ requires 
that the constant  _____ be restricted to the value(s) ____________. 

(b) The condition that V = 0 for y=0 requires that the constant  __________  be 
restricted to the value(s) _______________. 
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(c) The condition that for y = a, V = 0 requires that the constant  __________  be 
restricted to the value(s) _______________. 

(d) Given that V(x,y) = Fn e-(n π x /a) sin[n π y/a]  and  that V(0,y) = Vo(y)  

      = Vo sin[ 
 y/a], find the Fn for all n and hence, for points in the slot. 

        V(x,y) = ______________________________  
NOTE: The Griffiths slot has a constant potential along the left edge. This problem 

has a figure similar to Griffiths but differs in the fine details of Vo(y). 
(e)  Find the surface charge density (x) on the conducting plane at y = 0.      

In electrostatics problems, the electric field just outside a conductor has magnitude to the local surface 

charge density on the conductor divided by the permittivity of free space and is directed normally away (for a 

positive charge density).  
0 .ˆlocal

just outside away outwardE n



hence 0 0 0local n

V V
n yE    
      on the 

lower surface of the slot (at y = 0).

V = 0

V = 0Vo(
y)

x

y

z

a

0

See  Griffith’s  Fig. 3.17, page 128 

 
 

13.) The potential due to a point charge on the +z-axis at z = d was expanded in terms 

of the solutions to the Laplace equation in a Sample Calculation for the case r > d.   

a.)  Reproduce the expansion for the r > d  case. 

b.)  Find the corresponding expansion for r < d. 

c.)  Identify  as and note that the function that has been expanded is: ˆd k r

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1

4 |

q

r r

 
   

 
|

1  and that |  satisfies the Laplace equation if r > r or if r < r |r r

There is no loss of generality as the direction of the polar axis can be chosen as 

desired. The cosine of the angle between the primed and unprimed position vectors is 

.As the solution to the Laplace equation is unique if the values match on the 

boundary, conclude that:  

ˆ ˆr r

 
( 1)

0

1
ˆ ˆ( )

r
P r r for r r

r r r







   

 





   and  
( 1)

0

1
ˆ ˆ( )

r
P r r for r r

r r r






   
 






   

These results may be summarized as: 

 
( 1)

0

1
ˆ ˆ(

r
P r r

r r r









)
 






    where r> (r<) is the greater (lesser) of r and r .

14.) The potential due to a uniform ring of charge of radius a concentric with the 

origin and in the x-y plane was expanded in terms of the solutions to the Laplace 

equation in a Sample Calculation for the case r > a.  Find the corresponding 

expansion for r < a. 
 

15.) Consider the prospects for an r < a expansion of the potential due to a circular 

disk with uniform surface charge density  and radius a concentric with the origin and 

in the x-y plane in terms of the solutions of the Laplace equation as requested in the 

problems just above this one.  Discuss these prospects. 

2 2

0

( ) | |
2

V z a z z



      

See problem 34 for the full calculation. 

16.) Find the potential at points in the charge free 

interior of the 2D box illustrated. This problem 

requires fitting a function of y on the boundaries with 

x =  ½ a, so the sinusoids are to be used for the y-
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dependence.  The problem is anti-symmetric in x.  The 

box is held at 0 potential on the top and bottom and –

V0 at x =  ½ a and +V0 at x =  ½ a. Express V(x,y) as 

a series expansion for points in the box. 
x

y0

0

(a/2, b)

-V0 +V0

 

 

16.+1) Pollock & Stump 5.3. A long channel with 

square cross section is held at V = Vo cos[x/a] long 

the sides at y = a/2 and the conducting sides at x = 

a/2 are held at V = 0. Find the potential at points 

inside the channel. Compute the electric field inside 

the channel. Why must the field be perpendicular to 

the sides at x = a/2? 

 

The electric field is not perpendicular to the sides at y = a/2. Explain that behavior. 

Use the relation  = o En to find the charge density on the sides at x = a/2. Sketch 

field lines. Note that the sides at y = a/2 are not conductors*. A long channel means 

that there is no z dependence. 

* What angle does an electric field line make with the surface of a conductor in 

electrostatic equilibrium? Conductors are, of course, equipotentials.
 

17.) A problem in cylindrical coordinates has no z-

dependence.  The plane  = 0 is held at 0 potential and the 

plane  = /4 at potential V0. Find V(r,) for all r and 0 <  < 
/4 . Sketch equipotentials for /3V0  and for /3V0 plus a few 

field lines. Compute: ( , ) ( , )E r V r  
 

.

 

V=0

V=Vo 

x

y 
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Details: In polar coordinates consider the Laplace equation problem with the constant 

coordinate half-plane  = 0 held at potential 0 and the constant coordinate half-plane  

= held at potential Vo.  Begin with the general solution form: 

   0 0 0 0
1

( , ) ln( ) sin( ) cos( )m m
m m m m

m

V r A B r C D A r B r C m D m   






        

a
dy

dx


 

Note that the D0  form is allowed as long as o < 2. Exclude terms that diverge as r 

 0 or as r  .  Boundary-value-match to set the remaining constants. [The 

problem would almost make sense with o = 2 if that plane were occupied by a lipid 

membrane such as those in the walls of living cells. These lipid layers maintain a 

potential difference of about 70 mV across their ‘microscopic’ thickness.] 

18.)  Consider the Cartesian slot problem (see # 12). Suppose that the potential along 

the left boundary is Vo(y) = Vo sin(my/a). Find V(x, y) for points in the slot. Find the 

electric field at points in the slot. The surface charge density on a conductor is the 

permittivity of free space times the normal component of the electric field just outside 

the conductor. a.) Assume that the potential at the left edge is set on the surface of a 

huge number of conducting strips running parallel to the z axis. Set m = 1. Find the 

effective surface charge density (0, y) on the left edge on the slot. Find the charge 

density (x, 0) of the conductor at the bottom of the slot (x = 0). Compute the net 

charge per unit length in the z direction on the surfaces.   { ;  

 }    Discuss the results. 

0
0, )left inlength LQ L y 

0
,0)lower in LQ L x 

b.) The model for the structure of the x = 0 edge may be too artificial. Compute the net 

flux of the electric field out of the strip at x = 0 from a length L. Relate that to the 

charge per length L on the top and bottom surfaces (y = 0 and y = a). 
 

3/10/2010 Handout.Tank:  Solution - Laplace Equation SL-75 



19. Thin Insulating Charged Shell: No externally applied field. Given r =R is an 

thin insulating spherical shell with an azimuthally symmetric surface charge density 

(), show that the coefficients in the r < R region can be computed as: 

0( 1)
02

1 ( ) (cos ) sinm mmR
a P




d        

 

20. Dielectric Sphere: No externally applied field.  Given that the region r < R is 

filled with a uniform linear dielectric with constant r1 and the region r > R is filled 

with a uniform linear dielectric with constant r2, show that the coefficients in the r < 

R region can be computed as: 

  01 2 2
( 1)

02
2 1 ( ) (cos ) sinfree

r r r
m mmm R

ma P


   
d   

 
  

 
     

This result has not been verified. 
 

21. Conducting Shell: (In a uniform applied field)  If r = R is the outer surface of a 

conducting sphere in a uniform applied electric field 0
ˆE k , then with V(R) = 0.  

3 3

0 02 2 1( , ) cos (cos )
R R

V r E r E r P
r r

      
      

   
 

This is just the external potential plus that due to the electric dipole moment induced 

on the sphere.  Find the surface charge density () on the conducting sphere.  Use the 

equation, 
0

( )
r r r R r R

V V
r rE E 


 



 
     



 .  Discuss its application. Use the equation, 

2( ) ( ) ( , ) sinp r r dV r R d d         
   

ˆˆ ˆ( , ) sin cos sin sin cosr R i j k        


 where 

 to compute the electric dipole moment 

induced on the sphere.  What would be the potential due to that moment at points r > 

R? 




 

22. Dielectric Sphere: (In a uniform applied field) 
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The region r < R is filled with a uniform linear dielectric with constant r1 = r and the 

region r > R is filled with a uniform linear dielectric with constant r2 = 1 and if free, 

the free surface charge density on the insulating dielectric sphere, is zero, find ( , )V r   

and ( , )V r  .  

0
( 1)

0
( , ) cos (cos )V r E r b r P  


 


    




 

Find ( , )E r 


.  Sketch it. The field ( , )E r 


 is the superposition of the applied electric 

field and the field due to the dipole induced on the dielectric sphere. Given that free 

=0, use 
0

( )
r r r R

V
rE E 


 

 


   

r R

V
r


  to find the polarization charge density on the 

surface of the dielectric sphere. Use the equation, 

2( ) ( ) ( , ) sinp r r dV r R d d         
     

where  to compute the electric dipole 

moment induced on the sphere.  What would be the potential due to that moment at 

points r > R ? 

ˆˆ ˆ( , ) sin cos sin sin cosr R i j        


k 

 

23.  Review the two-dimensional slot problem.  Griffiths presents a closed form 

representation of the solution in his E&M text. 

102 sin( )
( , )

sinh( )
tan

y
b
x

b

V
V x y




  

  
 

 

Show that this function satisfies the boundary conditions.  Next, show that 

1 sin( )
( , )

sinh( )
tan y

G x y
x

  
  

 
 

is a solution of the 2D Laplace equation. [Maple, Mathematica or some other symbolic 

tool is recommended for this part.]   If none is available, adopt the common 

denominator: .  It then follows from uniqueness that: 
22

1 csch( ) sin( )x y   
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1

0

[2 1]( ) [2 1]0 0
2 1

2 4sin( )
( , ) sin( )

sinh( )
tan

m

m x
b

y
m yb

bx
b

m

V V
V x y e




 



 
 

 


 
  

 
  

Note that, with some effort, the series can be summed to establish the equality. 
 

 

24. A spherical shell of radius R has surface 

charge while the regions r<R and r >R are 

charge free.  The problem has azimuthal 

symmetry ( no dependence on ).  The 

surface charge on the sphere sets its potential 

to be V(R,) = Vo sin2. Assume that the 

potential vanishes as r  ∞. 

 

R 

a.) Name the equation that V() satisfies for r < R and for r > R. 

b.) Give the sum that represents the allowed form of the inside solution (for r<R). 

c.) Give the sum that represents the form of the outside solution (for r>R). 

d.) Express sin2 in terms of cos. 

e.) Express sin2 in terms of the P(cos).   

f.) Find V(r,) for r < R. 

g.) Find the form of Er for r < R. 

h.) Find the surface charge density () on the shell. See sample calculation SC3. 

( ) ( )
( , ) ( , ) orr r

r R r R

V V
E R E R

r r

    
 

 
 

  

 
   

 
  

 

25.  The potential is constant (V() = Vo) on the surface r = R [1 +   cos]. The 

regions inside of and outside of this surface are charge free. Use the perturbation 

approach to find the potential inside and outside the surface through all terms up to 

3/10/2010 Handout.Tank:  Solution - Laplace Equation SL-78 



first order in . Begin by expressing cos in terms of the Legendre polynomials of 

cos.
  

26. The potential is constant (V() = Vo ) on the surface r = R [1 +   cos]. The 

regions inside of and outside of this surface are charge free. Use the perturbation 

approach to find the potential inside and outside the surface through all terms up to 

first order in . Begin by expressing cos in terms of the Legendre polynomials of 

cos. Repeat for V() = Vo cos.
 

27. The potential is constant (V() = Vo) on the surface r = R [1 +   P2
(cos)]. The 

regions inside of and outside of this surface are charge free. Use the perturbation 

approach to find the potential inside and outside the surface through all terms up to 

first order in .  
 

28. The potential is V() = Vo cos on the surface r = R [1 +   P2
(cos)]. The regions 

inside of and outside of this surface are charge free. Use the perturbation approach to 

find the potential inside and outside the surface through all terms up to first order in . 
 

29. The potential due to a point charge is to be averaged over a spherical surface of 

radius R. 
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q

Sr


SPr


Pr


dAR

ˆ
P z kr 


A point charge is located a distance z up the polar axis.  

The average value of the potential due to that charge is to 

be computed over the surface of a sphere of radius R 

centered on the origin.  The distance from the charge to a 

patch on the surface of the sphere is, by the law of 

cosines, 2 2 2 cosRR z z  

surface is: 

. The potential on the 

 2 2
0/ 4 2 cosq R z z R       

. 

 

Compute Vave for z > R and for z < R. In which case does V satisfy the Laplace 

equation inside the shell. What is the potential at the origin due to the single point 

charge on the z axis? The average value of the potential over the sphere is computed 

as: 

Vave 
1

4  R2

0




qR2 sin d d

4   0 R2  z 2 2 zR cos0

2

 
1
2

q sin d
4   0 R2  z2  2z Rcos0



  

29½.) Consider a insulating spherical shell of radius R with charges distributed on and 

exterior to the shell to set its potential to V(R,). The interior is charge-free so the 

potential satisfies the Laplace equation in the interior. 

a.) What is the general form of the expansion for the potential in the interior expressed 

in its spherical coordinate form for no  dependence? 

b.) Specialize the expansion to r = 0 to find the potential at r = 0 in terms of the 

expansion. 

c.) Specialize the general solution to r = R and set it equal to V(R,). Project out the 

coefficient of Po(cos) using the orthogonality relation for the Legendre polynomials 

of cos. 
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d.) The average property states that the value of a solution to the Laplace equation at a 

point is equal to the average of the values of that solution at a full set of equally 

distant points. Do your results support the proposition that the potential at the center 

of the sphere is the average of the value of the solution as averaged over all the points 

on a concentric spherical shell? 

2 2
2 0 00

1
( , ) ( , ) sin

4rV r V R R d d
R

 
   

      







 Generate an r > a expansion of the potential due to a uniform circular disk of 

charge of radius a concentric with the origin and in the x-y plane in terms of the 

solutions of the Laplace equation in spherical coordinated with no  dependence.  
 

31.)  Use the first four terms in the expansion representing the potential due to a point 

charge q at a  to compute the electric field at 10 a  + 11 a . Compare your result 

to the exact result computed using Coulomb's Law. 

k̂ ĵ k̂

0
( 1)

0 4
( , ) (cos )

q a
V r P

r
 






 
  

 







 

 

32.)  For a general far-field expansion representing the potential in terms of the 

solutions of the Laplace equation in spherical coordinated with no  dependence, 

compute the term-by-term form of the electric field. ( 1)

0
( , ) (cos )V r A r P 


 


   




 

Use:      
2

1cos (cos ) (cos )(cos )
sin

1 (cos
n nn

n P n PdP

d

   
 

  
 

 

Do not despair just because the result is ugly. 
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33.) Compute 2 (cos )dP

d




 and 3(cos )dP

d




.  Compare with the results found using the 

identity:       
2

1cos (cos ) (cos )(cos )
sin

1 (cos
n nn

n P n PdP

d

   
 

  
 

 

 

33.) Charge is glued on the surface of a spherical shell of radius r in such a fashion 

that the potential on the shell is Vo cos(2). 

a.) Express Vo cos(2) in the form 
0

(cos )a P 



  


. 

b.) Find the series representations for the potential in the regions r < R and r > R. 

Assume that space is charge-free except for that glued on the shell. 

 

c.) Find the charge density () on the surface of the shell. Use the equation:  

 0

( )
r r r R r R

V V
r rE E 


 

 

  
      . 

 

Answer: (R,) = (oVo/3R ) [20 P2(cos) - 1 P0(cos)]

 

34.) a.) Compute the potential of the z axis due to a uniformly charged circular disk of 

radius a and charge density  centered in the x-y plane.      

  ( )
4 | p s

dA
V r

r r |


 





  . 

b.) Use the binomial theorem to generate (z>a) and (z<a) expansions for the potential 

on the z axis. 

c.) Match these expansions with the forms  ( 1)

0
( , ) (cos )V r B r P 


 


   




 and  

0
( , ) (cos )V r A r P 




   




 to generate series representations of the potential in both 

regions. 
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Answer:     2 2

0

ˆV z k a z z



  


 

2 2
1

0 2(2 1)
1

( 1) (2 1)!!
( , ) (cos ) (cos )

4 2 ( 1)!

for

m m

mm m
m

a m a
V r r P P

m r

r a

  








  
   



  

2 (

0 1 2 2 2( 1) (2 1)
1

( 1) (2 1)!!
(cos ) (cos ) (cos ) (cos )

2 2 4 4 2 ( 1)!

for and

m m

mm m
m

a r r m r
P P P P

a m a

r a

    2 2)

  
   

 



 
   





 
   



 

  

2 (

0 1 2 2 2( 1) (2 1)
1

( 1) (2 1)!!
(cos ) (cos ) (cos ) (cos )

2 2 4 4 2 ( 1)!

for and

m m

mm m
m

a r r m r
P P P P

a m a

r a

    2 2)

  
   

 



 
   





 
   



 

  

 

35.) Begin with 
2

2

1 ( )
sin ( ) 0

sin sinm
d d m

C
d d


   

        
   

   specialized to m = 0, the 

case of no  dependence. 1 ( )
sin ( ) 0

sin

d d
C

d d


  

     
   . Make the magical 

assumption that () = P(cos). a.) Compute: ( )d

d




  as expressed using P(cos).  

b.) Compute ( )
sin

d d

d d






 


  as expressed using P(cos).  

c.)  Write 1 ( )
sin ( ) 0

sin

d d
C

d d


  

     
     as expressed using P(cos). 

d.) Replace cos by x everywhere in the equation. Compare the equation with the 

Legendre equation in the Differential Equations handout. Comment. 

e.) Solve the problem using the power series method.  

f.) The solution does not converge as an infinite series for x = +1 so values of C must 

be chosen that case the series to terminate as an th order polynomial. Give the of C 

that terminates the series as an th order polynomial. 
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36.) Compare the far-field expansion for problems with azimuthal symmetry: 

( 1)

0
( , ) (cos )V r b r P 


 


   




 

with the multipole version of the expansion for the potential: 

3 5
0

1
4 4 4( ) ...

2
total i j

i jo o

q p r
r r

x x
V r

r
Q    

    
  . 

Azimuthal symmetry (no  dependence) means that there is no x or y dependence, but 

rather, only z and r.  Show that: qtotal = 4o bo; px = 0; py = 0; pz = 4o b1 and Qxx, Qyy 

= - ½ Qzz = - 4o b2. 
 

37.) The average value of the potential over a sphere of radius R concentric with the 

origin in spherical coordinates is: 2
2 0

1
( , ) sin

4
V V R R

R

 
d d   





   . Use the inside 

and outside expansions for the potential to show that, if the interior is charge free, then 

the potential at the center is V . Show that if there are charges located inside the shell 

(r < R), but not on or outside the shell, then 
4

net insideq
V

R 
 . 

38.)  The potential due to a point charge q on the z axis at a  has been expressed 

using the Legendre polynomials as:  

k̂

0

0

( 1)
0

( 1)
0

4

4

(cos ) for

( , )

(cos ) for

q r
P r

a
V r

q a
P r

r




















  
  

   
     



















a

a

 

Use these expressions to compute the average value of the potential due to that charge 

over a sphere of radius R concentric with the origin in the cases that R < a and R > a.     

 

39.)  Use the expressions included in the statement of the previous problem for the 

potential due to a point charge q on the z axis at a  to develop an expression for the k̂
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potential field when a conducting sphere of radius R concentric with the origin is 

added. The potential in the region exterior to the spherical conductor must have the 

form: 

0

( 1)
( 1)

0 04
( , ) (cos ) (cos )

q r
V r P b r P

a
  

 
 


 

 
  

 
 



  



 

 

That is: the potential due to the original point charge plus an additional contribution 

that vanishes as r  . Begin by matching the potential at r = R where V(R,) = Vo. 

Find the forms of the b for   1. Compare them with the r > b expansion for a charge 

qat b k . [ˆ
0

( 1)
0 4

(cos )
q b

P
r







 
 
 







]. Identify q  and b. Compute the net charge of the 

conductor in terms of q  and Vo. Note that the total expression  

0

( 1)
( 1)

0 04
( , ) (cos ) (cos )

q r
V r P b r P

a
  

 
 


 

 
  

 
 



  



 

 

corresponds to a charges:  q at  a ; q  at b  and 4oRVo at 0 .k̂ k̂ k̂

Answers :  q  = - q (R/a) and b = R
2
/a. 

 

40.) Consider a 2D square box of side a with one side 

held at Vo and the other three sides at ground (V = 0.). 

The potential is found to be:       [SL.12] 

 

0

[2 1]0
2 1

(2 1)

(2 1)

4
sinh

( , ) sin( )
sinhm

m y
bm

m a x
b

m a
b

V
V x y 






 
 




 



 
  
 
  

   

Vo 0

0

0

x

y

y=b

x=a
 

 

 

0

[2 1]0
2 1

(2 1)

(2 1)

4
sinh

( , ) sin( )
sinhm

m y
bm

m a x
b

m a
b

V
V x y 






 
 




 



 
  
 
  

         [SL.12] 
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with a = b. 

 
 0

[2 1]0
2 1

4 sinh (2 1) 1
( , ) sin( )

sinh (2 1)

x
a

m

m y
am

V m
V x y

m









 
 




   
  

a.) What should the potential be at (½ a, ½ a)? 

b.) Show that 
 0

( 1)
2 1

sinh ( )

sinh (2 1)

½

m

m

m

m

m

 




 
  




   
  . 

 

41.) Following Example 3.4 on page 133 of the third edition of Griffiths, a rectangular 

channel running from – b  to b in x and from 0 to a in y has the y = 0 and y = a sides 

held 0 and the x = -b and x = b sides held at Vo.  

 
0

[2 1]0
2 1

4 cosh (2 1)
( , ) sin( )

cosh (2 1)m

m y
am

xV a

ba

m
V x y

m









 
 




  
     

  

a.) Set b = ½ a. What should the potential be at (0, ½ a)? 

b.) Show that 
 0

2 1
( 1) 1

cosh ( ½)m

m

m m






 
 


 

  . 

 

Data for the next three problems: 

Problems based on the expansion 
1

0

1
ˆ ˆ( )

m

mm
m

r
P r r

r r r





 

 
    

r> is the larger of r and r and r> is the smaller of r and r

Choose to have the field point on the z axis so that ˆ ˆ cosr r   . 

Use the orthogonality relation 
0

2
2 1(cos ) (cos )sinm n mnP P d


       

Note that: 00 0
(cos ) sin (cos ) (cos )sinm mP d P P

 
d        ;   Pm(1) = 1.

42.) Find the potential due to a uniform spherical shell of charge of radius R and 

surface charge density o at a point a distance z from the center of the shell. Begin 
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with the equation: 
0

1

4
( )

all sources

dq
V r

r r 







  . Use 
1

0

ˆ ˆ(
m

mm
m

r
P r r

r





 

)  to replace 1

r r
  . Be 

alert to the necessity to change the form of the integrand for field points inside the 

shell (z > R) as compared to outside the shell (z < R). 

 

43.) Find the potential due to a uniform spherical ball of charge of radius R and 

surface volume density o at a point a distance z from the center of the shell. Begin 

with the equation: 
0

1

4
( )

all sources

dq
V r

r r 







  . Use 
1

0

ˆ ˆ(
m

mm
m

r
P r r

r





 

)  to replace 1

r r
  . Be 

alert to the necessity to change the form of the integrand for (z > r) as compared to 

outside the shell (z < r). 

Answer:  V(r) = (½ o /o) [R
2 – 1/3

 z2) 

 

44.) Find the potential due to a spherical shell of charge of radius R and surface charge 

density o cos at a point on the z axis a distance z from the center of the shell. Begin 

with the equation: 
0

1

4
( )

all sources

dq
V r

r r 







  . Use 
1

0

ˆ ˆ(
m

mm
m

r
P r r

r





 

)  to replace 1

r r
  . Be 

alert to the necessity to change the form of the integrand for field points inside the 

shell (z > R) as compared to outside the shell (z < R). 

 

45.) Find the potential due to a spherical shell of charge of radius R and surface charge 

density o (cos)2 at a point on the z axis a distance z from the center of the shell. 

Begin with the equation: 
0

1

4
( )

all sources

dq
V r

r r 







  . Use 
1

0

ˆ ˆ(
m

mm
m

r
P r r

r





 

 )  to replace 

1

r r
  . Note that (cos)2 = 2/3

 P2(cos) + 1/3 Po(cos).  Be alert to the necessity to change 
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the form of the integrand for field points inside the shell (z > R) as compared to 

outside the shell (z < R). 

 

46.) The values D and L are known radii of concentric surfaces at which azimuthally 

symmetric solutions are matched. a.) Suppose that D = L, solve for a in terms of b. 

 
( 1)

( 1) ( 1)

a D c D d D

c L d L b L

 

  

 

 
  

  

 

  
               [SL.34] 

b.) For D  L, attempt to solve for a in terms of b. Discuss the outcome in terms of 

the boundary condition specification required to ensure that a function that satisfies 

the Laplace equation except possibly on the surfaces r = D and r = L is uniquely 

determined. 

c.) The matching equations above are appropriate for the potential being continuous at 

the surfaces. Add the conditions that the normal derivative (equivalently the radial 

component of the electric field) is continuous at the surfaces. Find the relation 

between a and b with this additional set of conditions. 

 

47.) 

 

 

51.)  The potential due to a ring of charge on and off the z-axis 

The potential of a uniform ring of charge of radius a concentric with the origin in the 

x-y plane at points along the z-axis is:
  

V(0,0,z) 
Q

4 0 a2  z 2


Q
4 0 z

1 a
z 2 1/ 2

 for z > a 
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                 
0 0

1/ 22 2 2*2 1 3 2 1
311 2 22 ...

1! 2! 2 !4 4
0, 0,( ) 1 1 ... ...n

nna a a
z z z n

Q Q

z z
zV

 

     2*a
z

                
Use our matching technique to find the potential as a function of r and  given that r > 

a. Find an independent form the works for r < a. 

Something has been gained.  The original expression is only valid on axis, but the 

final expressions are convergent and correct in the entire regions r > a  and r < a. The 

results can be made more compact by using the double factorial notation which is 

defined as: n!! = (n)(n-2) (n-4) …. ending with 2 or 1.Explain why the expansion for 

the potential of the ring only includes Legendre polynomials of even index. What is 

Po(cos)? 

 

52.) Following separation in Cartesian coordinates, there is a very special case 

solution in which Cx = Cy = Cz = 0. In this case show that X(x) has the form m x + b 

where m and b are constants. Give the general form of V(x, y, z) in this special case. 

Give the form of the electric field described by this V(x, y, z). Find the specific form 

for an electrostatic potential that corresponds to a uniform electric field: .        

Recall: 

0
ˆE E j



E V 
 

 

 

53.) The potential due to a point charge on the z-axis at points on and off the z-

axis.  Prepare a sketch. The potential due to a point charge q at d  at points on the z 

axis with z  > d is: concentric with the origin in the x-y plane at points along the z-axis 

is:
 
 

k̂

1

0 0

(0,0, ) 1
4 ( ) 4

d z
Q Q

V z
z d z 


    

 for z > d 

a.) Use the binomial theorem to generate an expansion valid for z > d. 

b.) Give an expression of the potential appropriate for an expansion to be used for 0 < 

z < d. Use the binomial theorem to generate an expansion valid in that region.
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c.) Match the form ( 1)

0
( , ) (cos )V r b r P 


 


   




 for points on the z axis where each 

P(cos) = 1 and z > d.  Use the fact that each power of r is an independent function 

(vector) in the sense of VS17. Give the form of V>(r,)for all .

d.) Match the form 
0

( , ) (cos )V r a r P 




   




 for points on the z axis where each 

P(cos) = 1 and z < d.  Use the fact that each power of r is an independent function 

(vector) in the sense of VS17. Give the form of V<(r,)for all .
 

e.) Replace cos by
  

a restate the forms of V<(r,) and V>(r,). Compare with 

Griffiths (3.94) and the equation for cos a few lines above (3.98).


ˆ ˆr r

The Point: The function 1| |r r 
 

)

 is a solution of the Laplace equation (except at 

), which remain finite at  = 0 and  so it has a representation as r r
 

0

( 1) (cosa r b r P 






    
 

  . In this problem ˆr d k 
  and  is the angle that the field 

point position vector makes with respect to the polar axis. Replacing cos by
 

ˆ ˆr r
 

makes the result coordinate system independent. The portable result is:

1
0

1
ˆ ˆ( )

|

r
P r r

r r r









 
    




 


   

where r < (r >) is the smaller (larger) of the magnitudes of andr r
 

. 

 

 

54.) Consider two concentric conducting shells. An inner shell R1 held at potential V1 

and an outer shell of radius R2 held at potential V2 in otherwise charge-free space. 

Give the general form of a solution to the Laplace equation in each of the three 

regions of r. Use a projection argument to identify the Pl terms that will contribute in 

each region. Find the potential for all r. Suppose that the inner shall has a radius of 4 
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cm and a potential of  – 12 V, and the outer shell has a radius of 12 cm and a potential 

of + 12 V. Get answers with numbers!!! 

Partial Answer: V(r) =  1 2 1 2 12 2 1 1

2 1 2 1

V V R RV R V R
r

R R R R



 

         (for R1 < r < R2) 

 

55.) Consider the charge distribution that is a single point charge q located at d .  k̂

a.)  The potential of a point charge at d  is shown to be:  k̂

0
2 2 2

0

( 1)
0 4

 ( , , ) ( , ) (cos )
4 ( )

q q d
V x y z V r P

rx y z d 
 








 
    

    







. 

 Write out the first three terms in the expansion on the right.  

P0(z) = 1P1(z) = z;      P2(z) = 3/2 z 

2 – 1/2 

b.) The charge distribution of a point charge at d   has the following multipole 

moments.   qnet = q; 

k̂

ˆp q d k
 , Qzz = 2 qa2; Qxx = Qyy = - qa2 and Qij = 0 otherwise. 

Expand the multipole far-field estimate of the potential: 

3

0 1 2

5
0

1
4 4 4

( ) ( ) ( ) ( ) ...

...
2

total i j
i jo o

q p r
r r

V r V r V r V r

x x

r
Q     



  

   
 

   


 

Compare with the first three terms of the expansion of part a. Use the standard relation 

z = r cos. 

 

 

56.)  The region inside a spherical of radius R centered on the origin is charge-free. 

What equation does the potential satisfy in the region? The form of a spherical shell 

coordinate expansion was found in problem SL6.  

0
( , ) (cos )G r a r P 




     




 

Based on the series expansion above, what is G(r = 0,)?   

3/10/2010 Handout.Tank:  Solution - Laplace Equation SL-91 



Use the form above and compute the average value of the potential on the sphere of 

radius R.  Use the orthogonality relation [SL.28] after multiplying the relation by 

Po(cos) = 1. 

2
2

2
0 0

1
( , ) sin

4aveG G R R
R



d d   


  
 

Relate these results to the average property of solutions to the Laplace equation.


 

57.) A theorem for the representation of the product of two Legendre polynomials is 

proposed. 

| |
2

(cos ) (cos ) (cos )
m n

n m
m n

P P c P  
 

 
 

 


 



 

That is: The product of the mth and nth Legendre polynomials can be expressed as a 

linear combination of the Legendre polynomials of order |m – n| to order m + n. All of 

the polynomials represented will be even or odd to match the evenness or oddness of 

m + n. 

a.) Represent the product of the 1st and 3rd Legendre polynomials as a linear 

combination of the Legendre polynomials of order 2 to order 4. 

b.) Represent the product of the 2nd and 2nd Legendre polynomials as a linear 

combination of the Legendre polynomials of order 0 to order 4. 

Partial Answer: P1(x) P3(x) = 4/7 P4(x) – 3/7 P2(x) 

The result that: The product of the mth and nth Legendre polynomials can be expressed 

as a linear combination of the Legendre polynomials of order |m – n| to order m + n is 

often compared to the triangle inequality and a vector model of the mixing in products 

of Legendre  polynomials. 

Mathematica syntax: Pn(x)   LegendreP[n,x]; also use Expand[ … ] 

{1/5, 2/7,18/35} 
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58.) Charge is glued on the surface of a spherical shell of radius r in such a fashion 

that the charge density on the shell is o cos() = o P1(cos()). 
 

a.) Give the allowed form of the potential, V<(r, ) for the region r < R and V>(r, ) for 

the region r > R. Assume that space is charge-free except for that glued on the shell. 

 

b.) Prepare a sketch of the electric field line pattern that you expect for this charge 

distribution. 
 

c.) Find the relation between the coefficients in the two expansions by requiring that:  

V<(R, ) = V>(R, ) 

d.) Use the relation below to generate the final relation needed to identify all the 

expansion coefficients. 

 0

( )
r r r R r R

V V
r rE E 


 

 

  
      . 

e.) Compute the forms of the potential for r < R and for r > R. 
 

f.) Compute the full electric field for r < R.  
 

g.) Express  in terms of  and k̂ r̂ ̂ . Use the result as you describe the electric field in 

the region r < R. 
 

h.) Set o = 3 and then compare the field with Eo  . Use this result to discuss 

the field interior to the charge conducting sphere, the example discussed in class. 

k̂

 

i.) Discuss the relation between this problem and SC3. 
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59.) The general solution to the 2D Laplace equation has 

the form: 

 

 
1

1

( , ) [ ][ ]

sin( ) cos( )

sin( ) cos( )

m m

n n

m m m m m m
m

n n n n n n
n

k y k y

k y k y

G x y A B x C D y

E k x F k x G e H e

S e T e U k y V k y











  

    

    





 
Vo 0

0

0

x

y

y=b

x=a
 

The solution chosen omitted [A + B x] [C + D y] part. Test the linear terms to see if 

they could fit the boundary conditions. (See page 14.) 

 

60.) Compute the electrostatic potential due to a uniform line of source charge of 

linear density  running along the z axis from –a to +a at points z > a. Match this 

result to a solution of the Laplace equation in spherical coordinates with azimuthal 

symmetry to find a series representation for V(r, ) valid for r > a. 

0

1

4
( ) s

p

all p s
sources

dq
V r

r r 





     Answer: 
2

2
0

2
0

( , ) (cos )
4 (2 1)

m

m m
m

Q a
V r P

r m r
 








 ; r>a, Q = 2a 

 

61.) This problem was assigned as an E&M integration problem.  Repeat it using 

1
0

1
(cos )

m

mm
m

r
P

r r z








    for the case of the problem. Use the orthogonality of the 

Legendre polynomials. Consider a solid sphere of radius R and charge density 0 (
r/R) 

cos. Compute the electric field due to this distribution at points on the polar axis with 

z > R. It is recommended that the electrostatic potential be computed for points on the 

z axis and that the field be found as a derivative of the potential.  Considerable 

patience is required!      Possible answer:     Ez = 
4

0
4

0

2

15

R z

z




 for |z| > R. 
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
2 2 ( 1)

0

1 1
 (cos ) for

ˆr  - d k 2 cos

d
P r

rr d rd









 
 







 d  

Make a binomial expansion of 
2 2

2
2

½1 1
1 ( ) 2( ) cos

2 cos
d

r
d r

rr d rd





     

.  

Make the identifications n = - ½ and x = 2
2( ) 2( )cosd

r
d r  . Expand to order x3. Group 

the terms in the form:        
2 3

2 3 4

1 d d d

r r r r
       . Identify the stuff that 

fills each of the sets of parentheses up uo the d3/r4 set. There are some pieces of higher 

order such as d4/r5, …, and  d6/r7. Why do we not attempt to identify the factors that 

multiply d4/r5, …, and  d6/r7 at this stage? 

 

SL63. The problem is a (2D) rectangular box* with two conducting sides held at zero 

potential. The third and fourth sides are insulators that are charged to have the 

specified potentials as functions of position. (* The corresponding 3D problem is a 

infinitely long conducting channel of rectangular cross section with no z dependence.) 
 

0

0

y

V1(x) = Vo (1 – x/a)

V
2(

y)
=

 V
o

(1
–

y / b
)

a

b

The channel has an x-y cross section of a by 

b, and the potential along the lower edge is 

V1(x) = Vo (1 – x/a) while the potential along 

the left edge is V2(y) = Vo (1 – y/b).  

a.) Find the potential at all interior points.  

b.) Find the x and y components of the 

electric field in the interior. 

c.) Find the x and y components of the 

electric field along the lines x = a and y = b.  

d.) What type of boundary conditions do we 

have? Choose for the types discussed as 
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being adequate to ensure uniqueness. 

e.) Find the charge densities on the two sides held at zero potential.  

f.) Show that there are no relative maxima of minima of V(x,y) in the interior of the 

channel.  

 

64.) The interior of a spherical shell of radius R is charge free, and the potential on 
its surface is described by V = Vo cos3. 

(a) Determine the functional description of V(r,) for r < R, and write down the 
function  for  r < R,    V(r, ) =  
(b) Determine the functional description of V(r,) for r > R,   and write down the 
function for  r > R,     V(r, ) =  
(c) Determine the surface charge density R,on the spherical shell at r = R.   

P0(cos) = 1; P1(cos) = cos; P2(cos) = 3/2
 cos2; P3(cos) = 5/2

 cos2cos

Do you results support the proposition that:   3 3

1 1

3(3) 1

1(1) 1
P P

P P r R

V

V






 
  

 

65.) The interior and exterior around a charged spherical shell of radius R is charge 
free, and the surface charge density is  R= ocos3. 

Express cos3 as a linear combination of the Legendre polynomials below.
(a)  Match the forms of V<(r, ) and V>(r, ) at r = R to find the b in terms of the a. 

(b) Find the charge density due to these general forms. Match it to 
0 cos3. Identify 

the values of all the a. 

(c) Find V(r,) inside and outside the shell. 

 

66.) Consider a sphere of radius R divided into two conducting caps. The 0 <  < ½  

cap is at potential Vo and the ½  <  <   cap is held at –Vo. Find the potential 

everywhere keeping the  = 0, 1, 2 and 3 contributions. Search for a reference 

claiming to contain the complete solution. It follows from the result that: 
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2 12 1
0

1 if 0 1 ( 1) (4 3) (2 )!
( ) ( )

1 if 1 0 2 ! ( 1)!

m

mm
m

x m m
f x P

x m m






   
     

 x  

Does this expansion support the values that you found for the first four coefficients? 

Note that the expression above is derived by replacing Pk by its Rodriques formula 

representation and integrating.  (If one integrates by parts, an interesting question 

arises. Discuss the issue that arises for extra credit. Use Pk(1) = 1 for all k, and apply 

the ratio test to the expansion.) 



f[x_] = Sum[((-1)^m (4 m + 3)  Factorial[2 

m]LegendreP[2 m + 1, x])/( 2^(2 m+1) Factorial[m] 

Factorial[m +1]), {m, 0, 21}]; Plot[f[x],{x,-1,1}] 

The plot supports the validity of the 
expansion above. It also displays a Gibbs 
overshoot, and poor convergence in the 
neighborhoods of x = 1. (Repeat the plot 
summing up to m = 40 and compare.)

   

SL68.) A uniform field is established in a 

large region of otherwise empty space that is 

‘centered’ on the origin. This external 

potential is due to source charges located at 

great distances from the origin. a.) Give a 

potential Vext that corresponds to ˆ
oE E k


. A 

dielectric sphere with a relative susceptibility 

r = 4 and radius R is moved in from a great 

distance and placed centered on the origin. b.) 

Find expressions for the potential and electric 

field inside and outside of the sphere. c.) Find 

the surface charge density on the sphere. d.) 

Find the charge density inside the sphere. e.) 

 
Illustrates D, the electric displacement. 
Lines of D are continuous. Below, the 
electric field. Einternal is weaker than the 
applied field for r > 1. Lines of E begin 
and end on the bound surface charge.  
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Compute the multipole moments of the 

dielectric sphere. f.) Compute the electric field 

at r = 0. g.) Find diamagnetism on Wikipedia. 

By analogy, develop a definition for dielectricism1. Based on the picture of an applied 

field polarizing the atoms of a dielectric, explain the dielectricism of dielectrics. 

Hints:  Match V< and  V> at r = R;  V>  Vext as r  ; r o r o rE E     at r = R.

 

 
 

References: 

1. Mary L. Boas, Mathematical Methods in the Physical Sciences, 2nd Edition, 
chapter 3, John Wiley & Sons (1983). 
2.  Bruce Kusse and Erik Westwig, Mathematical Physics, John Wiley & Sons 
(1998). 
3. David J. Griffiths, Introduction to Electrodynamics, 3rd Edition, Prentice Hall 
(1999). 
4.  K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics 
and Engineering, 3rd Ed., Cambridge, Cambridge UK (2006). 
5. The Wolfram web site: mathworld.wolfram.com/ 
 
Sample Problems: 
 
 

1.) ASL51.  The potential due to a ring of charge on and off the z-axis   !!! 

Prepare a sketch. 

                                           
1 Dielectricism is a new term to denote the action of dielectric materials. Dielectricity might be preferred.  Compare with 

diamagnetism, paramagnetism and ferromagnetism. Find paraelectricity and ferroelectric on Wikipedia. 
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The potential of a uniform ring of charge of radius a concentric with the origin in the 

x-y plane at points along the z-axis is:
  

V(0,0,z) 
Q

4 0 a2  z 2


Q
4 0 z

1 a
z 2 1/ 2

 for z > a 

a.) Use the binomial theorem to generate the next three non-zero terms in the 

expansion below. 
3 3 5

2 32 2 2½ ( ½) ( ½)( ) ( ½)( )( )
[1 ] 1 ...

1! 2! 3!
x x x x

     
       

   
0 0

1/ 22

4 4
0, 0,( ) 1 1a

z
Q Q

z z
zV

 


       

The binomial theorem gives
 

3 3 5
2 32 2 2½ ( ½) ( ½)( ) ( ½)( )( )

[1 ] 1 ...
1! 2! 3!

x x x x
     

     
 

where x = (a/z)
2.  

       
0 0

1/ 2 2 4 62

4 4
0, 0,

1 3 15
( ) 1 1 ....

2 8 48
a

z
Q Q

z
z z

a a aV z z z 

               

 

b.) Assume that on the z-axis, the form below is valid for z > a and that the ck are 

known values 

 
0 0

1/ 22

1

1 (2

4 4
0, 0,( ) 1 k

k

ka
z

Q Q

z
zV z

 

 



  1)c z
         


 

Use our matching technique to find a representation of the potential as a function of r 

and  in the entire region r > a. Your expression should involve the known constants, 

the ck. Do not substitute your values from part a. 

The form is to match
 

( 1) ( 1)

0 0
( , ) (cos ) (cos )G r a r b r P b r P  

 
   

 
         

 

 
in a 

large region like r > a. On the z axis, r = z and P(cos) = 1. For  = 0 and hence cos 

= 1,

0 0

0 2
1 1

1 (2 1) 1 (2 1)

4 4
0, 0,( ) (1 (1k k

k k

k kQ Q
zV z c z r P c r P

 

 


 

              
  1k

   
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= 
 

( 1)

0
(cos )b r P 


 


  



   
for  = 0.



Matching power-by-power along z axis so that r varies with  = 0 and hence each P = 

1. Then freeing  to roam from 0 to ; that is put the matched coefficient in 

( 1)

0
(cos )b r P 


 


  




.  

See the statement of VS17b on the last page. Each power r –(+1) is an independent 

function (vector).  

b = 0 for  odd; bo= Q/4o; b = Qck/4o. for  = 2 k even

 

0

0 2
1

1 (2 1)

4
,( ) (cos (cosk k

k

kQ
rV r P c r P


 1 






        
  
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24. A spherical shell of radius R has surface 

charge while the regions r<R and  r >R are 

charge free.  The problem has azimuthal 

symmetry ( no dependence on ).  The 

surface charge on the sphere sets its potential 

to be V(R,) = Vo sin2. Assume that the 

potential vanishes as r  ∞. 

a.) Name the equation that V() satisfies for r < 

R and for r > R.  the Laplace equation 

b.) Give the sum that represents the allowed form 

of the inside solution (for r<R). 

0
( , ) (cos )V r a r P 




     




 

c.) Give the sum that represents the form of the 

outside solution (for r>R). 

( 1)

0
( , ) (cos )V r b r P 


 


   




 

 

R 

d.) Express sin2 as a linear combination of powers of cos.   

e.) Express sin2 in terms of the P(cos).  Match the coefficient of the highest 

power first. 

                    sin2 = a + b cos + c cos2 + ... + d [cos]m

fPm(cos) + g Pm-1(cos) + … + k  P0(cos).

 

f.) Find V(r,) for r < R. The solution inside must match the potential at r = R. On a 

constant r surface, the P(cos) vary independently so the coefficients a of each 
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P(cos) must match across the equal sign. Once the coefficients are determined, they 

must be substituted in the full form 
0

( , ) (cos )V r a r P 




     




.  See the statement of 

VS17b on the last page.   Each P(cos) is an independent function (vector).  

Match the coefficients of independent behaviors term-by-term.  

Vo P2(cos) + Vo P0(cos) = 
0

( , ) (cos )V R a R P 




     



  

We conclude that ao = Vo and that a2 = - Vo R
 – 2. Substituting, 

                       V<(R,) =  Vo  P0(cos) Vo (r/R)2
  P2(cos) 

g.) Find Er(r, ) for r < R.    Er(r,  ( ,V r

r

 


Vo R -2 r   P2(cos) 

 

12.) [highly modified read carefully] A long vertical slot runs for all  y > 0 and 0 

< x < a. There is no z dependence. The potential along the y = 0 end is set to the 

function:  V(x, 0). Conducting planes parallel to the y-z plane and through x = 0 and x 

= a are grounded and hence are a potential zero. Prepare a sketch before proceeding. 

 

A standard slot problem with no z dependence has a solution which is a sum of terms 

of the form:     

                        [ An eknx + Bn e-knx] [ Cn sin(kn y) + Dn cos(kn y) ]  

or of the form: [ Cn sin(kn x) + Dn cos(kn x) ] [ An ekny + Bn e-kny]   

 

(a)  Choose one of the forms above for this problem? COPY your choice onto the 

next line: 
 

   V(x, y)  [ Cn sin(kn x) + Dn cos(kn x) ] [ An ekny + Bn e-kny]   
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Justify your choice: The solution must approach zero for large y  e – ky and we need 

to fit a function of x so we need cos(kx) and sin(kx) to fit V(x, 0) with a Fourier series.

 

A solution inside the slot valid for {0 < x< a; 0 < y < ; all z} is sought.  The 

boundary conditions restrict the possible values for the symbols An, Bn, Cn, Dn and 

kn.   

(b) The condition that the solution is to be physically well-behaved as y  ∞ requires 

that the constant An be restricted to the value  zero. 

(c) The condition that V = 0 for x = 0 requires that the constant  Dn  be restricted to the 

value zero. 

(d) The condition that for x = a, V = 0 requires that the constant kn  be restricted to the 

value(s) n (/a) where n = 1, 2, 3, 4, …  . 

(e) Given that V(x, 0) = Vo sin[5  x/a] and the constraints of the previous four parts, 

find the potential in the slot:      V(x,y) =   [ ]

1

sin[ ]n
n

a
an y

E n x e 



 .  

V(x,0) =   
1

sin[ ] (1)n
n

aE n x



  =  Vo sin[5  x/a]        E5 = Vo; En = 0 for n  5. 

See the statement of VS17b on the last page.  Each sin[nx/a] is an independent 

function (vector).  

Match the coefficients independent behavior by independent behavior. The equation 

immediately above is only valid for y = 0. Once the coefficients are set, they must be 

substituted into the general form [

1

sin[ ]n
n

a
an y

E n x e 



 ]  to provide V(x,y) at all points in 

the slot. 

V(x,y) =  Vo sin[5  x/a] 
[5 )( a ]y

e
  E V 

 
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VS17b.) The representation of a vector as a linear combination of vectors in a linearly 

independent set is unique. Prove this proposition. Begin by assuming that there are 

two distinct linear combinations of the vectors that equal the vector |v. 

1 2 1 21 2 ... and 1 2 ...N Nv a a a N v b b b N         

Show that this assumption leads to a contradiction. It follows immediately that 

1 2 1 21 2 ... 1 2 ...Na a a N b b b N       N  requires that ai = bi for1  i 

Compare this problem with FS3 and LS9. Add the result from VS18 and compare 

again! Mutually orthogonal vectors are linearly independent. 
 

 

In the case of an expansion in terms of a set that obeys an orthogonality relation and 

|ZERO is not a member, an alternative proof uses projection. The jth coefficient is 

projected out using the inner product. 

1 2
1

1 2 ...
N

N k
k

j v a j a j a j N b j k


      

1

N

j k jk j j j
k

j v

j j
j v a j j b j k b j j a b



       

Shows equality and generates a component calculator. 
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