
Introduction to Linear Vector Spaces 

Send comments to: tank@alumni.rice.edu 

Concepts of primary interest: 

 Closure and axioms for addition and multiplication 

 Linear independence 

 Span, basis and dimension 

 Inner Product 

Sample calculations: 

 Span of a set 

 Certifying a vector space 

 Certifying an inner product 

 Gram-Schmidt basis construction 

Application examples: 

 Legendre polynomials 

Tools of the trade: 

Desirable background: 

 Fourier Series* 

* Fourier series are used as examples. They should be 

skipped if you are not familiar with Fourier series. 

 

Study Guide: Definitions and statements of fundamental rules (such as axioms) must 

be memorized as soon as one begins the study of a new topic. One must identify the 

definition of each concept. Do not blur the concept by using an example of the concept 

rather than its definition. You should be able to present prose statements of definitions 

and axioms using complete sentences. You statements should be complete enough to 

remove the need for any other defining material such as an equation. If you cannot do 

so, you do not know the definition. Memorizing definitions and statements of rules is 

the anchor step. Understanding cannot be achieved without it. 
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Mathspeak: Fundamental precise definition. Mathspeak definitions are absolutely 

required knowledge, but often difficult to interpret. 

PhysicsSpeak:  A statement in the physics context providing a useful application or 

interpretation that is in harmony with all physical law. PhysicsSpeak can be less formal 

than mathspeak 

Fuzzyspeak: An interpretation definition or principle that may contribute to 

appreciating the importance of the concept. A fuzzyspeak definition is not a proper 

substitute for a formal mathspeak definition. It can be added after the formal definition. 

It cannot replace a formal definition. 

 

 

Vector quantities play a central role in physics.  At the lowest level, a vector is a 

quantity that has both magnitude and direction.  A more complete and general 

description of vectors, vector spaces and their properties is to be developed in this 

section and in a later section on linear transformations.  
 

The Displacement Model 

    The properties of the collection of all possible displacements ir∆  of a particle in our 

familiar model, a flat, infinite (Euclidean) three-dimensional universe, are presented to 

introduce vector concepts. 
 

Rules for the Addition of Displacements 

A1. The sum of two displacements is another allowed displacement. 

1 2 3r r r∆ + ∆ = ∆    

A2. Additions can be regrouped without changing the resultant displacement. 

( ) ( )1 2 3 1 2 3r r r r r r∆ + ∆ + ∆ = ∆ + ∆ + ∆        
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A3. The order of additions can be changed without changing the sum. 

 1 2 2 1r r r r∆ + ∆ = ∆ + ∆     

A4. There is a zero displacement or 0


 that does not change the position of the particle.  

0i ir r∆ + = ∆


    for all ir∆ . 

A5. For any displacement ir∆ , there is another (additive inverse) ir−∆  that has the 

opposite action on a particle's position. 

 for all  ir∆  ,   ( ) 0ii rr −∆∆ + =



 . 

Rules for the Multiplication of Displacements by Scalars 

M1.  If ir∆   is an allowed displacement, then any real scalar multiple of that 

displacement, ic r∆ , is also an allowed displacement.  

M2. The scalar multiple of a sum of displacements is the same as the sum of the same 

multiple of the individual displacements. 

    ( )1 2 1 2c r r c r c r∆ + ∆ = ∆ + ∆    , an allowed displacement 

M3. A sum of scalars times a displacement is the sum of the individual scalars times 

that displacement.   ( ) i i ic d r c r d r+ ∆ = ∆ + ∆   , an allowed displacement 

M4. The scalar multiplication of displacements is associative. ( ) ( )i ic d r c d r∆ = ∆  . 

M5. One times any displacement is that same displacement. 

1 i i ir r r∆ = ∆ ∀ ∆   . 

The collection of all displacements has other features such as an inner (dot) product that 

yields a scalar-valued measure of the component of one displacement along the 

direction of a second displacement times the magnitude of the second displacement. It 

gauges the degree to which the two displacements embody common behavior, 

displacing in the same direction.1

                                  
1 This sentence is an example of fuzzyspeak. Find a formal definition of inner product. 

  The inner product of a displacement with itself is 

always positive. Thus the inner product can be used to assign lengths to all the 
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displacements in the space (to set a norm for the space: i i ir r r∆ = ∆ ⋅∆   |). Further, we 

can find a set of three displacements { }1 2 3, ,b b b
  

 such that all the allowed displacements 

can be represented as a sum of multiples of the members of this set, a linear 

combination. That is: all 1 1 2 2 3 3ir c b c b c b∆ = + +
  

   for some scalars:{ }1 2 3, ,c c c . This set 

of displacements { }1 2 3, ,b b b
  

is a spanning set for our three dimensional universe. The 

minimum number of vectors { }1 2, ,..., nb b b
  

 required such that every displacement can be 

represented as 1 1 2 2 ... n nir c b c b c b+∆ = + +
  

  is the dimension of the space of 

displacements (three for our example). A spanning set with the minimum required 

number of elements is a basis set. A common choice for the basis set for displacements 

in three dimensions is ˆˆ ˆ{ , , }i j k . 
 

Graphical Representations 

Dropping back to two dimensions to simplify the drawings, the figure below illustrates 

the concept of equality for displacements. 
 

x 

y 

 
All the displacements illustrated have the same magnitude (length) and direction; they 

are all equal.  The 'location' of the displacement is not considered, and, in fact, the 

location of the vector is not an intrinsic property of the displacement, but rather is an 

adjustable parameter that may be used to be facilitate the solution of the problem of 

interest.  Move the displacement vector around without changing its magnitude or 

direction, and the action of the displacement is unchanged.  (Moving a vector without 
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changing its direction is sometimes called parallel transport.) Vector addition 

illustrates the utility of the concept.   
 

                    
The sum of two displacements should be the net displacement when the two 

displacements are executed in sequence. 

   

The left-hand figure illustrates transporting the tail of 2r∆
  to the tip of 1r∆

  to yield the 

sum of the displacements.  The parallelogram rule diagram presents another graphical 

representation of vector addition. 

 

                                                 
Commutative Addition:  Diagrams illustrating the commutative property (A3) for the 

addition of displacements in two dimensions.          1 2 2 1r r r r∆ + ∆ = ∆ + ∆
     

 

Analytic (Component) Methods 
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Graphical techniques are perhaps superior for thinking about problems, but, for the 

heavy lifting, analytic methods are needed.  A representation is adopted; a coordinate 

system is chosen.  The axes are chosen to be perpendicular (orthogonal). The values 

x∆  and y∆  are the projections of r∆  onto the x and y axes. The unit (normalized 

basis) vectors î  and ĵ  are chosen to have the directions of the x and y axes. The 

displacement r∆  can then be represented in terms of its components as ˆ ˆx i y j∆ + ∆ .  

Once vector addition, scalar multiplication and the inner product operations are defined 

in terms of these components, all problems can be submitted to a computer for analysis. 

       
The component representation of a vector is found by representing the vector as a sum of pieces with the 

number of pieces matching the dimension of the space and with each of the pieces running along one of the 

coordinate directions. In the figure above, one can drop perpendiculars to the x and y axes to fin the 

corresponding components. Notice that  ˆ ˆr xi y j∆ = ∆ + ∆


 is clearly a representation of r∆


 as the sum of a 

piece (displacement) in the x direction plus a piece in the y direction. Note that changing ∆x does not change 

∆y. Displacements in the x and y directions are orthogonal to one another. 
 

Component-based representation of: 

Addition:  ( ) ( ) ( ) ( )1 1 2 2 1 2 1 21 2
ˆ ˆ ˆ ˆ ˆ ˆr r x i y j x i y j x x i y y j∆ + ∆ = ∆ + ∆ + ∆ + ∆ = ∆ + ∆ + ∆ + ∆

   

Scalar Multiplication: ( ) ( ) ( )1 1 1 1 1
ˆ ˆ ˆ ˆc r c x i y j c x i c y j∆ = ∆ + ∆ = ∆ + ∆

  

Inner Product:  ( ) ( ) ( ) ( )1 2 1 1 2 2 1 2 1 2
ˆ ˆ ˆ ˆr r x i y j x i y j x x y y∆ ⋅∆ = ∆ + ∆ ⋅ ∆ + ∆ = ∆ ∆ + ∆ ∆

   

î  

ĵ  

y 

x 

r∆  

ˆxi∆  

ˆy j∆  r∆  

x 

y 
ˆ ˆr xi y j∆ = ∆ + ∆  

 

ˆy j∆  
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The operations of addition, scalar multiplication and inner product are defined in terms 

of the scalar components of the vectors. The properties of the vector operations can 

now be based on the properties of operations on the scalar components. The term 

'scalars' means elements of a scalar field.  Fields are discussed briefly below.  
 

The direction cosines provide a particularly useful representation of the direction of a 

vector. A direction has components that are the cosine of the angle between that 

direction and the coordinate direction of interest. 

( ) ( ) ( ) ( ) ( ) ( ), , ,
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ cos cos cose x e y e ze i e i j e j k e k i j kθ θ θ= ⋅ + ⋅ + ⋅ = + +  

Each direction cosine gauges the degree to which the direction ê  points in a given 

coordinate direction. 

The inner product is a gauge of common behavior.  The inner product of two 

displacements gauges the degree to which the displacements are in the same 

direction and scales that result by the product of the magnitudes of the individual 

displacements. 
This statement is in fuzzy-speak. It is not a math-worthy definition. 

 

The Big Shift: A summary of the properties of displacements has been presented. 

Those properties are those that are characteristic of vectors as studied in an introductory 

physics course. They apply to a number of physical vectors. Mathematicians collect the 

common rules from these behaviors and remove the context to define mathematical 

vector spaces. The spaces will include examples with various dimensions from one to 

infinity. The vector elements of these spaces can be quite different from our model of 

displacements in three dimensions. A space may be the collection of all periodic 

functions with a period T or of all 7 x 7 matrices with complex elements.  

   Don’t expect outcomes based on your prior experiences. Make your highest priority 

memorizing the definitions of terms and statements of rules (axioms) as they arise. 

Base your arguments and conclusions on the new definitions and rules rather than 
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on any prejudices based on your understanding of displacements. 

   We will return to the concept of a physical vector in another section.  At that time, the 

properties required to qualify an entity as a physical vector will be discussed. 
 

An Abstract Linear Vector Space: By definition, a vector space is any collection of 

physical or mathematical entities (elements) with defined binary addition and scalar 

multiplication operations that satisfy the axioms below. The scalar multipliers are 

chosen from a field.  The real numbers and complex numbers are examples of scalar 

fields. Just to ensure that you stay abstract and that you can't identify the vectors 

discussed with any that you may have encountered in the past, vectors will be 

represented as kets. { }, , , ...A B C .  The name ket is chosen because the combination 

 is a bracket. It must follow that A  is a bra and that B   is a ket.  A bra and ket 

〈A|B〉 together represents the inner product of the two vectors. 
 

A collection of entities (elements) forms a vector space V if and only if the entities have 

defined operations for binary addition (for combining two vectors to yield another 

vector) and for multiplication of a vector by a scalar to yield another vector that are 

closed (that yield results which are also in V ⇒ A1 & M1 below) and that obey the 

rules: A2-A5 & M2-M5.  The property blocks below first state the closure property and 

then list four more axioms satisfied by the addition and multiplication processes 

respectively. 
TABLE I: Vector Space Axioms for Addition and Multiplication 

Axioms for Vector Addition      for elements of a vector space V 

A1. Closure under vector addition:  

For all ,A B ∈  V, A B C+ = ∈ V  

A2. The addition is associative.   

( ) ( )A B C A B C+ + = + +  
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A3. The addition is commutative.  

A B B A+ = +  

A4. There is an additive identity (zero) vector.   

0A A+ =  for all A ∈  V 

A5. There is an additive inverse for each vector.  

For all A ∈ V  A∃ − ∈ V such that 0A A+ − =   
 

 

Axioms for Multiplication by a Scalar 

M1. Closure: The product of a scalar c and any vector in V is also in V. 

For all A ∈ VVV, c A ∈    VVV 

M2. Scalar multiplication is distributive across a sum of vectors.  

( )c A B c B c A+ = +  

M3. Scalar multiplication is distributive across a scalar sum. For scalars c and d, 

( )c d A c A d A+ = +   

M4. Scalar multiplication is associative. 

( ) ( )c k A c k A=   

M5. Action of the scalar identity 

1 A = A  for all A ∈  V  

Learn to express each axiom in prose form! 
 

If only real scalars R are allowed, the space is a real linear vector space. If complex 

scalars C are allowed, then the vector space is a complex vector space.  For a general 

case, the notation is to use a, b, c, ... as elements of an unspecified scalar field K.  Only 

spaces over R and C are of immediate interest to us. We must admit that there are other 

fields to cover all the cases of interest to mathspeak persons. 
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Closure example:  Consider the addition of displacements.  Start with S1, set of all 

displacements between points in an infinite three dimensional space.  The sum of two 

such displacements is also in that set.  Hence the set is closed under addition.  Contrast 

this with S2, set of all displacements of magnitude 5 meters or less.  One can add two 

displacements of magnitude 4 meters (which are members of that set) to get a 

displacement with a magnitude greater than 5 meters (which is not a member of the set). 

The second example set S2 is not closed under addition and so the set S2 (with its 

operations) is not a vector space. 
 

Exercise: Consider the collection of objects of the form ˆ ˆv a i b j= +  where a, b, and all 

other scalars used are any real numbers.  The vector addition and scalar (c) 

multiplication operations using real numbers are defined as:  

( ) ( )1 2 1 2 1 2
ˆ ˆv v a a i b b j+ = + + +

   

( ) ( ) ( )1 1 1 1 1
ˆ ˆ ˆ ˆc v c a i b j c a i c b j= + = +

  

Show that the collection of all v  as prescribed is a linear vector space.  Assume that 

scalar addition and multiplication of the real numbers obey all the common rules. 
 

Notation Alert:  The use of the vector label notation | 0〉 representing the additive 

identity is sometimes preempted by another convention. For example, in quantum 

mechanics, |0〉 may represent the ground state (lowest energy state) for a problem. 

In these cases the additive identity is to be represented as either |ZERO〉 or |NULL〉. 

Stay alert; this conflict will arise when you study the quantum oscillator. 

 

What is a field?  From:  http://mathworld.wolfram.com/Field.html 
 

A field is any set of elements that satisfies the field axioms for both addition and 

multiplication and is a commutative division algebra. An archaic name for a field is 
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rational domain. The French term for a field is corps and the German word is Körper, 

both meaning "body." A field with a finite number of members is known as a 

finite field or Galois field.  
 

 As the identity elements of a field must be different for addition and multiplication, 

every field must have at least two elements. Examples of fields include the complex 

numbers, rational numbers, and real numbers, but not the integers (as integers do not 

include multiplicative inverses for all integers).    
TABLE II: The field axioms written in addition-multiplication pairs. 

Property Addition Multiplication 

Commutative a b b a+ = +  ab b a=  

Associative ( ) ( )a b c a b c+ + = + +  ( ) ( )a bc ab c=  

Distributive ( )a b c ab a c+ = +  ( )a b c a c bc+ = +  

Identity 0a a+ =  1a a=  

Inverse ( ) 0a a+ − =  1 1a a− =     (*) 

(*) The additive identity (0) is an exception; it does not have a multiplicative inverse. 
 

Notably, vector spaces lack self-multiplication and hence multiplicative inverses. 
 

Math Trivia:  The vector space rules or axioms require that a space contain at 

least one element, the additive null 0 . If it contains any other element A , then it 

must include the additive inverse A−  and all elements of the form c A  where c 

is an element of the associated scalar field.  All the fields that we consider have 

an infinite number of elements so our vector spaces are likewise infinite, although 

they may be (and often are) finite dimensional.  

 

 

Linear dependence, spanning sets and basis sets:  
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Defn: Linearly dependent set:  A set of vectors { }..., ,...iV  is linearly dependent if there 

is a linear combination of those vectors (sum of scalars times vectors) that equals the 

zero vector.   1 21 2 .... ...i ic V c V c V+ + + + = =0 zero  and not all the scalars ci are zero.  
 

If  c4 ≠ 0, then 4V  can be represented as a sum of multiples of the other members of the 

set. That is 4V  is linearly dependent on the other members of the set.  If the zero vector 

0  is a member of the set then the set is linearly dependent because the sum of one 

times 0  plus zero times the remaining members sums to the zero vector 0 .  
 

If a set of vectors is not linearly dependent, it is linearly independent. 
 

The span of a set of vectors S ={ }..., ,...iV  is all the vectors that can be represented as 

finite linear combinations of the members of the set ( i ia V∑  where the ai are arbitrary 

scalar coefficients).  The set S ={ }..., ,...iV  is said to span the space of elements 

i ia V∑ . Span({ }..., ,...iV ) = ...., ,.....i ia V 
 
 

∑  for any { }ia ∈   K.    

 

The span of a set of vectors meets the requirements to be a vector space. The rules for 

forming linear combinations assure the axioms for binary addition and scalar 

multiplications are met. 
 

A spanning set for a space:  Any set of vectors S ={ }..., ,...iS  complete enough that 

every vector in that space V is of the form i ia S∑  is a spanning set for that space. That 

is: If the span of the set S is the entire space V, then S is a spanning set for V. 
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A spanning set must include at least one vector embodying each distinct characteristic 

behavior found in members of the space.  A reduced spanning set is the spanning set 

less one or more members which also spans the complete vector space. The requirement 

that the reduced set span the same space ensures that any member that can be removed 

is a linear combination of the members that remain.  
 

Reducing a spanning set: Any members of the spanning set S ={ }..., ,...iV  that are 

linearly dependent on the other members of that spanning set can be removed from the 

set without removing any vectors from the span of the set  = { …., i ia V∑ , …. }, the 

collection of all possible linear combinations of the members of S . 
 

 

A basis for a space:  Any spanning set for a space that cannot be reduced is a basis set 

for that space.  A basis is a spanning set with the smallest possible number of elements. 

If a member is removed from a basis set, then the span of the remaining members no 

longer includes all the elements of the vector space.  Equivalently, a basis set is a 

spanning set that is linearly independent.  
 

If a vector is removed from a basis set, one characteristic behavior found in the 

original space is lost.  
 

Dimension:  The number of members in the smallest spanning set for a space is the 

dimension of that space.  A set with the smallest number of members that still spans the 

space is a basis for the space.  This number (or dimension) is the same as the largest 

number of linearly independent vectors in the space.   
 

The dimension of our space of all three-space displacements is, of course, three. 
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A subspace is a vector space W all of whose elements are contained in another vector 

space V. It follows that Dimension(W) ≤  Dimension(V).  The span of any set is a 

vector space.  If one vector is removed from a basis for V then the span of the 

remaining vectors in the set is a subspace of V with dimension = Dimension(V) -1. 
 

The concepts just presented are for general abstract vector spaces. A set of 

concrete examples follows. Do not lose sight of the more general nature of the 

concepts. 
 

Examples of the concepts restricted to 3D Cartesian displacement space. 
 

Linearly independent: The set of vectors 
ˆ ˆˆ ˆ ˆ{ , , 2 }i j k j k+ +  is linearly independent. It would 

be dependent if  ˆ ˆˆ ˆ ˆ( ) ( 2 ) 0a i b j k c j k+ + + + =


 for 

some {a,b,c }, not all zero. That would require: a 

= 0; b + c = 0, and b + 2 c = 0. Those conditions 

are contradictory. It can’t happen. The 

conditions require that a = b = c = 0. More 

directly, in order to be a linear combination of  x

y

z

 
the other two vectors, the sum of multiples of the vectors must be a triangle, a closed 

figure. This would require that one of the vectors lies in the plane defined by the other 

two. 
 

Span of a set: The span of  ˆˆ ˆ{ , }i j k+  is all vectors of the form ˆˆ ˆ( )a i b j k+ +  or all the 

vectors in a plane that includes the x axis and the line y = z. The span of  ˆ ˆˆ ˆ ˆ{ , , 2 }i j k j k+ +  

is all vectors of the form ˆ ˆˆ ˆ ˆ( ) ( 2 )a i b j k c j k+ + + +  or all the vectors in the Cartesian three-

dimensional space. 
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Spanning set: The set  ˆˆ ˆ{ , }i j k+  is a spanning set for the space of all the vectors in a 

plane that includes the x axis and the line y = z. The set ˆ ˆˆ ˆ ˆ{ , , 2 }i j k j k+ +  is a spanning set 

for the space of all the vectors in the Cartesian three-dimensional space. The set 
ˆ ˆ ˆˆ ˆ ˆ{ , , 2 , }i j k j k k+ +  is a spanning set for the space of all the vectors in the Cartesian three-

dimensional space. Note that the last spanning set contains more members than the 

dimension of the space that it spans. 
 

Basis sets: A spanning set with the fewest number of members or equivalently that is 

linearly independent. The set  ˆˆ ˆ{ , }i j k+  is a basis set for the space of all the vectors in a 

plane that includes the x axis and the line y = z. The set ˆ ˆˆ ˆ ˆ{ , , 2 }i j k j k+ +  is a basis set for 

the space of all the vectors in the Cartesian three-dimensional space. The set 
ˆ ˆ ˆˆ ˆ ˆ{ , , 2 , }i j k j k k+ +  is a spanning set for the space of all the vectors in the Cartesian three-

dimensional space; it is not a basis set because the set is not linearly independent (or 

has more members than the minimum required). The minimum number of members is 

called the dimension of the space. 
 

Exercise: A vector is represented as ˆ ˆ ˆˆ ˆ ˆ( ) ( 2 )v a i b j k c j k d k= + + + + +
 , a linear combination 

of a spanning set. Represent the vector as a combination of the members of a basis. 
ˆ ˆˆ ˆ ˆ( ) ( 2 )v a i b j k c j k′ ′ ′= + + + +

 . What are a′, b′ and c′? 
 

The representation of a vector as a linear combination of members of a particular basis 

set is unique while there are many possible representations as linear combinations of 

the members of a spanning set with more members than are found in a basis. 
 

Sample calculation of a span and identifying its dimension: 

Consider the set of vectors S ={ }1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2 2 , 4 3 3 ,B i j k B i j k B j k= + − = + − = − +

  

 over the 

real numbers R.  The span is the collection of all linear combinations of the three 
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members of the set. ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 2 2 2 4 3 3 , ,Span a i j k b i j k c j k a b c= + − + + − + − + ∀ ∈ R. 

Defining α 2a c= −  and β b c= + , ( ) ( ) ( ) ˆˆ ˆ(S) 2 4 2 3 2 3 ,Span i j kα β α β α β α β= + + + − + ∀ ∈ R.  

The last form is a curious rewriting, but it demonstrates that the Span(S) depends on 

only two free parameters and therefore must be suspected to be only two dimensional. 

Further 3 1 22B B B= − +
  

.  That is 3B


 is linear combination of 1B


 and 2B


 hence the set is 

linearly dependent.   

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 ,( ) 2 , , ,Span a B b B c B B B B a b cα β α β= + + − + = + ∀ ∈
     

  R 

The space is two-dimensional as two vectors form a smallest spanning set for it. 
 

Exercise:  Consider the set of vectors, { }ˆ ˆˆ ˆ ˆ ˆ, ,i j k i j k+ + + .  Display the general form for 

the span of this set.  Assume a space over the real numbers.  The set is linearly 

dependent.  Express k̂  as a linear combination of the other two vectors.  Display a 

reduced set that spans the same space as does the original set. Display a basis set for the 

space spanned by { }ˆ ˆˆ ˆ ˆ ˆ, ,i j k i j k+ + + .  What is the dimension of that space?  Describe the 

locus of points described if the vectors are considered to be a set of displacements from 

the origin. 
 

The locus of points designated by the vectors spanned satisfies the equation y - x = 0, a plane perpendicular to 

the x-y plane (as z is unrestricted) and intersecting with it on the line y = x.  The normal to the plane lies along 

the cross product of any two (non-parallel) vectors in the plane.  Here ( ) ( ) ( )ˆˆ ˆ ˆ ˆ ˆ ˆi j k i j j i+ + × + = − , so one 

normal to the plane is 
( )ˆ ˆ

2
ˆ j i
n

−
= . 

 

 

A Few Examples of Vector Spaces: 
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N-tuple space.  For a field K with members a, b, c, ... consider the set of ordered 

collections of scalar values ( )1 2 1, ,..., ,N NA a a a a−=  where addition is defined as 

( )1 1 2 2 1 1, ,..., ,N N N NA B a b a b a b a b− −+ = + + + +  and multiplication is defined as 

( )1 2 1, ,..., ,N Nc A c a c a c a c a−= .   A basis for the space is {(1,0, ….,0); (0,1,0,…,0), … , 

(0,0, … ,1)}. No application has been discovered for this space; it is native to 

mathematics texts.  (Dimension = N.) 
 

3-D displacement space.  For the field of the real numbers R with members, a, b, c, d, 

... consider the ˆˆ ˆ
i i i ir a i b j c k∆ = + +
  where addition is defined as 

( ) ( ) ( ) ˆˆ ˆ
i j i j i j i jr r a a i b b j c c k∆ + ∆ = + + + + +
   and multiplication is defined as 

ˆˆ ˆ
i i i id r d a i d b j d c k∆ = + +
 . A basis for the space is { ˆˆ ˆ, ,i j k }. Examples of this space are 

common in physics texts. 
 

Polynomial (nth order) space.  For the field of the real numbers R or complex C 

numbers with members, a, b, c, d, ... consider the 1( ) .... n
An o nP x a a x a x= + + +  where 

addition is defined as ( ) ( ) ( )1 1( ) ( ) .... n
An Bn o o n nP x P x a b a b x a b x+ = + + + + + +  and 

multiplication is defined as 1( ) .... n
An o nd P x d a d a x d a x= + + + . (Dimension = n + 1.) A 

basis for the space is {x0, x1, …, xn}. One could also use the first n + 1 Hermite 

polynomials. There are many possibilities. A strange, but legal choice, is {1 (= x0), 1 + 

x,  1 + x + x2,…,  1 + x + x2 + … + xn}. 
 

Taylor's series space.  For the field of the real numbers R or complex C numbers with 

members, dAn , dBn, dCn, dDn, ... consider the 
0

( ) n
A An

n
T x d x

∞

=

= ∑ where addition is defined 

as ( )
0

( ) ( ) n
A B An Bn

n
T x T x d d x

∞

=

+ = +∑ and multiplication is defined as ( )
0

( ) n
A An

n
c T x c d x

∞

=

= ∑ . 
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The space is to be restricted to series that converge.   (Dimension = infinite.) A basis for 

the space is {x0, x1, …, xn, …. , ….}. 

 
 

Oscillator space.  The space of all functions specifying the position as a function of 

time for a simple harmonic oscillator: For the field of the real numbers R with 

members, a, b, c, d, ... consider the ( ) ( )( ) cos sini i ix t a t b tω ω= +  where addition is 

defined as ( ) ( ) ( ) ( )( ) ( ) cos sini j i j i jx t x t a a t b b tω ω+ = + + +  and multiplication is 

defined as ( ) ( )( ) cos sini i id x t d a t d b tω ω= + .          (Dimension = homework.)  

A basis for the space is {cos(ωt), sin(ωt)}. 

 

Fourier series space.  For the field of the real numbers R or complex numbers C with 

members, a, b, c, d, ... consider the Fourier space of elements 

( ) [ ] [ ]0 0 0
1 1

( ) 1 cos sinf fn fm
n m

f t c a n t b m tω ω
∞ ∞

= =

= + +∑ ∑  where addition is defined by summing the 

corresponding Fourier coefficients and multiplication by d is defined by multiplying 

each Fourier coefficient by d.       (Dimension = infinite.) A basis for the space is {1, { 

… , cos(nωοt), …},{ …. , sin(mωοt), …}} where m and n are strictly positive integers. 

( )0 0 00 0
1 1

( ) ( ) ( )cos ( )singng Gmf f fn fm
n m

f t g t c c c a a n t b b m tω ω
∞ ∞

= =
      + = + + + + +∑ ∑  

( ) ( ) ( )0 00
1 1

( ) cos sinf fn fm
n m

d f t d c d a n t d b m tω ω
∞ ∞

= =
      = + +∑ ∑  

 

Legendre Polynomial of cosθ Space for f(θ) defined for 0 ≤ θ ≤ π. 

For the field of the real numbers R with members, a


 consider the Legendre space of 

well-behaved (finite-valued) elements for 0 ≤ θ ≤ π: 
0

( ) ( os )f fLS f a P cθ θ
∞

=
= = ∑ 


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where addition is defined by summing the corresponding expansion coefficients and 

multiplication by d is defined by multiplying each expansion coefficient by d.       

(Dimension = infinite.) The basis is the set of P


 (cosθ) for  a positive integer. 

 

General Fourier series space.  For the field of the complex C numbers with members 

a, b, c, d, ... consider a Fourier space of elements 
1

( )i im m
m

a xφ
∞

=

Ψ = ∑ where the 

{ }..., ( ),.....m xφ are a set of linearly independent (preferably orthogonal) functions.  For 

example, ( )i xΨ might be the wave function for an electron in hydrogen.  The 

{ }..., ,.....mφ  would be the set of distinct energy eigenfunctions for the electron in 

hydrogen. The state 1φ  could be the 1s ground state with energy -13.6 eV and spin up. 

Suggest definitions for addition and scalar multiplication for this space. The basis is the 

set { }..., ( ),.....m xφ  of linearly independent (preferably orthogonal) functions. 
 

The Space of Null: A space containing only one element 0 , the zero or additive 

identity element.  Note: space of null is the "dull" space. The basis set for the space is 

the single element |0〉. 

 

Matrix Space: The collection of all m x n matrices with complex scalar elements can 

be considered to be a vector space with complex numbers as the field.  

Exercise: For matrix space, propose a definition or procedure for matrix addition and 

for scalar multiplication. What is the dimension of the space of all m x n matrices? 

Propose a set of basis vectors for the space. (Each matrix in the basis set is a vector in 

the sense of abstract vector spaces. 

 

Certifying a vector space: 
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A vector space is a set of elements that has as defined operations a binary addition and 

a scalar multiplication that satisfy the 10 axioms required of vector space operation. 
 

 Step 1: Identify the members of the set that is to be investigated. That identification 

should include what is essentially a rule to test for membership in the set. 
 

Step 2: The set must support two operations on it members, binary addition (the 

combining of two members to yield a third) and scalar multiplication of each member to 

yield a member. The operations must be defined. The scalar field involved should be 

specified in this step. 
 

Step 3: Verify that each of the defined operations satisfies each of its five axioms. I 

suggest beginning with closure for each operation. If the vectors have a component 

representation, the operations are usually defined in terms of operations on the scalar 

components which satisfy the field axioms. There is a field axiom that is parallel to 

each vector space axiom. Use it to establish that the vector space axiom is satisfied.  
 

The certification process should be exhaustive and exhausting. If it fails to be so, the 

certification is probably incomplete. 
 

SAMPLE CALCULATION:  Certifying a set with its field and operations as a vector space: 
 

 Show that the set of ordered 3-tuples of real numbers satisfies the requirements to be a 

vector space with respect to the scalar field, the real numbers.   
 

The game plan is to note that the vector space operations are defined in terms of 

parameters that are members of a scalar field.  The operations of addition and 

multiplication are defined in terms of the operations for that scalar field.  Scalar fields 

satisfy axioms similar to those that are to be established in order that the set of objects 

be certified as a vector space.  In fact, a scalar field is itself a one-dimensional vector 

space with one or two extra features.  For the case of a field, the multiplication is an 
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operation on two members of the same set instead of one from the vector set and one 

from a separate scalar set, and a multiplicative inverse exists as a member of the set for 

all elements in the set except for the additive identity (zero). 

Set the stage by reviewing the contestants and the rules: 
 

Members:           all ordered triplets ( ), ,i i i iV a b c= where , ,i i ia b c ∈ R 

Addition:           ( ), ,i j i j i j i jV V a a b b c c+ = + + +  

Multiplication:   ( ), ,i i i id V d a d b d c=  
 

A1: Closure under vector addition:    The real numbers are a field and hence have 

closure for addition.  For ia  and ja  real numbers, i ja a+  is also a real number. Thus 

( ), ,i j i j i ja a b b c c+ + +  is a triplet of real numbers and therefore a member of the set of all 

ordered triplets of real numbers.   
 

A2. The addition is associative.    The game plan is to use the properties of the field in 

each case to establish the analogous property for the set of elements be examined for 

certification as a vector space.  Let's not waste time.  The addition of the triplets is 

defined component-wise (position by position in the triplet). The components are real 

numbers and their addition is associative.  Therefore, the addition of the ordered triplets 

of real numbers is also associative.   
To receive full credit, a student should include the detail of the next few lines plus a few lines of prose 

justifying each step based on the properties of the scalar field. 
 

( ) ( ) ( ) ( )( ), ,i j k i j k i j kI J K I J K a a a b b b c c c+ + = + + = + + + + + +  

( ) ( ) ( ) ( )( ), , , ,i j k i j k i j k i j k i j k i j ka a a b b b c c c a a a b b b c c c= + + + + + + = + + + + + +  

( ) ( )I J K I J K= + + = + +  
 

A3. The addition is commutative. The addition of the triplets is defined component-

wise (position by position in the triplet). The components (coefficients in the linear 
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combinations) are real and their addition is commutative. Therefore, the addition of the 

ordered triplets of real numbers is also commutative. 
 

( ) ( ), , , ,i j i j i j j i j i j iI J a a b b c c a a b b c c J I+ = + + + = + + + = +  
 

A4. There is an additive identity (zero vector).   The number 0 is the unique additive 

identity (zero or null) for the real numbers.  The zero vector must be ( )0 0,0,0= .  As 0 

is the unique scalar additive identity (zero), the zero vector is unique. 
 

( ) ( )0 0, 0, 0 , ,i i i i i iI a b c a b c I I+ = + + + = = ∀ ∈V 
 

A5. There is an additive inverse for each vector.   If ia  is a real number, then its additive 

inverse ia−  is also a real number.  Hence for every ( ), ,i i ia b c  in the set, the ordered 

triplet ( ), ,i i ia b c− − −  is also in the set.  It is the additive inverse of ( ), ,i i ia b c . 
 

( ) ( ), , 0, 0, 0 0i i i i i iI I a a b b c c+ − = − − − = =  
 

M1. Closure: under multiplication by a real.  If ia ∈ R then id a ∈  R.  Thus 

( ), ,i i i id V d a d b d c=  is also a triplet of real numbers. 
 

SLOW DOWN: d ai ∈ R is true if d ai ∈ R. The field K must be the reals. Ordered 

triplets of real numbers are a vectors space over the real numbers. You should make the 

source fields for the components or coefficients match the field for the vector space 

multiplication.  You might be able to make a space of triplets of complex numbers over 

the real numbers, but it works better if the members of the multiplet are members of the 

same field as the scalar field used in the definition of scalar multiplication for the space. 
 

M2. Scalar multiplication is distributive across a sum of vectors.  The multiplication is 

defined component-wise and the multiplication of real numbers is distributive.  

Therefore multiplication is distributive across a sum of triplets of real numbers. 
 



1/8/2010 Physics Handout Series: Intro. Linear Vector Spaces      VS-23 

( ) ( ) ( ), , , ,i j i j i j j i j i j id I J d a a d b b d c c d a d a d b d b d c d c d I d J     + = + + + = + + + = +       
 

M3. Scalar multiplication is distributive across a scalar sum. The multiplication is 

defined component-wise and the multiplication of reals is distributive.  Therefore the 

multiplication by a sum is distributive. 
 

( ) [ ] [ ] [ ]( ) ( ), , , ,i i i i i i i i id e I d e a d e b d e c d a e a d b eb d c ec d I e I+ = + + + = + + + = +  
 

M4. Scalar multiplication is associative.  The multiplication is defined component-wise 

and the multiplication of real numbers is associative.  Therefore the multiplication of 

the triplets is associative. 
 

( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) ( ), , , ,i i i i i id e I d e a d e b d e c d e a d e b d e c d e I= = =  
 

M5. Multiplicative identity.  The real numbers have a scalar identity 1.  As 1 i ia a=  and 

the multiplication is defined component-wise, ( ) ( )1 , , , ,i i i i i ia b c a b c≡ , and thus 1 is the 

scalar multiplicative identity for the vector space of ordered triplets of real numbers. 
 

( ) [ ] [ ] [ ]( ) ( )1 1 , 1 , 1 , ,i i i i i iI a b c a b c I= = =  
 

A possible basis set for the triplets is: {(1,0,0); (0,1,0), (0,0,1)} :  

(ai, bi, ci) ≡ ai (1,0,0) + bi (0,1,0) + ci (0,0,1) 
 

Summary:  Proving that a set of elements is a vector space given its associated rule for 

addition, rule for multiplication and scalar field is tedious.  It is accomplished by 

assuming the validity of the axioms for the associated field K and invoking them 

repeatedly to establish the properties to qualify the set of elements with its operations as 

a vector space.  The set n-tuples and infinite-tuples of real or complex numbers are 

mathematical twins of (isomorphic to) the spaces (sets of interest) to be studied. Given 

that the n-tuples and infinite-tuples of real numbers or complex numbers are vector 

spaces, the spaces of interest are also fully qualified vector spaces. 
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The space of triplets was certified to be a vector space in this handout.  The proof was 

component-wise without reference to the number of components so the arguments are 

adequate to certify that n-tuple space is a vector space.  The space of a set of n 

dimensional vectors has addition and multiplication defined analogously to that for n-

tuple space so once the coefficient of each vector in the spanning set is identified with 

the scalar number at a position in the n-tuple.  Hence the span of any finite set of 

vectors is a vector space.    

 

****** PROOFS related to Basis, Dimension and Linear Independence  ****** 
 

Review of linear dependence: A set of vectors { }..., ,...iB , where the label I takes on 

several values, is linearly dependent if there exists a set of scalars { }..., ,...ic  such that not 

all the ic  are zero and 0i ic B =∑ . Suppose that c 4 ≠ 0. Then 4  can be represented as 

a sum of multiples of the other members of the set (or 4 0=  which is a sum of zero 

multiples of the other members of the set). That is 4  is linearly dependent on the other 

members of the set.  If a set of vectors is not linearly dependent, it is linearly 

independent. 
 

Beware the ZERO vector: Consider a set of N vectors { }..., ,...iV in which the mth 

member |Vm〉 is the zero vector 0 .  The following sum is zero, and it has one constant 

that is non-zero. Hence the set is linearly dependent.  

1 2 1 10 0 0 1 0 0 0m m m NV V V V V V− ++ + + + + + =

⇑

+ 

 

|Vm〉 is the zero vector 0 . 
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Trivial (but important) Result: Any set of vectors that includes the zero vector is 

linearly dependent. Begin each linear independence problem by addressing |0〉. 
 

The Replacement Lemma:  Suppose that { }1 2, ,..., mv v v  spans a vector space V. 

Given any non-zero w ∈   V, the vector w  can be substituted into the spanning set for 

one of the v 's (say iv ) and the resulting set { }1 2 1 1, , , , , , ,i i mw v v v v v− +   still 

spans the space V.   
 

As w ∈   V, it is in the span of  { }1 2, ,..., mv v v  which means that  

1 1 2 2 ... m mw c v c v c v= + + +  

and that at least one of the cj is not zero as w  is not the zero vector. Suppose that ci is 

not zero. Then  

1 2 1 1
1 11 21( ) ( ) ( ) ... ( ) ) ( )i i i m

i i m
i i i i i i

c cc c c
c c c c c cv w v v v v v− +

− += − − − − − −  

The vector w  can now replace iv  in the set without reducing the span. All the vectors 

in V are in the span of the original basis and have representations of the form 

1 1 2 2 ... i i m mu d v d v d v d v= + + + + + .  That same vector can be represented in terms 

of the once-replaced set as: 

1 1 2 2

1 2 1 1
1 11 21

...

( ) ( ) ( ) ... ( ) ) ( )i i i

m m

i i m
i i i i i i

c cc c c
c c c c c c

u d v d v

d w v v v v

d v
− +

− +

= + + +

 − − − − − − 
+ +

 

Clearly every vector that is contained in the span of the original set is also in the span 

of the once-replaced set.   
 

NOTE:  If the original set is a basis set, each vector in the set has some character or 

behavior that is not in any other member of the basis. If the vector w  is to replace a 

vector |vm〉, it must possess that particular character or behavior of the vector |vm〉 (in 
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addition to other characters embodied by other members of the basis) that is not present 

in the other members of the basis. (For a basis set, the coefficient ci in the expansion of 

w  will be non-zero only if w  possesses the character of iv .) A spanning set may 

have multiple copies of a given behavior as it may have more members than the 

minimum present in a basis set. 
 

The Replacement Lemma is important as it assures us that, if we are a little careful, 

we can replace a basis set with N members by another set of N vectors that can also be 

used as a basis. For 3D, we may switch from ˆˆ ˆ{ , , }i j k  to ˆ ˆˆ ˆ ˆ{ , , }i j k j k+ − , or just rotate your 

axes. In quantum mechanics, one could use the chemist’s {s, px, py, pz} set or the sp3 

hybridized set as a basis for the (angular) behavior of the electrons in a valence shell. 

The set {s, px, py, pz} has one non-directional state and the {px, py, pz} that are 

appropriate for bonds along the Cartesian axis directions. The sp3 hybridized set is 

better for the four tetrahedral bonding directions of a molecule like methane.  
 

Basis sets:  Earlier, a basis set was defined to be a spanning set from which no member 

could be removed without reducing the span.  An alternative definition is to say that a 

basis set is a spanning set consisting of linearly independent vectors.  The basis set is 

1 2{ , ,....., }nB B B . Assume that at least one vector can be removed from the set without 

reducing the span of the set.  Remove B


 for definiteness.  The vector B


 is a 

member of the space and so can be represented as a sum over the elements in a 

spanning set for the space.  Hence: 

1 1 11 1 n nB d B d B d B d B− +− += + + + + +
 

   

     or 

1 1 11 10 n nd B d B B d B d B− +− += + + − + + +
 

   

   

The final line directly contradicts the assertion that the original set is linearly 

independent.  

The assumption lead to a contradiction ⇒ the assumption is false. 
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A basis set is a linearly independent spanning set for a space, or equivalently a set from 

which no member can be removed without reducing the span. A basis contains the 

smallest number of vectors necessary to span the space. 
 

The Span of a Set is a Vector Space: Given any set of vectors 1 2{ , , , }NI I I , the 

collection of vectors of the form 1 1 2 2i i i Ni N iu k I k I k I for k= + + + ∈  K 

is a vector space with a binary addition defined as: 

( ) ( ) ( )1 1 1 2 2 2i j i j i j Ni Nj Nu u k k I k k I k k I+ = + + + + + +  

and scalar multiplication defined as: 

1 1 2 2i i i Ni Nc u c k I c k I c k I= + + +  

where c and the ki are elements of the associated scalar field K.  The proof of this claim 

is tedious and long - a perfect homework problem! 

 

Exercise: For the field of the real numbers R with members, a, b, c, d, ... consider the 

set of displacements of the form ˆˆ ˆ
i i i ir a i b j c k∆ = + +
  where addition is defined as 

( ) ( ) ( ) ˆˆ ˆ
i j i j i j i jr r a a i b b j c c k∆ + ∆ = + + + + +
   and multiplication is defined as 

ˆˆ ˆ
i i i id r d a i d b j d c k∆ = + +
 .  It is a three dimensional vector space. Identify the 

dimension of the vector space if the set of vectors is restricted such that (a.) the third 

component cn = 0 for all n, (b.)  the third component cn = 7 for all n and (c.) all the 

components are equal an = bn = cn for all n. 

 

The Component Representation 
 

Components of Vectors:  Given that a basis 1 2{ , ,....., }nB B B  has been chosen for a 

vector space V, every vector in than space can be represented as a linear combination of 

those basis vectors:  1 1 2 2 .....i i i in nV a B a B a B= + + + .  As a basis set is linearly 
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independent (and is a smallest spanning set), the coefficients or components aim are 

uniquely determined for each vector iV .   
 

Unique Expansion in terms of a Linearly Independent Set:  

Assume that there are two distinct linear combinations of the vectors in a basis set that 

represent the vector iV .  Say 1 1 2 2 .....i i i in nV a B a B a B= + + +  and 

1 1 2 2 .....i i in nd B d B d B= + + + .  Then,  

( ) ( ) ( )1 1 1 2 2 20 .....i i i i i i in in nV V a d B a d B a d B= − = − + − + + −  

As the linear combinations are to be distinct, not all the factors in parentheses are zero.  

But, if not all the those factors are zero, then there is a linear combination of the basis 

vector in which not all coefficients are zero that sums to 0 , a clear contradiction of 

linear independence. 

The assumption lead to a contradiction ⇒ the assumption is false. 

 Therefore each vector iV  has a unique set of expansion coefficients (components) 

given the basis 1 2{ , ,....., }nB B B .  It is expected that these coefficients would be 

different if a different basis were chosen. For a fixed basis set, each vector has a unique 

set of components. 
 

The representation of a vector as a linear combination of linearly 

independent vectors is unique. This result is incredibly important. In a 

problem, you will establish that a set of mutually orthogonal vectors (that 

does not contain the zero vector) is necessarily linearly independent. What 

do you conclude about representations of vectors as linearly combinations 

of the vectors in a mutually orthogonal set? 
 

How are the components of a vector computed?  It’s not clear!  Fortunately science 

and engineering applications primarily deal with inner product spaces.  The inner 
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product provides a tool to project out the values of the components for a given basis.  A 

trivial example is the identification of the x-component of a displacement. 

( ) ( )ˆˆ ˆ ˆ ˆ
x

r i r i x i y j z k x∆ = ⋅∆ = ⋅ ∆ + ∆ + ∆ = ∆
   

The x-component is extracted by computing the inner product of the x-basis vector with 

the displacement r∆
 .  The inner product gauges the degree to which two vectors share 

characteristic behaviors.  The procedure above gauges x-pointing displacement 

behavior in r∆
 .  There are a few complications that can be removed by constructing a 

basis set with members that have vanishing inner products with any other members of 

that basis. A vector pair with zero inner product is said to be orthogonal. Our mantra is: 

always choose an orthogonal basis set. Let's move onward and upward to the inner 

product. 
 

 

Inner Product Spaces: A space is an inner product space if there is a procedure that 

operates on any two vectors in the space to yield a scalar and if that procedure obeys 

the rules below.  The symbol 〈I|J〉 represents the inner product of |I〉  and |J〉. 〈I|J〉 = cij, 

the resulting scalar value. (The Bra-Ket combination represents the inner product.)    
 

The inner products that appear in science and engineering applications gauge the degree to which the two 

vectors share characteristic behaviors.  Do not dwell on such touchy-feely concepts as you master the 

mathematics of the abstract inner product.  Neither should you think in terms of the dot product of vectors 

as illustrated above.  Just lean back, relax and let your mind drift away from all practical reality. 
 

Formal Definition: INNER PRODUCT: An inner product is a procedure that inputs 

two vectors and outputs a scalar value and that satisfies the four axioms below.  When a 

process is proposed to be an inner product, it must be certified by identifying the 

process that inputs two vectors and yields a scalar, and by showing that the process 

satisfies the requirements of the axioms I1 through I4. 
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Inner product:  An operation on two vectors that yields a scalar:    imI M c=  
Properties of an inner product: 
I1. ( ) im inI M N I M I N c c+ = + = +                                    Distributive 

I2. ( )I d M d I M=  where d is any scalar.                            Scaling 

I3. *I M M I=   * means complex conjugate                       'Hermitian' 

I4. 0I I ≥  and 0I I =  if and only if 0I = .                         Can be a Norm 

 

Learn to express each axiom in prose form! 
 

FUZZY-SPEAK DEFINITION of INNER PRODUCT:  A process that acts on two 

entities in a set (vectors) that gauges the degree to which those entities share 

characteristic behavior. This fuzzy-speak form is not valid when prompted for the 

definition of an inner product. One must respond with the formal mathspeak. However, 

one should consider the action of each inner product encountered to determine the 

manner in which the inner product gauges the degree to which two entities share 

characteristic behavior. 
 

NORM: The inner product can be used to define the norm (‘length’) of a vector 

I I I I= = .  

ORTHOGONAL: Two vectors are orthogonal if their inner product is zero.  For our 

space of displacements in 3D, the inner product is just the familiar dot product, the 

product of the magnitudes of the vectors times the cosine of the angle between their 

directions.  

1 2 1 2 1 2 cosr r r r r r θ12∆ ∆ ∆ ∆∆ ∆ = ⋅ =      

or equivalently 

1 2 1 2 1 1 1 2 2 2

1 2 1 2 1 2

ˆ ˆˆ ˆ ˆ ˆ( ) ( )r r r r x i y j z k x i y j z k
x x y y z z

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ = ⋅ = + + ⋅ + +
= + +

   
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For our purposes, 1 2 1 2 1 2 cosr r r r r r θ12∆ ∆ ∆ ∆∆ ∆ = ⋅ =     defines the inner product of two 

displacements, and the equality of ∆r1 ∆r2cosθ12 and ∆x1∆x2 + ∆y1∆y2 + ∆z1∆z2 = is an 

example of a Parseval relation, a relation that computes the value of the defined inner 

product as the sum of the products of the corresponding expansion coefficients using 

an orthogonal basis set. Here that orthogonal set is: ˆˆ ˆ{ , , }i j k . 

The basis set for the 3D displacement example has been chosen to be orthogonal and 

unity normalized.  1 2 3
ˆˆ ˆ ˆ ˆ ˆ{ , , } { , , }i j k e e e⇔  

1 1 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1; 0;... ; .....i j ije e e e i i e e i jδ= = ⋅ = = ⋅ =  

 

Look for an equivalent component based procedure to evaluate the inner product for each inner product space 

that you study. 
 

The Daggert Operation:  

1.) The dagger operation converts a KET vector to its corresponding (conjugate) BRA 

vector.  That is: M M=t .   

2.) The dagger operation also converts a BRA vector to its corresponding (conjugate) 

KET vector. 

3.) If the dagger operation is performed twice, the original vector is recovered. 

M M M  = = 
tt t .                       M M M  =   =  

t tt  

4.) The dagger on a BRA-KET follows as ( )I M M I=t . The inner product of two 

vectors is a scalar and *I M M I=  so the dagger operation acting on a complex (or 

real) scalar returns the complex conjugate of that scalar; (d )† = d*. 

5.) Dagger operation on multiplying constants: (d |M〉 )† = |d M〉† = 〈d M| = d* 〈M|.  
 

NOTE: Dagger should appear as 
†

 but font wars are leading to †  and even to a superscript t (t). 

Computers are simplifying our lives!   ⇒  Read 
†

 and †  as 
†

. 
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The details follow from the requirement that the BRA-KET combination follows the 

rules for the chosen inner product.  Properties (I2) and (I3) of the inner product provide 

additional information about the action of the dagger operation.  
 

I2. ( )I d M d I M=  where d is any scalar.                            Scaling 

I3. *I M M I=   asterisk means complex conjugate            'Hermitian' 

( )** * **I d M d I M d I M d M I= ==  

and * *I d M dM I I d M d M I= = =t  

The conclusion is that: *d M d M=t . 

This statement is consistent with the dagger operation returning the complex conjugates of scalars. Complex 

conjugation and the dagger operation are distinct operations that can be used to interchange BRAs and KETs. 
 

*** Important  Exercise:  Follow the rules above and apply the properties of the inner 

product to show that:  B A B A B B
A A

B B B B
 

− = − 
 

†

 .   B A  is a complex scalar.  

 

Digression: Why is B A B
C A

B B
= −  important? First consider the analogous 

expression in a more familiar setting. ( ) ˆ ˆ( )
( )
B A BC A A B A B
B B
⋅

= − = − ⋅
⋅

 

   

  . Start with A


 and 

compute the component of A


 in the direction of B


 which is ˆ ˆ( )B A B⋅


. The vector C


 is 

what remains of A


 after the part parallel to B


 has been removed. What can be said 

about C


 and B


? What can be said about their directions?  
 

In the abstract setting, it follows that |C〉 is what remains of |A〉 after its behavior |B〉 

behavior has been removed. That is: Start with |A〉; remove all the |B〉  behavior in |A〉; 

the remainder |C〉 is orthogonal to |B〉 as it has no |B〉 behavior. 
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Exercise: Consider the set of all objects of the form ˆ ˆv a i b j= +  where a and b are any 

real numbers.  This collection is a linear vector space.  Propose the inner product: 

( ) ( )1 2 1 2 1 2 1 2v v v v a a b b= ⋅ = +
    .  Demonstrate that this proposed inner product meets the 

requirements that it input two vectors and outputs a scalar value and that the process 

satisfies axioms I1 t I4. 
 

If a and b are complex numbers rather than real, the inner product must be modified to 

be: ( ) ( )* *
1 2 1 2 1 2v v a a b b= +
  .  Consider the vectors ( ) ( )1 2 1ˆ ˆiv i j= +  and ( ) ( )2 2 1ˆ ˆv i j= + .  

Identify the properties of the inner product that would not be met without this change to 

the definition. 
 

Matrix notation can be used to represent vectors in terms of their components. With this 

approach, the vectors and operations in the exercise above become: 

2 21 2
1 1 1 2 2 2

1 2

2 2 1
2 1 2 1 2 1 2 2

1

ˆ ˆ ; ; ;
a ba a

v a i b j v v v
b b

a b a
v v v v a a b b

b

∗ ∗

∗ ∗
∗ ∗

      = + → → = →   
   

    ⋅ = → = + 
 

 

†

 

In this matrix picture, the dagger operation has a concrete representation as the 

transpose operation coupled with complex conjugation. The inner product is just the 

matrix multiplication of the row (bra) and column (ket) representations of the vectors. 
 

SAMPLE CALCULATION: Certifying a candidate for an inner product 

Mathematical vectors can many things; they can be functions like f(t). A definition for 

the inner product of two functions that are periodic with period T is used in to develop 

Fourier series expansions. ( ) ( )/2

/2

*1 ( ) ( )T

TTg f g t f t dt
−

= ∫    No attempt is to be made to 

relate this operation to a vector space at this time, but it will be tested to see if it can be 

certified as a possible inner product definition. 
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I0. The procedure acts on two vectors (functions), and it yields a scalar value 

( ) ( )/ 2

/ 2

*1 ( ) ( )
T

TT
g t f t dt

−∫  as required. The first inner product requirement is satisfied. 

 

I1. ( )g f h g f h g f g h+ = + = +  ? 

( ) ( ) [ ]

( ) ( ) [ ] ( ) ( ) [ ]

/2
*

/2
/2 /2

* *

/2 /2

( ) ( )

( ) ( )

1 ( )

1 1( ) ( )

T

T
T T

T T

f t h t

f t h t g f g h

g f h g t dtT

g t dt g t dtT T

−

− −

++ =

= + = +

∫

∫ ∫
 

I2. ( )g d f d g f=  ? 

( ) ( ) ( ) [ ]

( ) ( ) [ ]

/2
*

/2
/2

*

/2

( )

( )

1 ( )

1 ( )

T

T
T

T

g d f d f t

f t g f

g d f g t dtT

d g t dt dT

−

−

= =

= =

∫

∫
 

I3. *I M M I=  ? 

( ) ( ) [ ] ( ) ( )( ) [ ]

( ) [ ] ( ) [ ]

*
* ** ** *

* *

/2 /2
*

/2 /2

/2 /2

/2 /2

( ) ( ) ( )

( ) ( )

1 1( )

1 1( ) ( )

T T

T T

T T

T T

f t g t f t

f t f t f g

g f g t dt dtT T

g t dt g t dtT T

− −

− −

   
   
      

   
   
      

= =

= = =

∫ ∫

∫ ∫
 

Facts used:  The complex conjugate of a real is just that same real.  The complex 

conjugate of the complex conjugate of any complex number is that same number. 
 

I4. 0I I ≥  and 0I I =  if and only if 0I =   ? 

( ) ( ) [ ] ( ) 2
/2 /2

*

/2 /2
( ) ( )1 1( ) 0

T T

T T
f t f tf f f t dt dtT T

− −

= = ≥∫ ∫  

and f f =0  only if 2( )f t = 0 for all t or only if f(t) is the zero  function. 
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Fact used:  The product of a complex number and its complex conjugate is a real 

positive ( 0≥  ) number. ( z∀ ∈ C), * 0z z ≥ ;  * 0z z =   only if 0z = . Mathematicians would 

say 2( )f t = 0 except for at a set of points of measure zero. 
 

Conclusion:  The proposed integral definition satisfies the requirements to be an inner 

product.  It’s a valid candidate.  Perhaps a use can be found for it. 
 

How are components of vectors computed? 

The task under consideration is to find the components of a vector once a particular 

basis has been chosen for the space V.  The inner product is to be used, and the initial 

result is to be horrifying.  Don’t panic.  A simpler solution is to be presented later.  
 

Initial assumption: A basis for the space has been chosen. The components are the 

components for a representation of the space as the span of that basis. If the basis is 

changed, the components change. 

 

Note that the components of the 

vector v in the x-y system are 

different from those in the x-y 

system. The vector itself is the 

same; the components and basis 

vectors are different. 

ˆ ˆvx x vy yv a e a e= +  

ˆ ˆv vv a e a e= = +

x x y y  

Computing vector components given a particular basis. Beginning with the 

representation of a general vector: 1 1 2 2 ...i i i in nV a B a B a B= + + + , a set of n (same as 

the dimension) equations is generated by taking the inner product of each basis vector 

with the iV  in succession. 
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1 1 1 1 2 1 2 1...i i i in nB V a B B a B B a B B= + + +  

2 1 2 1 2 2 2 2...i i i in nB V a B B a B B a B B= + + +  

…… 

1 1 2 2 ...n i i n i n in n nB V a B B a B B a B B= + + +  

These n equations in n unknowns can be written in matrix form. 

1 1 1 2 1 1 1

2 1 2 2 2 2 2

1 2

...

...
... ... ... ... ... ...

...

n i i

n i i

n n n n in n i

B B B B B B a B V
B B B B B B a B V

B B B B B B a B V

    
    
     =
    
    
       

 

A form that is horrifying until the inner products are identified as just scalars. Cramer's 

rule or row reduction techniques can be used to complete the calculation of the 

components.   

Trivial Example: 1 2 1 2
ˆ ˆ ˆ ˆ ˆ4 3 ; ;V i j B i B i j V B Bα β= + = = + ⇒ = +  

1 1 1 1 2

2 2 1 2 2

4 1 1

7 1 2

B V B B B B

B V B B B B

α β α β

α β α β

= + = +

= + = +
 

Using Cramer’s rule:        

4 1 1 4
7 2 1 7

1 3
1 1 1 1
1 2 1 2

α β= = = =  

Hence, we find: ˆ ˆ ˆ ˆ ˆ4 3 (1) 3( )i j i i j+ = + + . The expansion coefficients in terms of a linearly 

independent set are unique as proven previously. 
 

The problem would be much simpler if the inner products of one basis vector with any 

other member of the basis set were zero.  

i j i i ij i ijB B B B Nδ δ= =  

As the inner product gauges the degree to which the vectors share a common behavior 

or character, the goal is to choose a set of vectors as the basis in which each vector adds 

its unique new behavior (dimension) to the set, but which does not share the behavior 
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of any other member of the set.  If each vector adds at least some behavior not found in 

any of the others, then it is linearly independent of the others.  If its inner product with 

another vector is zero, it is said to be orthogonal to the other vector.  If all the vectors 

in a set are mutually orthogonal, then the basis set is said to be an orthogonal basis.  

Enough talk.  What benefit is reaped if an orthogonal basis is chosen?  The equations 

for the components become: 

1 1 1 1

2 2 2 2

0 ... 0
0 ... 0
... ... ... ... ... ...
0 0 ...

i i

i i

n n in n i

B B a B V
B B a B V

B B a B V

    
    
     =
    
    
       

 

These equations are easily solved to yield the component calculator for expansions 

1 1 2 2 ...i i i in nV a B a B a B= + + +  in terms of an orthogonal basis 1 2{ , ,... , }nB B B .    
 

 component calculator 
(requires orthogonal basis) 

m i

m m
im

B V
B B

a =         

The moral is that one should work hard to find and use orthogonal basis sets. 
 

Trivial Example: 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ4 3 ; ;V i j b i j b i j V b bγ δ= + = + = − ⇒ = +  

Checking the orthogonality: 2 1
ˆ ˆ ˆ ˆ( ) ( ) 0b b i j i j= − ⋅ + = . It checks. 

Using the component calculator,     1 2

1 1 2 2

7 1
2 2

b V b V
b b b b

γ δ= == = . 

Hence, we find: 7 1
2 2ˆ ˆ ˆ ˆ ˆ ˆ4 3 ( ) ( ) ( ) ( )i j i j i j+ = + + − . The expansion coefficients in terms of a 

linearly independent set are unique as proven previously. 
 

Sample component calculation: 

The set of all Fourier series with coefficients any real number form a vector space. 

( )0
1 1

( ) 1 cos sinn pf f fn fp
n p

FS f t c a t b tω ω
∞ ∞

= =

     = = + +∑ ∑  

 

The inner product: ( ) ( )
/ 2 *

/ 2
1 ( ) ( )

T

TTg f g t f t dt
−

= ∫ .  The coefficient afm is conjugate to the 
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basis function |Bm〉 = cos(ωmt).  Substituting into the component calculator*: 

( ) [ ]( )

( ) [ ]( ) [ ]
( ) [ ]( )

( )
( ) [ ]( )

/ 2 /2* *

/2 /2

/2 *

/2

/2 *

/2

1

1

1cos ( ) cos ( )

1cos cos 2

2 cos ( ) The result presented in standard texts.

T T

m mT T

T

m mT

m

m m

T

mT

fm

fm

T

T

t f t dt t f t dtT

t t dt

B f
B B

t f t dtT

a

a

ω ω

ω ω

ω

− −

−

−
=

= == ∫ ∫
∫

∫

 

As cosine is a real-valued function, ( ) ( )*
cos cost tω ω=   .  The average value of cosine 

squared is ½.  The result above is the standard result for Fourier trig series. 

*The expansion set {1;{ … , [ ]cos mtω , … };{ … ,sin ptω   , … }} is mutually 

orthogonal. This property is proven in the Fourier series handout. 
 

How can an orthogonal basis be developed from just any basis? 

The inner product may be used to reduce a spanning set or a basis set to a basis set of 

mutually orthogonal vectors satisfying a normalization condition that is also a spanning 

set for the same space. Starting with a spanning set, { }1 2 3, , ,...B B B , take the first 

member of the set and apply a normalization (scaling) procedure.  The result is 1b .  [A 

normalization procedure scales a vector (multiplies it by a scalar constant).  Hence 

1 1b k B=  for some ( )0k ≠ ∈ K.  A possible, but perhaps not very practical, 

normalization rule would be to set 1 1 1b b = , 2 2 2b b = ,   …., n nb b n= .]  (The most 

convenient choice is: 1i ib b i= ∀ . Unfortunately, this choice is not universal as 

illustrated by Fourier series and Legendre polynomials.) 
 

The next member of the new basis is formed by removing the component of 2B  along  

1b  before normalizing.   For the remaining vectors, components along all the 

previously normalized basis vectors are subtracted before the new member is 

normalized. This procedure is the Gram-Schmidt orthogonalization procedure. 
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2 2
1 2 1

1 1

b B b

b b
E B= − ; then normalize 2 2E b→  

First remove the part of 2B  that is dependent on 1b  by subtracting the component of 

2B  along 1b . Then apply the normalization procedure. Continue to generate the rest 

of the basis set.  For each new candidate member, remove all components of that 

candidate along previously added members.  Note that it is the projections with the 

previously orthogonalized ib  that are removed from the subsequent B 's.   

3 3
1 3 1 2 3 2

1 1 2 2

b B b b B b

b b b b
E B= − − ; then normalize 3 3E b→  

Every ib  is orthogonal to every other ib  so that removing j k j

j j

b B b

b b
 the 

component along a particular jb  from the next kB  does not remove any part of 

its component along any other ib .  That is: j k j

j j

b B b

b b
 is orthogonal to every 

other ib  in the set of basis vectors that has been constructed. 

;i j i
j j

i j i i

b B b
E B

b b<

= − ∑  then normalize j jE b→  

If kB  is not linearly independent of the previously added vectors, then kE  will 

vanish. The dimension N of the space is the number of vectors in the final Gram-

Schmidt set { }1 2 3, , ,..., Nb b b b . (All zero vectors are discarded.) 

 

Note: The Gram-Schmidt method applied to our standard 3D problems produced an 

orthonormal basis that may not obey the right-hand rule. Multiply the last vector in a 

three dimensional set by -1 if necessary to bring the set into right hand rule order. 
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Exercise:  Show that 1 2 0b E =  and hence 1 2 0b b = . 
 

Exercise: Show that 3 1 0b b =   and 3 2 0b b = .  Recall that 3 1 1 3
*b b b b=  

 

Exercise: A not uncommon error distorts the Gram-Schmidt (G-S) method by removing 

behaviors of the previous vectors |Bi〉 in stead of behaviors of the vectors previously 

added to the new G-S basis set that have been made orthogonal. That is the faulty 

procedure:  

 i j i
j j

i j i i

B B B
E B

B B<

= − ∑ ; then normalize 

was used rather than the correct procedure: 

;i j i
j j

i j i i

b B b
E B

b b<

= − ∑  then normalize j jE b→  

Compare the results using the two procedures for the initial set ˆˆ ˆ ˆ ˆ{ , , }i i j j k+ + . The 

distorted method removes all the components along each of the |Bi〉. The correct 

procedure removes all the x pointing behavior from |B2〉 before adding the remaining 

independent pointing behavior (|b2〉 = ĵ ) to the G-S set. In the next step, the first 

subtraction removes all the x pointing behavior from |B3〉. The next subtraction using  

 |b2〉 = ĵ  only removes behavior that was not removed in the first subtraction. 

Incorrectly using |b2〉 would removed the ĵ  behavior, but it would also remove more x 

pointing behavior from |B3〉. As a result, the incorrect third vector actually has a 

negative x component rather than being orthogonal to the x direction. 

Correct method answer: ˆˆ ˆ{ , , }i j k           Incorrect method result: ˆˆ ˆ 2
6

ˆ ˆ{ , , }i j ki j − + +  

USE the previously added G-S vectors, not the members of the original set. 
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A common, but not universal, normalization is to divide a vector by its norm. The result 

is that the vectors in the basis will all be normalized to have length one (unity).  This 

choice is so common that the term normalized without modifiers is usually assumed to 

mean the unity normalization just discussed. We will use ei rather than bi when we 

wish to indicate unity normalization. 

1
1

1 1

B
e

B B
=                            2 2 1 2 1E B e B e= − ; then 2

2
2 2

E
e

E E
= . 

j j i j j
i j

E B e B e
<

= −∑ ; then j
j

j j

E
e

E E
= . 

SAMPLE CALCULATION: A Gram-Schmidt basis construction: 

Start with the spanning set S = { }1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2 2 , 4 3 3 ,B i j k B i j k B j k= + − = + − = − +

  

. Pick the 

first member of the set and normalize it.  Unity normalization is to be adopted. 

( ) ( )1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2 2 2ˆ
12 3ˆ ˆˆ ˆ ˆ ˆ2 2 2 2 2 2

i j k i j k i j ke
i j k i j k

+ − + − + −
= = =

+ − ⋅ + −
 

Next, the component of 2B


 along  1̂e  is to be subtracted from 2B


, and the  result 

normalized.    ( ) ( ) ( )2 2 1 2 1

ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆˆ ˆ 4 3 3 4 3 3
3 3

i j k i j kE B e B e i j k i j k
  + − + −

= − ⋅ = + − − ⋅ + −      

  

 

( ) ( ) ( )2 2 1 2 1
10 2 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ 4 3 3
3 3 3 3

E B e B e i j k i j k i j k = − ⋅ = + − − + − = − +  

  

 or  2

ˆˆ ˆ2ˆ
6

i j ke − +
=  

Finally, the components of 3B


 along  1̂e  and 2ê  are to be subtracted from 3B


, and the  

result normalized.  

( ) ( )

( ) ( ) ( )
3 3 1 3 1 2 3 2ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2ˆ ˆ ˆˆ ˆ ˆ
3 3 6 6

E B e B e e B e

i j k i j k i j k i j kj k j k j k

= − ⋅ − ⋅ =

          + − + − − + − +
− + − ⋅ − + − ⋅ − +                              

   
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( ) ( ) ( )3
2 2 2 4 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 1 0

3 6 3 6 3 6 3 6
E j k i j k i j k i j k− −         = − + − + − − − + = − + − + − + − − =                  



 

The last member of the set does not survive the Gram-Schmidt procedure, and the set of 

orthogonal and normalized vectors which span the same space contains only two 

members.  Therefore, the spanned space has two dimensions. 

S = 1 2

ˆ ˆˆ ˆ ˆ ˆ2ˆ ˆ,
3 6

i j k i j ke e
 + − − + = = 
  

 

 

Exercise: Consider the spanning set { }ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 , 2 2 2 ,2 2i j k i j k i j k+ + − + + + .  Apply the  

Gram-Schmidt procedure to find an orthonormal (orthogonal and unity normalized) 

basis.  What is the dimension of the space spanned by this basis set? 
 

Exercise: A set has members of the form  1 2 3i i iI a e b e c e= + +   where the constants 

ai, bi, and ci are arbitrary real constants, the components of the vector.  Addition is 

defined by the relation: ( ) ( ) ( )1 2 3i j i j i jI J a a e b b e c c e+ = + + + + +  and multiplication 

by ( ) ( ) ( )1 2 3i i id I d a e d b e d c e= + +  

a.) Show that this set satisfies the requirements to be a vector space. Assume and use 

the properties of scalar addition and multiplication (associative, etc.). 

b.)  The basis vectors ie  have the following inner products i j ije e δ=  as they are 

orthogonal and normalized.  Find an expression for J I  where 1 2 3i i iI a e b e c e= + +  

and 1 2 3j j jJ a e b e c e= + + . Note * * *
1 2 3j j jJ a e b e c e= + +   for a complex vector 

space. See property I3 of the inner product. 

c.) Find the component of J  along 2e .   What is a component? 
 

Mega-Exercise: Given any two vectors in an inner product space A  and B , prove 

the Schwarz Inequality: A B A B≤ .    Use the vector 1
A B B B A B

−
−     and 
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the properties of an inner product. 
 

Mega-Exercise: Use the Schwarz Inequality: A B A B≤   to establish the triangle 

inequality:    The magnitude of the sum of two vectors is between the magnitude of the 

difference of the magnitudes of the two vectors and their sum.       
A B A B A B+− ≤ ≤ +    Begin with the expressions 

2
2A B A A A B B B+ = + +  and 2

A B− . 
 

The triangle inequality is that A B A B A B− ≤ + ≤ +
    

 

stating that the length of the third side of a triangle is 

bounded by the magnitude of the difference and of the 

sum of the magnitudes of the other two sides. 

 

θ 

 
2 2 2 2 cosC A B A B θ= + +     and   2 22 2 2 cosA B A B A B A Bθ− ≤ + + ≤ +  

 

The Schwarz inequality states that the magnitude of the inner product of two vectors is 

less than or equal to the product of the magnitudes (norms) of the two vectors.  In the 

familiar inner product case, the dot product, cosA B A B A Bθ⋅ = ≤
    

.   Clearly it 

works.  The point is that the result holds for all inner product spaces.   
 

Scale-Free Gauge of Common Behavior: From the Schwarz inequality, it follows 

that: 1
A B

A B
≤ . This scale-free combination is to be called the Schwarz measure of 

shared behavior in this series of handouts. 
 

Exercise: Find an expression for the Schwarz measure for two of our standard vectors 

based on the relation: cos ABA B A B A Bθ⋅ = ≤
    

. The Schwarz measure gauges the 

degree to which the two vectors point in the same direction independent of their 
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magnitudes. 

Representations: Our vector space notation is abstract; representations lower the 

degree of the abstraction. Consider the inner product. An integral representation for the 

inner product is used in introductory quantum mechanics is: [ ( )]* ( )x x dxψ φ ψ φ
∞

−∞
= ∫ . 

A robust inner product representation provides the instructions required to actually 

compute the scalar value of the inner product. 

Exercise: Show that the inner product definition [ ( )]* ( )x x dxψ φ ψ φ
∞

−∞
= ∫  satisfies the 

four axioms for inner products. 
 

Matrix Representation of a Linear Vector Space: Matrices may be used as a 

convenient representation of vectors and vector operations. It begins by specifying a 

basis set for the vector space and determining the expansion coefficients for the vectors 

using this basis. A vector is represented by the column vector of its coefficients.   

   Most of our examples are for three dimensions, but they could be for N dimensions.  

Basis:  Orthogonal and Unity Normalized: 

Consider the vector: 1 2 3i i i iV a e b e c e= + + . The coefficients: ai, bi,ci  are often 

called components.  So, for example, the 1e  component of iV  can be projected out 

using the inner product. 

1 1 1 1 2 1 3i i i i ie V e e e e e ea b c a== + +    after using   i j ije e δ=  

Once a specific set of basis vectors has been chosen that is orthogonal and unity 

normalized ( i j ije e δ= ), any vector can be represented by a column matrix of its 

components. The vector is the linear combination of the basis vectors using those 

components and the basis is to remain the specified set with no changes. 

i

i i

i

a
V b

c

 
 
 
  

→         and     * * *
j j j j jV V a b c =  →

†  
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Dagger  ⇒ Complex conjugate of the transpose 

The actual vector is 1 2 3ˆ ˆ ˆi i i ie e eV a b c+ += , but the basis vectors need not 

be displayed as long as that set is specified and understood and immutable. 
 

A robust representation is capable of supporting all the rules obeyed by the vectors. 

Addition is the standard matrix addition. Scalar multiplication is the standard scalar 

multiplication for matrices. The DAGGER Operation (converting Kets to Bras and 

vice versa) is the complex conjugation of the transpose. Finally, the inner product is 

realized as matrix multiplication of the bra and ket. 

* * *

* * *
i

j i i j j j i

i

j j j

i iV V

a b c a
b a a b b c c
c

 
  
 
 
  

= = + +

 

Inner Product  ⇒ Matrix Product 
 

Basis:  Orthogonal and normalized (not unity normalized) 

A basis expansion set is chosen to be three orthogonal vectors that are not unity 

normalized.     1 2 31 2 3i i i iV c b c b c b= + +    where i j j ijb b N δ=  

As above, 
1

2

3

i

i i

i

c
V c

c

 
 
 
  

→       and     * * *
1 2 3j j j jV c c c  → but the inner product is rather 

more complicated:                                         (the matrix in the middle is the metric)  

1 1
* * *

2 2 1 1 2 2 3 3

3 3

21 3

* * *
1 2 3 0 0

0 0
0 0

i

j i i j j j

i

i

j j j

i i

N
V V N

N

c c c c
c c c N c c N c c N
c

 
    
   
   
      

= = + +  

 

Basis:  Just linearly independent (not orthogonal or unity normalized) 

A basis expansion set is chosen to be three vectors {s1, s2, s3} which are neither 

orthogonal nor unity normalized.  (the metric now has off diagonal elements) 
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1 2 31 2 3i i i iV c s c s c s= + +     

Recalling 

1 1 1 1 2 1 1

2 2 1 2 2 2 2

1 2

...

...
... ... ... ... ... ...

...

i n i

i n i

n i n n n n in

B V B B B B B B a
B V B B B B B B a

B V B B B B B B a

     
     
     =
     
     
        

 

Then where i j ijs s n=  

1 1 1 1 2 1 1

2 2 1 2 2 2 2

1 2

...

...
... ... ... ... ... ...

...

i n i

i n i

n i n n n n in

s V s s s s s s a
s V s s s s s s a

s V s s s s s s a

     
     
     =
     
     
        

 

As above,  

1

2

3

i

i i

i

c
V c

c

 
 
 
  

→       and     * * *
1 2 3j j j jV c c c  →  

A vector has a unique expansion in terms of any linearly independent set. Basis sets are 

linearly independent. The values for (c1i, c2i, c3i ) for a vector are unique for a given 

basis set. 

The inner product is much more complicated:     Define: i jijn s s=  

11 21 31 1 3
*

21 22 23 2
, 1

31 32 33 3

* * *
1 2 3 i

j i i j m mi
i j

i

j j j n n n
V V n n n c

n n n

c c c c
c n c
c =

 
    
   
   
      

= = ∑
 

 

The moral is to work hard when you build your basis.  Make sure that it is orthogonal 

and unity normalized. At the very least, make sure that the basis is orthogonal.   
 

The expansion basis for Fourier series is orthogonal, but not unity normalized. 

[ ] [ ] [ ] [ ] [ ] [ ]
2 2 2

2 2 2

1 1 1
1 1 1; 1 sin 0; 1 cos 0

T T T

m m

T T T

dt t dt t dt
T T T

ω ω
− − −

= = =∫ ∫ ∫  
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[ ] [ ] [ ] [ ] [ ] [ ]
2 2 2

2 2 2

1 1 1
sin cos 0; sin sin ; cos cos½ ½

T T T

p m p m pm p m pm

T T T

t t dt t t dt t t dt
T T T

ω ω ω ω δ ω ω δ
− − −

= = =∫ ∫ ∫  

The sines and cosines are normalized to an inner product value of ½. 
 

A Gram-Schmidt Sample Calculation for a Function Space: 

A space of polynomials is defined with domain the interval [-1,1]. The inner product for 

functions on that interval is defined to be:  
1

1
( ) ( )g f g x f x dx

−
= ∫  

A possible basis set for the space is { 1, x, x2, x3, … , xn, … }.  Choose 1 1B =  and then 

work upward power by power.  Use the Gram-Schmidt process to develop an 

orthogonal set of vectors (polynomials). Apply the standard arbitrary normalization 

condition the Pn(1) = 1  to set the overall scaling (normalization of the polynomials.  

Mathematica:  LegendreP[2,x] = 231
2 2 x− + ;  LegendreP[3,x] = 33 5

2 2x x− + . 

 

BASIS VECTOR 1: Just take 1 1B =  as the first vector to be added to the orthogonal set 

and apply the arbitrary normalization condition the P1(1) = 1. 1 1B =  is the constant 1 

so it is already normalized ⇒ 1 0 ( ) 1b P x= = . 

BASIS VECTOR 2: Start with 2B x=  and remove the 1-behavior from it. 

1

11 2
2 1

1 1
1

1
0(1) (1)
2

(1)( )

(1)(1)

b B
B x x x

b b

x dx
b

dx
−

−

− = − = − =
∫
∫

 

We note that x evaluated for x = 1 is 1 so the normalization condition is already met. 

2 1( )b P x x= =  

BASIS VECTOR 3: Start with 2
3B x=  and remove the Po-behavior and P1-behavior. 
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1 12 2

1 11 3 2 3 2 2
3 1 2 1 1

1 1 2 2
1 1

1
3

(1)( ) ( )( )
(1) ( )

(1)(1) ( )( )

x dx x x dxb B b B
B b b x x x

b b b b dx x x dx
− −

− −

− − = − − = −
∫ ∫
∫ ∫

 

This polynomial is not 1 for x = 1.    ⇒ Scale it to get the desired normalization. 

a (x2 – 1/3) = P2(x)  so P2(1) = a (2/3) = 1 or a = 3/2 

With scaling, the final form is 2
3 2

3 1
2 2( )b P x x= = − . 

BASIS VECTOR 4: Start with 3
4B x=  and remove the Po, P1 and P2 behaviors.   

1 4 2 4 3 4
4 1 2 3

1 1 2 2 3 3

1 1 13 3 3

1 1 13
1 1 1

1 1 1

3 1
2 2

3 1
2 2

3 31 1
2 2 2 2

(1)( ) ( )( ) ( )( )
(1) ( ) ( )

(1)(1) ( )( ) ( )( )

b B b B b B
B b b b

b b b b b b

x dx x x dx x x dx
x x x

dx x x dx x x dx
− − −

− − −

− − −

−
= − − − −

− −

∫ ∫ ∫
∫ ∫ ∫

 

3 3
1 1

1 1

3 31
52 2

3 31 1
2 2 2 2

2
5

2
3

0 0(1) ( ) ( )
(1)(1) ( )( )

x x x x x
dx x x dx

− −

= − − − − = −
− −∫ ∫

 

This polynomial is not 1 for x = 1. Scale it to get the desired normalization. 

a (x3 – 3/5 x) = P3(x)  so P3(1) = a (2/5) = 1 or a = 5/2 

With scaling, the final form is 3
4 3

5 3
2 2( )b P x x x= = − . 

The general result is that the (n + 1)th vector is the nth order Legendre polynomial. 
 

Hermite Polynomials: A space of polynomials is defined with domain the interval  

[-∞,∞]. The inner product for functions on that interval is defined to be:  
2( ) ( ) xg f g x f x e dx

∞ −

−∞
= ∫          Note the weight function: 2xe−  

A possible basis set for the space is { 1, x, x2, x3, … , xn, … }. Choose 1 1B =  and then 

work upward power by power.  Use the Gram-Schmidt process to develop an 

orthogonal set of vectors (polynomials). The resulting polynomials are the Hermite 

polynomials that use yet another weird normalization. The nth order polynomial is 

scaled such that the lead term is  2n xn. ⇒ Multiply the Gram-Schmidt result by 
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whatever factor is necessary to yield the desired highest order term.  

From Mathematica:   HermiteH[2,x] = 4x2 - 2;  HermiteH[3,x] = 8x3 – 12x.   

( )( ) ( )22 31 1
2 2 2...n x n nx e dx π

∞

−∞

− = − −∫ .  The integral vanishes for odd powers of x. 

Warmup Exercises: 

VSWUP1. Memorize the next two sentences. A vector space is a set of elements with 

two defined operations. The set of elements must have an associated rule to decide 

whether or not a particular element is a member of that set. What are the required 

defined operations? Give the vector space axioms that each operation must obey. 

Provide an equation representation and a prose statement for each axiom. 
 

VSWUP2. Give the definition of linear dependence of a set of vectors. Use the 

definition to class and to justify the classification of the following sets as linearly 

independent or as linearly dependent.{ }ˆˆ ˆ ˆ, ,3i j i k+ , { }ˆ ˆ ˆ ˆ, ,3i j i j− , { }ˆ ˆ ˆ,i j i j− +  and 

{ }ˆˆ ˆ ˆ ˆ ˆ, ,3 3i j i j i j k− + − + . 

VSWUP3. Develop the Gram-Schmidt basis sets from:{ }ˆˆ ˆ ˆ, ,3i j i k+ , { }ˆ ˆ ˆ ˆ, ,3i j i j− ,  and 

{ }ˆˆ ˆ ˆ ˆ ˆ, ,3 3i j i j i j k− + − +  working with each vector in the order that it appears. Give the 

dimension of the space spanned in each case. 

VSWUP4. Show that the collection of elements of the form 1 1 1 1
ˆˆ ˆv a i b j c k= + +  where 

ai, bi and ci can be any real number is a vector space if addition is defined as: 

1 2 1 2 1 2 1 2
ˆˆ ˆ( ) ( ) ( )v v a a i b b j c c k+ = + + + + +  and scalar multiplication is defined as: 

1 1 1 1
ˆˆ ˆd v d a i d b j d c k= + +  where d is any real number. 

VSWUP5. State the axioms for an inner product. Show that an inner product defined as 

x x y y z zA B A B A B A B= + +  satisfies those axioms for the space of vectors of the form 

ˆˆ ˆ
x y zA i A j A k+ +  where Ax, Ay, and Az can be any real number. Use: 



1/8/2010 Physics Handout Series: Intro. Linear Vector Spaces      VS-50 

( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )x y z x y z x x y y z zA B A i A j A k B i B j B k A B i A B j A B k+ = + + + + + = + + + + +
 

 

( )ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )x y z x y zd B d B i B j B k d B i d B j d B k= + + = + +


 

ˆ ˆi j i j ije e e e δ= ⋅ =  where 1 2 3
ˆˆ ˆ ˆ ˆ ˆ{ , , } { , , }i j k e e e⇔ . 

VSWUP6. Define: span, spanning set and basis. Contrast basis and spanning set. What 

is the dimension of a vector space?  
 

VSWUP7. Consider a finite dimensional vector space. Prove that any set of elements of 

that vector space that includes the zero vector is linearly dependent. 
 

VSWUP8. A vector has the representation ˆ ˆ
x yA A i A j= +



 in an original coordinate 

system. A rotated coordinate system rotated by θ in the CCW sense has axis directions 

î′  and ĵ′ . In that system, ˆ ˆ
x yA A i A j′ ′ ′ ′= +



. We conclude that:  

ˆ ˆ ˆ ˆ
x y x yA A i A j A i A j′ ′ ′ ′= + = +



 

a.) Prepare a drawing and evaluate: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , andi i i j j i j j′ ′ ′ ′⋅ ⋅ ⋅ ⋅ . 

b.) The inner product of which pair of vectors provides information about Ax? 

     Compute that inner product. 

c.) The inner product of which pair of vectors provides information about A′y? 

     Compute that inner product. Repeat for A′x. 

d.) Substitute the values of ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , andi i i j j i j j′ ′ ′ ′⋅ ⋅ ⋅ ⋅  into the expressions. Summarize the 

results in matrix form. Provide explicit values of the λij. 

11 12

21 22

x x

y y

A A
A A

λ λ
λ λ

′    
=    ′     

 

VSWUP9. Vectors in a space are of the form ˆ ˆ
A AA c i d j= +



 where the c’s and d’s are 

any complex number.  The plan is to define the inner product of two such vectors as: 

A B A BA B c c d d∗ ∗= +
 

. Show that this definition has the correct inputs and outputs to be 
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an inner product. Show that the procedure obeys the 4 axioms for inner products. 

Conclude that the procedure defines an acceptable inner product. 
 

VSWUP10. State the axioms for an inner product. Show that an inner product candidate 

defined as 2 2 2
x x y y z zA B A B A B A B= + +  fails to satisfy all of the axioms for a good inner 

product. 
 

VSWUP10. PROJECTION (A MOST WONDERFUL PROCESS): Consider a 

vector represented as 1 1 2 2 ...i i i in nV a B a B a B= + + +  in terms of the basis set { .. |Bi 〉 .. 

}. Further, assume that the basis set is mutually orthogonal. ⇒ 〈Bj|Bi 〉 = 〈Bj|Bi 〉δij. The 

coefficient aik represents the amplitude of the |Bk 〉 behavior in the vector |Vi 〉.  

a.) Use the inner product to develop a general expression for aik in terms of the ratio of 

inner products for vectors expanded in an orthogonal basis. Note that while the basis is 

mutually orthogonal, the vectors are not necessarily unity normalized. 

b.) Exercise this equation for the case of ˆˆ ˆ
x y zA A i A j A k= + +



 and where the inner 

product is are standard dot product to find an expression for Ay. Does it work properly? 
 

Problems: 

1.) Prove that if a set of n (numbered 1 to n; left to right) non-zero vectors is linearly 

dependent, that one of the vectors can be expressed as a linear combination of the 

previous members (ones numbered lower).  Further that member can be removed from 

the set without the loss of any vectors from the span of the original set of n vectors.  

You may assume that the span of any set of vectors is a vector space. 
 

 

2.) Suppose that you have a space V which is the span of a set of n vectors 

1 2{ , ,....., }nV V V  and you have a set of m linearly independent vectors 

1 2{ , ,....., }mW W W ∈  V. Show that the Ws can be used to replace m members of the 

original set to yield a set 1 2{ , ,....., , ( ) }mW W W and n m of the Vs−  that is a spanning set for 
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the entire space V.  Conclude that m n≤ .  APPROACH: Study the definitions of all the terms.  

Use the axioms and previously established results related to linear independence.  Base your solution 

on the Replacement Lemma.  When you substitute the second W  into the spanning set you cast out a 

'current' member.  What member must you argue is not cast out?  Assume that one (or more) W 's 

remains outside the spanning set after the n  V 's have been replaced by n W 's.  What property of 

the W 's would be contradicted? 

 

One concludes that the number of members is a linearly independent set of vectors in a space is less 

than or equal to the number of members in a spanning set for that space. 
 

 

3.) Prove that if your have a basis set B1 with m members and a basis set B2 with n 

members for the same space V then m = n. APPROACH: Use problem VS2. 
 
 

4.) Prove that the largest number of vectors in a linearly independent set of vectors in 

an n dimensional space is n.   That is: If you have a set of n+1 vectors in an n 

dimensional space, then the set must be linearly dependent. APPROACH: Use the 

properties of a basis set and problem VS2. 
 

 

5.) Consider a spanning set { }ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 , 2 2 , 2 2 2i j k i j k i j k+ + + + − + .  Apply the Gram-

Schmidt procedure to find an orthonormal (orthogonal and unity normalized) basis.  

What is the dimension of the space spanned by this basis set? 
 

6.)  A set has members of the form  1 2 3i i iI a e b e c e= + +   where the constants ai, bi, 

and ci are arbitrary real numbers, the components of the vector.  Addition is defined by 

the relation ( ) ( ) ( )1 2 3i j i j i jI J a a e b b e c c e+ = + + + + +  and scalar multiplication by 

( ) ( ) ( )1 2 3d I d a e d b e d c e= + + . This set satisfies the requirements to be a vector 

space.  
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a.)  The basis vectors ie  have the following inner products i j ije e δ=  as they are 

orthogonal and normalized.  Find an expression for J I  where 

1 2 3i i iI a e b e c e= + +  and  1 2 3j j jJ a e b e c e= + + . Note 
* * *

1 2 3j j jJ a e b e c e= + +   for a complex vector space. See property I3 of the inner 

product. 

b.) Find the component of J  along 2e .   What is a component?  You should create a 

definition! 
 

7.) Given any two vectors in an inner product space A  and B , prove the Schwarz 

Inequality: A B A B≤ .    Use the vector 1
C A B B B A B

−
= −     and the 

properties of an inner product.  The form of the vector C  reminds you of a procedure 

studied in this handout. Name that procedure. Study the dagger operation as it provides the rule 

for computing the BRA vector conjugate to a given KET vector.  Recall that 2V V V= . 
 

8.) Argue that 2A B B A A B+ ≤ .  Hint: Regard A B  as an arbitrary complex 

number.  
 

 
9.) Use the Schwarz Inequality: A B A B≤ , the previous problem  and 2V V V=  

to establish the triangle inequality: The magnitude of the sum of two vectors is between 

the magnitude of the difference of the magnitudes of the two vectors and the sum of 
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their magnitudes. A B A B A B+− ≤ ≤ +    Compare the expressions 

2
2A B A A A B B B+ = + +  and 2

A B−  with 2
A B+ . 

 

10.) A vector is expanded in terms of a basis set as  1 2 3i i iI a e b e c e= + +   where the 

constants ai, bi, and ci are scalar values and 1 2 3{ , , }e e e  is the basis. Show that the 

components of the vector, the values ai, bi, and ci, are unique. HINT: Review the 

definition of a basis set. 
 

11.) A space of 3rd order polynomials is defined with domain the interval [-1,1]. An 

inner product for functions on that interval is defined to be:  
1

1
( ) ( )g f g x f x dx

−
= ∫  

A possible basis set for the space is { 1, x, x2, x3 }.  Choose 1 1B =  and then work 

upward power by power.  Use the Gram-Schmidt process to develop an orthogonal set 

of vectors (polynomials). Apply the normalization condition the Pn( 1) = 1  to set the 

overall scaling (normalization of the polynomials. From Mathematica: 

LegendreP[2,x] = 231
2 2 x− + ;  LegendreP[3,x] = 33 5

2 2x x− + .(See Boas p. 485.) 
 

12.) A space of 3rd order polynomials is defined with domain the interval [-∞,∞]. An 

inner product for functions on that interval is defined to be:  
2

( ) ( ) xg f g x f x e dx
∞ −

−∞
= ∫          Note the weight function: 2xe−  

A possible basis set for the space is { 1, x, x2, x3 }.  Choose 1 1B =  and then work 

upward power by power.  Use the Gram-Schmidt process to develop an orthogonal set 

of vectors (polynomials). The resulting polynomials are the Hermite polynomials that 

use yet another weird normalization. For the nth order polynomial, the lead term is 2n xn. 

Multiply the Gram-Schmidt result by whatever factor is necessary to yield the desired 

highest order term. (See Boas p. 530.)  
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From Mathematica:   HermiteH[2,x] = 24 2x − ;  HermiteH[3,x] = 38 12x x− .   

( )( ) ( )22 31 1
2 2 2...n xx e dx n nπ

∞ −

−∞
= − −∫ ;    The integral vanishes for odd powers of x. 

13.) An infinite dimensional function space is defined with domain the interval  

[-∞,∞]. An inner product for functions on that interval is defined to be:  

( ) ( )g f g x f x dx
∞

−∞
= ∫   

A possible basis set for the space is: ( ) ( ) ( ) ( )2 2 2 2
2 3/ 2 / 2 / 2 / 2

, , ...1 , ,x x x x
e x e x e x e

− − − − 
 
 

.  

Choose ( )2

1

/ 2
1

x
B e

−
=  and then work upward using ( )2

1

/ 2n
n

x
B x e+

−
=  as an initial basis 

function.  Use the Gram-Schmidt process to develop an orthogonal set of vectors 

(functions). The resulting functions are the Hermite functions and are to be unity 

normalized using the prescribed inner product. Find the first four Hermite functions. 

(Compare with the harmonic oscillator wave functions found in Harris or Eisberg.) 

Hint: One could just apply the unity normalization to the results of the Hermite 

polynomial problem above. What happened to the weight function? 

Use: 2xe dx π
∞ −

−∞
=∫  and ( )( ) ( )22 31 1

2 2 2...n xx e dx n nπ
∞ −

−∞
= − −∫  

The integral vanishes for odd powers of x. 
 

14.) a.) Use the Gram-Schmidt procedure to create an ortho-normal basis from the 

spanning set { }ˆ ˆ ˆˆ ˆ ˆ ˆ; 2 ;i j k i j k k+ + − + .  What is the dimension of the space spanned by the 

set?  Start with  1
ˆˆ ˆB i j k= + +  and work to the right. 

b.) Consider the space spanned by the set of vectors: { }ˆ ˆˆ ˆ ˆ ˆ, ,i j k i j k+ + + .  Use the Gram-

Schmidt procedure to create an ortho-normal basis for the space. What is the dimension 

of the space?  Start with  1
ˆˆ ˆB i j k= + +  and work to the right. 
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c.) Consider the components of each of the vectors in the initial spanning set as the row 

of a matrix. Compute the determinant of that matrix for the case of exercise one and for 

the case of exercise two. Comment on the outcomes. 
 

d.) The Gram-Schmidt method applied to our standard 3D problems produced an 

orthonormal basis that may not obey the right-hand rule. Multiply the last vector in a 

three dimensional set by -1 if necessary to bring the set into right hand rule order. 
 

15.) a.) Starting with B1〉, apply the Gram-Schmidt procedure to develop an ortho-

normal basis set from: { }1 2 3
ˆ ˆˆ ˆ ˆ; ;B i k B i j B k= + = + =  

b.) Compare with the results for the set ( ){ }1 2 3
ˆ ˆˆ ˆ ˆ; 2 ; 3B i k B i j B k= + = + = . 

c.) Compare with the results for the set{ }1 2 3
ˆ ˆˆ ˆ ˆ; ;B i j B i k B k= + = + = . 

d.) Compare with the results for the set{ }1 2 3
ˆˆ ˆ ˆ ˆ; ;B i k B i j B i= + = + = .  

 

e.) The Gram-Schmidt method applied to our standard 3D problems produced an 

orthonormal basis that may not obey the right-hand rule. For each case above, 

multiply the last vector in a three dimensional set by -1 if necessary to bring the set into 

right hand rule order. 

NOT PART OF THE PROBLEM:  The Replacement Lemma:  Suppose that { }1 2, ,..., mv v v  spans a vector 

space V.  Given any non-zero w ∈   V, the vector w  can be substituted into the spanning set for one 

of the v 's (say iv ) and the resulting set { }1 2 1 1, , , , , , ,i i mw v v v v v− +   still spans the space 

V.  This lemma is the anchor for shifting to the new Gram-Schmidt (G-S) basis. The Gram-Schmidt 

process generates vectors that are linear combinations of the current set and hence they are in its span. 

Each can be substituted into the spanning set without losing any vectors from the span. Each new G-S 

vector is orthogonal to all previous G-S vectors indicating that the one of the old set can be removed, 

not one of the new G-S vectors. 
 

16.) The set of vectors ˆˆ ˆ ˆ ˆ ˆ{ , , } { , , }x y zi j k e e e=  is a complete orthonormal basis set for three 
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dimensional vectors such as ˆ ˆ ˆx x y y z zA A e A e A e= + +


 and ˆ ˆ ˆx x y y z zB B e B e B e= + +


. Adopt the 

new notation where {|1〉, |2〉, |3〉} represents ˆ ˆ ˆ{ , , }x y ze e e  and 〈A|B〉 represents A B⋅
 

.  

a.) What are 〈2|B〉 and 〈1|A〉?   What are 〈1|2〉, 〈3|3〉 and 〈m|n〉? 

b.) Evaluate 
3

1

ˆ ˆ( )m m
m

e e A
=

⋅∑


 and  
3

1

ˆ ˆ( )m m
m

e e B
=

⋅∑


.   

c.) Write out 
3

1

ˆ ˆ( )m m
m

e e A
=

⋅∑


 in the new notation. Repeat for 
3

1

ˆ ˆ( )m m
m

e e B
=

⋅∑


. 

d.) Consider 
3

1m
m m

=
∑  as an operator on the three dimensional space of vectors. Let |V〉 

be an arbitrary three dimensional vector in this space. What is {
3

1m
m m

=
∑ }|V 〉? 

e.) It is said that 
3

1m
m m

=
∑  is equal to 1. What is 1|V 〉? 

f.)  What is {
3

1n
n n

=
∑

3

1m
m m

=
∑ }|V〉 ? 

g.) Compare 〈Α|Β〉 and 〈A|{
3

1n
n n

=
∑

3

1m
m m

=
∑ }|B〉. 

h.)  
3

, 1
{ }

m n
A n n m m B

=
∑ }  Evaluate n m . Execute the sum over n. Finally, execute 

the sum over m. 

i.) Rewrite 〈A|{
3

1n
n n

=
∑

3

1m
m m

=
∑ }|B〉 using summation convention. That is with 

summations over repeated indices being implicit removing the need for the Σ’s. 

j.) Would it make sense to say that 
3

1m
m m

=
∑  is equal to 1? Would it make sense to say 

that 
2

1m
m m

=
∑  is equal to 1. Why not?  The sum should be over the vectors in a 

complete orthonormal basis set. The operator 
2

1m
m m

=
∑  maps vectors into their 

projections onto the x-y (1-2) plane. 
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17. The span of a set of vectors is all the vectors that can be represented as ia I∑  

where the ai are arbitrary scalar coefficients. The set S ={ }..., ,...I  is said to span the 

space of elements ia I∑ .     Span({ }..., ,...I ) ={ }...., ,.....ia I∑  for any { }ia ∈   K. 

a.)  The members of the set S ={ }..., ,...I  are linearly independent. This linearly 

independence immediately identifies one vector that cannot be a member of the set. 

What is that excluded vector? 

b.) The representation of a vector as a linear combination of vectors in a linearly 

independent set is unique. Prove this proposition. Begin by assuming that there are two 

distinct linear combinations of the vectors that equal the vector |v〉. 

1 2 1 21 2 ... and 1 2 ...N Nv a a a N v b b b N= + + + = + + +  

Show that this assumption leads to a contradiction. It follows immediately that 

1 2 1 21 2 ... 1 2 ...N Na a a N b b b N+ + + = + + +  requires that ai = bi for1 ≤ i ≤ Ν. Compare 

this problem with FS3 and LS9. Add the result from the next problem and compare 

again! 

Consider displacements of lengths 2 meters and 3 meters whose direction make an 

angle of 750 with respect to one another. Are these displacements linearly 

independent? A third displacement is added to the set. What character must it possess 

if the set of the three displacements is to be linearly independent? 
 

18.) Consider a set of vectors that is mutually orthogonal. That is: every member has a 

vanishing inner product with every other member of the set. Prove that the set of 

vectors is linearly independent. Well, slow down a little. There is one trivial little 

bothersome vector that can never appear in a set that is to be linearly independent. a.) 

What is that irksome little vector? b.) Add the statement that the irksome vector is not a 

member of our set of mutually orthogonal vectors and prove that such a set of mutually 
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orthogonal vectors is linearly independent. The conclusion is that, absent |zero〉, a 

mutually orthogonal set is linearly independent so all propositions proven for linearly 

independent sets are also true for mutually orthogonal sets. Note that |zero〉 cannot be a 

member of an orthonormal set.  
 

Consider a set of three mutually perpendicular (orthogonal) displacements. Are they 

linearly independent? 
 

19.) a.) Use the Gram-Schmidt procedure to create an ortho-normal basis from the 

spanning set:{ }ˆ ˆ ˆˆ ˆ ˆ ˆ; 2 ;i j k i j k k+ + − + .  What is the dimension of the space spanned by the 

set?  Start with  1
ˆˆ ˆB i j k= + +  and work to the right. 

b.) Repeat the process, but start with the rightmost vector and work to the left. 

c.) Comment on the results. 
 

23.) It is proposed that the inner product of complex-valued functions with the domain 

of the real line (∞, - ∞) be defined as: [ ( )]* ( )x x dxφ ψ φ ψ
∞

−∞
= ∫ . The operation returns a 

scalar value as required. Show that the proposed definition meets the requirements of 

the four axioms for inner products. The space of function is restricted to functions ζ(x) 

such that 2| ( ) |x dxζ
∞

−∞∫  is defined (finite) ⇒ that is: functions that are square integrable. 

 

24.) Suppose that [ ( )]* ( )x x dxφ ψ φ ψ
∞

−∞
= ∫  is a valid inner product for complex-valued 

functions with the domain of the real line (∞, - ∞). What can be said about the values 

〈φ|ψ〉, 〈ψ|ψ〉 and 〈φ|φ〉? What name is associated with the relationship that you propose? 
 

25.) Show that 〈V|ZERO 〉 = 0 for all vectors |V 〉. Build your proof on the properties of 

the inner product. 
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26.) Consider the set of all complex-valued functions that are periodic with period T 

and that have a finite square integral. 
/2 2
/2

| ( ) | finite
T

T
f t dt

−∫ . The sum of two functions is: 

Sum[f(t), g(t)] = f(t) + g(t). The scalar multiple of f is: ScalarMult[d, f(t)] = d f(t). 

For complex valued functions, complex numbers are the appropriate scalar field. (If the 

set is restricted to real-valued functions, then the real numbers should be chosen.) Show 

that the set defined with the prescribed operations is a vector space. 
 

27.)  A definition for the inner product of two functions that are periodic with period T 

and finite square integral has been proposed.     ( ) ( )/2

/2

*( ) ( )1 T

T
g t f t dtg f T −

= ∫  

a.) What type of value does this operation return? 

b.) Verify that the operation satisfies the axioms required of an inner product for the set 

of functions prescribed in the previous problem. 
 

28.) Consider the set of all complex-valued functions that can be formed as linear 

combinations of the functions { 1, { .. , cos[mωot], … }, { … , sin[nωot], … }} where ωo 

= 2π/T  and ωm = mωo subject the restriction * below is a vector space with the 

operations on the representative members g(t) and f(t): 

( ) [ ] [ ]0
1 1

( ) 1 cos sinf fm m fm m
m m

f t c a t b tω ω
∞ ∞

= =

= + +∑ ∑  

( ) [ ] [ ]0
1 1

( ) 1 cos sing gm m gm m
m m

g t c a t b tω ω
∞ ∞

= =

= + +∑ ∑  

Sum[f(t), g(t)] = ( ) ( ) ( ) [ ] ( ) [ ]0 0
1 1

1 cos sinf g fm gm m fn gn m
m n

c c a a t b b tω ω
∞ ∞

= =

+ + + + +∑ ∑  

The scalar multiple of a function is: 

ScalarMult[d, f(t)] =  ( ) ( ) [ ] ( ) [ ]0
1 1

1 cos sinf fm m fn n
m n

d c d a t d b tω ω
∞ ∞

= =

+ +∑ ∑  

Retriction *:  2 22
0

1 1

1 1
2 2 is finitef fm fm

m m
c a b

∞ ∞

= =

+ +∑ ∑ . 
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Show that the set defined with the prescribed operations is a vector space. The scalars 

can be the real numbers or the complex numbers. 
 

29.)  A definition for the inner product of the vectors in the previous problem has been 

proposed.    ( )* * *
0 0

1 1

1 1
2 2( )| ( ) 1 sgm gng f fm fn

m n
g t f t c c a a b b

∞ ∞

= =
= + +∑ ∑  

a.) What type of value does this operation return? 

b.) Verify that the operation satisfies the axioms required of an inner product for the set 

of functions prescribed in the previous problem. 

30.) The span of a set of vectors S is all the vectors that can be represented as i ia S∑  

where the ai are arbitrary scalar coefficients. The set S ={ }..., ,...iS  is said to span the 

space of elements i ia S∑ .   Span({ }..., ,...iS ) = .... , ,.....i ia S 
 
 

∑  for any { }ia ∈   K. 

a.) Verify that, for any set of vectors S ={ }..., ,...iS  contained in the space V, the span of 

that set is a vector space. Further, that every vector in that space is also a vector in the 

space V. 

b.) Wikipedia (linear span) defines the span of a set of vectors by the following. 
Given a vector space V over a field K, the span of a set S (not necessarily finite) is defined to 

be the intersection W of all subspaces of V which contain S. When S is a finite set, then W is 

referred to as the subspace spanned by the vectors in S. 

Assume that the set S has a finite number of members. Note that the span of S is a 

vector subspace. Argue by closure that it is the smallest space that includes the set S. 

Conclude that for a finite set S, that the two definitions agree. 

References: 1. Jerry B. Marion and Stephen T. Thornton, Classical Dynamics of Particles and Systems, 4th 

Edition, Saunders (1995), chapter one.  2.  S.Lipschutz and M. Lipson, Linear Algebra, 3th Edition, McGraw-

Hill (2001). 3. The Wolfram web site:   mathworld.wolfram.com/ 4.  K. F. Riley, M. P. Hobson and S. J. Bence, 

Mathematical Methods for Physics and Engineering, 3rd Ed., Cambridge, Cambridge UK (2006).  


	Certifying an inner product
	Gram-Schmidt basis construction
	TABLE I: Vector Space Axioms for Addition and Multiplication
	Axioms for Vector Addition      for elements of a vector space V
	Axioms for Multiplication by a Scalar



	SAMPLE CALCULATION: Certifying a candidate for an inner product
	How can an orthogonal basis be developed from just any basis?

