
More Linear Vector Spaces 

Concepts of primary interest: 

 Complex spaces 

 Hermitian 

 Adjoint 

 Mapping 

 Linear Operator 

 Transformation 

 

Sample calculations: 

 

Application examples: 

Tools of the trade: 

 Cheap Legendre expansions 

 Matthew Davis Method for Generating Matrix Representations 

 

  

  

This handout is a continuation of the Introduction to Vector Spaces 

handout. You should review that handout now. 

 

Representations: Our vector space notation is abstract; representations lower the degree of the 

abstraction. 

 

Consider the inner product. An integral representation for the inner product is used in introductory 

quantum mechanics. 

[ ( )]* ( )x x dx   


 


                    
[ ( )]* ( )x x dx

 

 







 

A robust representation of the inner product includes the instructions required to actually compute the 

scalar value of the inner product. 

 

Send comments to: tank@alumni.rice.edu 



Exercise: Show that the inner product definition [ ( )]* ( )x x dx   



   satisfies the four axioms 

for inner products. 

 

Matrix Representation of a Linear Vector Space: Matrices may be used as a convenient 

representation of vectors and vector operations. A representation is anchored by the selection of a basis 

set for the vector space and evaluating the expansion coefficients for all the vectors using this basis.   

Most of the examples display three dimensions, but they could be for N dimensions.  

 

Basis:  Orthogonal and Unity Normalized: 

 

Consider the vector: 1 2i i i iV a e b e c e   3 . The basis set {| e1, | e2, | e3}is both orthogonal 

and unity normalized.   The coefficients: {ai, bi, ci}  are often called components.  As an example, the 

1e  component of iV  can be projected out using the inner product. 

 

1 1 1 1 2 1 3i i i ie V e e e e e ea b c ia      after using   i j ije e   

 

Once {| e1, | e2, | e3},  a specific set of basis vectors, has been chosen that is orthogonal and unity 

normalized ( i j ije e  ), any vector can be uniquely represented by the column matrix of its 

components. The vector is the linear combination of the basis vectors using those components, and the 

basis is to remain the specified set with no changes allowed. (A change of basis requires that a 

complex translation procedure called a transformation be invoked to relate the representation in terms 

of the original basis to the representation using the new basis.) 

 

The dagger operation converts a ket to its corresponding bra and vice versa. 

 

The Daggert Operation:  

1.) The dagger operation converts a KET vector to its corresponding (conjugate) BRA vector.  That is: 

M Mt .   

2.) The dagger operation also converts a BRA vector to its corresponding (conjugate) KET vector. 
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3.) If the dagger operation is performed twice, the original vector is recovered. M M M    
tt t

.               

M M M       
t tt

 

4.) The dagger on a BRA-KET follows as ( )I M M It . The inner product of two vectors is a 

scalar I|M = d and 
*

I M M I  so the dagger operation acting on a complex (or real) scalar 

returns the complex conjugate of that scalar; (d )† = d*. 

5.) Dagger operation on multiplying constants: (d |M)†  |d M† = d M| = d* M|.  

NOTE: Dagger should appear as 
†

 but font wars are leading to  and even to a superscript t (t). †

 

The details follow from the requirement that the BRA-KET combination follows the rules for the 
chosen inner product.  Properties (I2) and (I3) of the inner product provide additional information 
about the action of the dagger operation.  
 

I2.  I d M d I M  where d is any scalar.                            Scaling 

I3. 
*

I M M I   asterisk means complex conjugate            'Hermitian' 

 ** * **I d M d I M d I M d M I   

and 
* *I d M dM I I d M d M I  t  

The conclusion is that: *d M d Mt . 

This statement is consistent with the dagger operation returning the complex conjugates of scalars. Complex 
conjugation and the dagger operation are distinct operations that can be used to interchange BRAs and KETs. 
 
Exercise: Use the correspondence to the right to justify the identifications of |c M 
as c | M and of d M| as d* M|. 
 [ ( )]* ( )x x dx

 

 







 

 
 
 

*** Important  Exercise:  Follow the rules above and apply the properties of the inner product to 

show that:  
B A B A B B

A A
B B B B

 
   

 

†

 .   B A  is a complex scalar.  

If one considers 
B A B

C A
B B

   then the condition 0C C   (inner product property I4) proves 

that 
2

A A B B A B  which is the Schwarz inequality. 
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Digression: Why is 
B A B

C A
B B

   important? First consider the analogous expression in a 

more familiar setting. 
( ) ˆ( )
( )

B A B
C A A B A B

B B


    



 
ˆ

  
 


. Start with A


 and compute the component of A


 

in the direction of B


 which is ˆ( ) ˆB A B


. The vector C


 is what remains of A


 after the part parallel to 

B


 has been removed. What can be said about C


 and B


? What can be said about their directions?  
 

In the abstract setting, it follows that |C is what remains of |A after its behavior |B behavior has been 

removed. That is: Start with |A remove all the |B behavior in |A the remainder |C is orthogonal to 

|B as it has no |B behavior. 

 

The Dagger Operation in the matrix representation: 

i

i

i

a
V b

c

 
 
 
  

 i         and     * * *
jV V a b cj j j j   

†
 

Dagger in matrix rep Complex conjugate of the transpose

 

The actual vector is 1 2ˆ ˆi i i ie e eV a b c  3ˆ , but the basis vectors need not be displayed 

as long as that basis set is specified and understood to be immutable. 

 

A robust representation is capable of supporting all the rules followed by the vectors. Addition is the 

standard matrix addition. Scalar multiplication is the standard scalar multiplication for matrices. The 

DAGGER Operation (converting kets to bras and vice versa) is the complex conjugation of the 

transpose. Finally, the inner product is realized as matrix multiplication of the bra and ket. 

 

* * *

* * *

i

j i i j j j i

i

j j j

i iV V

a b c a
b a a b b c c
c
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Inner Product Matrix Product

The procedures above were relative straight forward.   

 

Alternatives to an orthonormal basis that we will attempt to avoid.   

 

Basis:  Orthogonal and normalized (not unity normalized) 

 

A basis expansion set is chosen to be three orthogonal vectors that are not unity normalized. 

 

1 2 31 2i i i iV c b c b c b   3    where i j j ijb b N   

As above,  

 

1

2

3

i

i

i

c
V c

c

 
 
 
  

 i       and     * * *
jV c c c1 2 3j j j    

but the inner product is rather more complicated: 

  
 

* * *
1 1 2 2 3 3 1 2 3

* * * * * *
1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 2 2 2 3 3 3

1 2 3j i j j j i i i

j i j i j i j i j i j i

V V c b c b c b

c b b c b b c b b c N c N c

c b c b c b

c c c c c 

    

    Nc
 

1 1
* * *

2 2 1 1 2 2 3

3 3

21 3

* * *
1 2 3 0 0

0 0

0 0

i

j i i j j j

i

i

j j j

i i

N

V V N

N

c c c c
c c c N c c N c c N
c

 
    
   
   
      

   3  

 

Basis:  Just linearly independent (not orthogonal or unity normalized) 

 

A basis expansion set is chosen to be three linearly independent vectors {s1, s2, s3} which are neither 

orthogonal nor unity normalized. 

1 2 31 2i i i iV c s c s c s3       

As the basis is not mutually orthogonal, any si| sj can be non-zero.Define  i j ijs s n .

3/10/2010 Physics Handout Series: More Linear Vector Spaces      VSM-5 



1

2

3

i

i

i

c
V c

c

 
 
 
  

 i       and     * * *
jV c c c1 2 3j j j   

A vector has a unique expansion in terms of any linearly independent basis set.  The values for (c1i, c2i, 

c3i ) for a vector are unique for a given basis set which, by definition is a set of linearly independent 

vectors. 

 

The inner product is much more complicated:                                                       i jijn s s  

11 21 31 1 3
*

21 22 23 2
, 1

31 32 33 3

* * *
1 2 3

i

j i i j m mi
i j

i

j j j n n n

V V n n n c

n n n

c c c c
c n
c 

 
    
   
   
      

     c  

The moral is to work hard when you build your basis.  Make sure that it is orthogonal and unity 

normalized. At the very least, make sure that the basis is orthogonal.   

 

The expansion basis for Fourier series is orthogonal, but not unity normalized. 

           
2 2 2

2 2 2

1 1 1
1 1 1; 1 sin 0; 1 cos 0

T T T

m m

T T T

dt t dt t dt
T T T

 
  

      

           
2 2 2

2 2 2

1 1 1
sin cos 0; sin sin ; cos cos½ ½

T T T

p m p m pm p m

T T T

t t dt t t dt t t dt
T T T

pm
      

  

      

The sines and cosines are normalized to an inner product value of ½. 

 

Mappings, Operators1 and Transformations: 

A vector-to-vector mapping associates each vector in a space  with a vector in a space . An 

operator is a mapping that associates each vector in a space  with a vector in the same space .  

 

A mapping might associate the triplet (a1, a2, a3) with the Fourier series space vector 

                                                 
1 The definitions of the terms mapping, operator and transformation used in these handouts are not the standards in all 

fields. You should review their definitions critically when you encounter the terms in other contexts. 
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1 2 3 1 2 3
1

( ) ( ) cos([3 2] ) cos([3 1] ) cos(3 )k k k

k

f t a a a a k t a k t a k t  


  


        . 

 

An operator might map a function (vector) in the space of infinitely differentiable functions to yield 

another infinitely differentiable function, another member of the same space. An operator acts on a 

vector to return another (perhaps/usually distinct) vector in the same space. A mapping associates 

each vector in a space  with a vector in a potentially different space .  

 

An operator yields a vector in the same space; it associates each vector in the space  with a vector in 

the space . 

 

Transformations vs. Operations: Vector spaces can be represented by the collections of column 

vectors of the expansion coefficients for each vector in terms of a basis set. If the basis set for the 

expansion is changed, the particular form of a column vector representing a vector |Vi  changes.  We 

will refer the changes of form due to a change in the chosen basis set as transformations. The vectors 

do not change, just their column vector representations.  This terminology is not universal. The 

definitions for operator and transformation are established for use in this handout to make the cases 

distinct in spite of the similarities in the mechanics employed. 

 

A linear operator  maps a vector into a vector in the same space L̂ ˆ[ ]k LL v v k  where both of the 

vectors andk kv Lv  are in the same space , and it has the property that: 

ˆ ˆ[ ] [ ]j k jL a v b v a L v b L v   ˆ[ ]k ;       a and b are scalars 

Linear operators map a space  into a subspace of that space. In this context, the entire space  is one 

of the subspaces of the complete space .       (  ) 

 

Example: the derivative and the space of infinitely differentiable functions. In this case,  = d/dx. L̂
d/dx {a f(x) + b g(x)} = a df/dx + b dg/dx      ()  

The derivative is a linear operator as df/dx and dg/dx are infinitely differentiable functions if f(x) and g(x) 

are infinitely-differentiable, so the result is another function in the same space of functions. 
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For our standard three-dimensional space, rotations about the origin and projection into the x-y plane 

are examples of linear operations. Quantum mechanics has linear operators for the energy (the 

hamiltonian and ti 
 ), momentum ( i 


 ), position ( r


) and many others. Each of these operates on 

a wavefunction to return another wavefunction (vector in the same space). 

 

The action of a linear operator on a vector is to spit out another vector in the same space 

( ˆ[ ]Q   ). Consider a space with an orthonormal basis set {… ,. , |uk, … }such that um|un = mn. 

. In terms of that basis set, | = an |un and | = am |um. Using these, the operator equation 

becomes: 

ˆ ˆ[ ] n n m m
n m

Q Q a u b u      

As our operators are linear,  

ˆ ˆ
n n n n m m

n n m

Q a u a Q u b u      nn 

In order to isolate (project out) the coefficient bp, the expression is pre-multiplied by up|, and the inner 

product is executed. 

ˆ ˆ ˆ
p n n n p n m p m m pm

n n m m
p n pu a Q u a u Q u b u u b bu Q u a       n

n
 

The slightly larger summation in the center above is reminiscent of a matrix multiplication. 

                                                             bp  = n  Qpn an 

 If we define ˆ
pn p nQ u Q u  as the pn matrix element of the operator, the equation becomes: 

1 11 12 13

2 21 22 23

3 31 32

ˆ

b Q Q Q a

b Q Q Q a
Q

b Q Q a
 

1

2

3

     
     
       
     
     
     





    

 

We conclude that KETs are represented as column vectors, BRAs as row vectors, inner products are 

row-column products and operators are matrices. Using matrix shorthand, 

1 11 12 13

2 21 22 23

3 31 32

ˆ

b Q Q Q a

b Q Q Q a
Q Q

b Q Q a
   

1

2

3
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and 

* * *
1 2 3 1

2

3

...b b b a

a

a
   

    
 
  
 
 
 

 


† . 

 

Operating in the BRA has not been defined. We begin by examining a process that can move operators 

to the left as it interchanges the BRA and KET. 

 

Property I3 of the inner product can be used to give: 

 ˆ ˆ ˆ ˆ *m k m k m k k mu Q u u Q u u Qu Qu u    

Complex conjugation interchanges the BRAs and the KETs, and it reveals a relation between the 

action of an operator on a KET and its action in a BRA.  

 

DEFINITION: Hermitian conjugate operator (a.k.a. Adjoint Operator)1: One rule for moving 

things from BRA to KET or from KET to BRA is not enough. The adjoint of an operator is itself an 

operator that acts in the BRA of an inner product to yield the same result as the original operator acting 

in the KET. The adjoint of an operator  is defined by its action. Q̂† Q̂

ˆ ˆQ u v u Q v u and v  †   

The adjoint of the operator Q is whatever it must be such that the adjoint operating in the BRA of an 

inner product yields the same result as the original operator acting in the KET.  

 

Note that there are two processes that move the operator from the KET vector to the BRA vector, 

complex conjugation and switching to the adjoint.  

 

An operator that is equal to its adjoint is called self-adjoint. It will have matrix representation that is 

Hermitian. The terms Hermitian conjugate and Hermitian are to be substituted for adjoint and self-

adjoint in the remainder of this handout. A formal introduction to Hilbert spaces and the mathematics 

                                                 
1 As you read conjugate or adjoint just think of joined with, jointed to or associated with as a first step. Let the details of 

the relationship grow sharper as you encounter the concepts repeatedly. The adjoint of an operator A is also sometimes 

called the Hermitian adjoint (or conjugate after Charles Hermite) of A. 
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underlying quantum mechanics is appropriate to support the study of quantum mechanics in graduate 

school. Wait until graduate school to sort out the details. 

 

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of 

Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional and 

three-dimensional spaces to spaces with any finite or infinite number of dimensions. A Hilbert space is an 

abstract vector space together with the additional structure of an inner product that allows length and 

angle to be measured. Hilbert spaces are in addition required to be complete, a property that stipulates 

the existence of enough limits in the space to allow the techniques of calculus to be used. 

 

 

A particular inner product is defined as: [ ( )]* ( )x x dx   



  . Consider the operator x. What is 

its Hermitian conjugate? 

[ ( )]* { ( )} [ ( )]* ( )x x x x dx x x x x d       
 

 
   † † x  

Clearly it all works for x 
† x. It follows that [f(x)] 

† = f(x) for all real valued functions f(x). This group 

includes the standard potential functions encountered in a first quantum mechanics course. 

What happens if a derivative is tried? 

 [ ( )]* { ( )} ( )* ( ) [ ( )]* ( )d d
dx dxx x x dx x x x x dx       

 

 
     

If the boundary condition  ( )* ( )x x 



 = 0 is imposed then - d/dx is the Hermitian conjugate of d/dx.  

(d/dx )
† = - d/dx  

The first thing to observe is that the Hermitian conjugate of an operator is not necessarily equal to 

that operator. In quantum mechanics, most of the operators that you encounter in your first course are 

equal to their Hermitian conjugates. Operators that are the own Hermitian conjugates are designated 

as Hermitian operators. 

Try - i d/dx : 

    
 

[ ( )]* { ( )} ( )* ( ) [ ( )]* ( )

( )* ( ) [ ( )]* ( )

d d
dx dx

d
dx

x x i x dx x x i x x

x x i x x dx

       

   

 

 



 

    

  

 



dx
 

The operator - i d/dx is its own Hermitian conjugate as is + i d/dx. For functions of several variables, we 
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would find that - i /x is its own Hermitian. 

 

 Being Hermitian is a curious property, but it does prove to be useful, even crucial. 

 

The boundary condition requirement  ( )* ( )x x 



= 0 should be verified. It is satisfied by 

wavefunctions that are normalizable. ( [ ( )]* ( ) finitex x dx   



   ) so we can just assume its 

satisfied for all localized bound state problems.  It should be compared to the more general boundary 

condition that is required for Strum-Liouville problems (
*

*( ) ( ) ( ) 0m n
n m

b

a

dy dy
p x y x y x

dx dx

 
  

 
).    

 

Eigenvectors and Eigenvalues: In special cases, an operator maps a vector into a scalar multiple of 

that same vector. This behavior is represented by the equation: ˆ
k k kH u u  where the ku are the 

eigenvectors and the k are the eigenvalues. The eigenvalues of Hermitian operators are special; they 

are real numbers and, as such, can represent all the possible results of the physical measurement 

associated with the operator.    

Hermitian Operator   ˆ ˆH H†  

Proof: The ku are to be unity normalized.       

ˆ
k k kH u u           1k ku u   

ˆ ˆ
k k k k k k ku H u u H u u u k      

This expression ˆ
ku H u†

m  is to be transformed by using the defining property of the Hermitian 

conjugate operator to move the operator from the ket to the bra, using Q̂ u v u Q v† ˆ , and finally 

by moving the operator back to the ket side using I3, the complex conjugation property of the inner 

product.  

ˆ ˆ ˆ ˆ* * * * *k m m k m k m m k k k k m k k k mu H u u u H u u u H u u Hu u u u u      † †   

Collecting the parts with eigenvalues, 

 * *m k m k k m m k k mu u u u u u      0  
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The eigenvalues of a Hermitian operator are real. Choose m = k. 

   * *m m k m m mu u    (1) 0     

The eigenvalues are equal to their own complex conjugates. They are real values. 

 

Eigenvectors of Hermitian Operators with distinct eigenvalues are orthogonal: 

   * 0
k

m k k m m k k m
real

u u u u


        

The eigenvalues are assumed to be distinct, and they have been proven to be real so: (m - k)  0   

m - k*) = m - k)  0.  It follows that the inner product of the two eigenvectors must vanish 

( 0k mu u  ) which, by definition, means that they are orthogonal 

 

The eigenvalues of a Hermitian operator are real, and eigenvectors corresponding to distinct 

eigenvalues are orthogonal. The eigenvectors associated with degenerate (repeated) eigenvalues can be 

chosen to be orthogonal. That is: a process such as the Gram-Schmidt technique can be implemented to 

generate an orthogonal set from the collection of vectors that share a single eigenvalue.

 

The Hermitian Buzz: Hermitian operators have real eigenvalues and hence real expectation values so 

Hermitian operators can represent observables in quantum mechanics. Every Hermitian operator has a 

complete set of eigenvectors that can be used as a basis set for the space. The matrix representation of 

a Hermitian operator in terms of its eigen-set is diagonal. In QM, physical measurements are 

represented by Hermitian operators, and each Hermitian operator has a complete set of eigenfunctions 

that can serve as a basis set for all the physical solutions of the quantum system. The eigenvalues are 

the only results possible for the measurement represented by the operator. 

 

More on Notation: A more economical notation is to be adopted for the eigenvectors of the H-

operator.     ˆ ˆ
k k k kH u u H k k      It happens that a collection of all the eigenvectors for a 

Hermitian operator constitutes a basis set for the relevant vector space. The vectors in this set can be 

chosen to be mutually orthogonal and unity normalized. Every vector in the space can be represented 

as a linear combination of the basis set, j jk
k

v a k . The coefficient amk can be found by 

projecting out the |m behavior using the inner product. To do this, the equation is multiplied by the 
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associated bra m| and the inner product is executed. 

j jk jk mk jm jm
k k

m v a m k a a or a m v     j  

Substituting this result into the expansion, 

{ }j jk jk j
k k k k

v a k k a k k v k k       jv . 

The conclusion is that {
k

k k }= 1. A sum over KET-BRAs for all states in a complete ortho-

normal basis set can be inserted into an expression at any time because it equals 1. The set of all 

energy eigenfunctions for a quantum problem is almost always such a complete set. After Gram-

Schmidt, it will be a complete, orthonormal basis. 

 

For example: 
,

ˆ ˆ ˆ[ ( )]* { ( )}
m k

H x H x dx m m H k k    



   . Following the previous 

paragraph, k| = ak and |mm| = (am)*. Defining the matrix element of H 

as: ˆ ˆ[ ( )]* { ( )}mk m nH m H k u x H u x



   dx , the inner product: 

*

,

ˆ ˆ[ ( )]* { ( )}

ˆ[ ( ))]* { ( ))}m m k k m mk k
m k m k

H x H x dx

a u x H a u x dx a H a  

   










 



   

 

can be cast in a matrix form.
* * *

11 2 11 12 1

221

1

... ...

...ˆ

... ...

N N

NN NN

aa a a H H H

aH
H

aH H

  





 

        
  
  
  
    


 

 

Define: operator matrix element ˆ ˆ[ ( )]* { ( )}mk m nH m H k u x H u x



   dx  

 

Once a basis set has been identified, only the column vector of expansion coefficients is needed to 

specify a particular vector. The action of an operator is to map or transform one vector into another 

vector in the same space. That vector is likewise represented by its column vector of expansion 

coefficients in terms of the basis.  
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This result is valid for general operators as no special property of H has been invoked. For , Ô

* * *
11 2 11 12 1

221

1

... ...

...ˆ ˆ[ ( )]* { ( )}

... ...

N N

NN NN

aa a a O O O

aO
O x O x dx

aO O

  





   




        
   
  
  
    




 
 

the matrix element: ˆ ˆ ˆ[ ( )]* { ( )}mk m nO m O k m O k u x Ou x d



    x  

Note that the bra contents go in the brackets [] and the ket contents go into the braces {}. 

 

An even more exciting result follows as the |k are eigenvectors of H. 

* * *
11 2 1

22

... 0 ... 0

0ˆ

0 ... ... 0

N

N

aa a a

a
H

a

  








 

        
  
  
  
    


 

  as ˆ
kH k k 

* *ˆ ˆandk k k k k k
k k

H a a H a a            

The final result is a compact representation for the expectation value of the energy of the quantum state 

|. It supports the identifications of the ak as a probability amplitude and the factor (ak)* ak = |ak|
2 

as the probability to find the energy value k as the result of a measurement on the system described by 

|. In a sense the equation *ˆ
k k k

k

H a a      can be read as: the expectation value of the 

energy is the sum of the probabilities to find the system in each eigenstate of energy as a result of the 

measurement times the energy of that eigenstate. There are some subtleties for cases in which more 

than one state has a particular energy eigenvalue. 



The states | and | that appear below are not related to the states with the same labels in the 

previous paragraph. 

1 1

2 2ˆ; ;

N N

a a

a a
O

a a
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     ˆ ˆ ˆ;k k k k k n n n
k k k n n

a u a k a u O O a u O a n                 

The statement is that the operator acts on the states | to return |, another state in the same space. 

Both | to return | can be represented as linear combinations of the basis vectors. The coefficient 

am can by found by projecting the |m behavior out of Ô  . First, the equation is multiplied by the 

BRA for m behavior (m|) and the ortho-normality property of the basis set is exercised.

ˆ ˆ ˆ
m k m n n m

k n n

u a m k a m O m O a n m O n a O n n
n

a            

na

 

The result becomes: m mn
n

a O   which is a matrix product of the matrix that represents the 

operator and the column vector (N x 1 matrix) that represents the original vector.  

1 1 1 2 11 1

2 22 1 2 2

ˆ ˆ ˆ

ˆ ˆ
ˆ

ˆ

N

N N
N N

u O u u O u u O ua a

a au O u u O u
O

a au O u

 

 

 

  

   
   
          
   
      


   

 








 

ˆ ˆ
k k

n n

a k k O k O n n O an n         

This result supports the identification of a Ket-Bra over a set of basis state as being equivalent to 

multiplication by one. 

  

In summary:                                      (Once a basis set has been chosen) 

(1)  The matrix that represents an operator is defined as: 

1 1 1 2 1

2 1 2 2

ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ

N

m n
mn

N N

u O u u O u u O u

u O u u O u
O O

u O u

 
 
       
 
 
 


    

 

ˆu O u  

(2) If the operator is Hermitian,  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ *m n m n m n m n m n n m
mn nm

O u O u u O u u Ou O u u Ou u u Ou Ô


              
†  

The matrix representing the operator is equal to the complex conjugate of its transpose. Hermitian 

operators are represented by Hermitian matrices. 
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(3) j jk
k

v a k . The coefficient amk can be found by projecting out the |m behavior using the inner 

product. The coefficient (probability amplitude) ajm = m|vj, the |m behavior in |vj

 

(4)  The square of the probability ajm amplitude | ajm|2 is the probability that a system described by |vj 

will return the measurement eigenvalue associated with the state |m. 

 

(5) A sum |mm| over a complete orthonormal basis is equivalent to 1.    (|vj|mm|vj

 

In many applications, N is infinity.  Operators are represented by matrices of infinite dimension and 

vectors or wavefunctions by column vectors of infinite length. 

 

See the Matthew Davis Method1 (former USNA physics major) for the error-free generation of 

matrices representing operators in the Tools of the Trade section. 

 

Exercise: Consider the bizarre operators defined by their actions as: ˆ 1a n n n   and 

ˆ 1 1b n n n    where set of states |k is labeled by an integer index (0 k < ).  

Sketch the forms of the matrices for these operators. By repeating the operations, it follows that: 

2ˆ ( 1) 2a n n n n   ; ˆ ˆb a n n n  and ˆ ˆ ( 1)( 2) 2bb n n n n    .  

What is ˆâ b n ? What is ˆ ˆˆ ˆ( )ab ba n ? 

For those familiar with the problem, |0 is the ground state of the quantum harmonic oscillator and |n is the nth excited 

state.

 

Exercise: Sketch the forms of the matrices for the operators ;  and . Show that these 2â ˆ ˆb a 2ˆ( )b

matrices are matrix products of the matrices for the individual operators  and . â b̂

 

                                                 
1 Matthew Davis is a graduate and former USNA physics major who understood that a procedure with more intermediate 

steps can be executed with a lower likelihood of failure due to a careless error. 
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The nature of physical vectors:  (The discussion that follows is not complete.  It only introduces 

some concepts for initial consideration.  The reader is not expected to be convinced.)  For applications 

in physics, one crucial additional requirement, a special transformation behavior, is added the 

requirements of an abstract mathematical vector space.   An entity is a physical vector only if its 

representation transforms under a rotation of the coordinate axes in the same manner as does a spatial 

displacement, the model for a physical vector, for that same change of observer. The observer is 

synonymous with the reference frame or coordinate system used by that observer.  Physics does not 

depend on the observer, and all inertial observers can make valid measurements.  Physical laws are to 

be expressed in terms of scalars, vectors and other things (tensors of rank 2, … [scalars are tensors of rank 

zero and vectors are tensors of rank one, a tensor of rank two is like a matrix]) to which undergrads need not 

be seriously exposed.  Scalars have the simplest transformation law; they stay the same.  All observers 

report the same value for a scalar entity such as mass or temperature.  Next consider a vector relation, 

Newton’s second law .  The mass is a scalar and so is identical according to all observers and 

is said to be invariant.  Clearly transformations such as rotations scramble the components of the 

vectors as reported by the different observers.  The only hope for retaining the validity of Newton’s 

law component by component is if all the vectors have their components scrambled according to the 

same set of rules so that equalities are preserved.  All the vectors transform together and are said to co-

vary; that is, change in unison.  Hence, a collection of entities is a physical vector only if its 

representation transforms under a change of observer in the same manner as does the representation of 

a spatial displacement, the model for a physical vector. 

netF m
 

a

 

A problem might involve two interacting particles with the goal being to express the force exerted on particle 

two by particle one.  Limiting the problem to some simple classical models (one might consider the case of 

two particles coupled together by an ideal spring), the result could be expressed as .  In the trivial 21 1 2,F r r
   

case in which both particles are at rest, both 1r


  and 2r


 change if the observer changes position. Clearly 

nothing should have changed with regard to the interaction between the particles, and it becomes clear the 

force should not be a function of their individual positions, 1r


 and 2r


, but rather of  - , the displacement 2r


1r


from particle one to particle two which is independent of the position of the observer.   Considerations along 

this line led to the assignment of displacements as the model for vector behavior. 
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Rotations about the origin are a particularly fruitful example.  To set the viewpoint,   a change of 

observer or axis is envisioned, not a rotation of the system under observation.  This view in which the 

observer changes rather than the system under observation is the PASSIVE definition of a 

transformation.  If the system were to be rotated with the observer fixed, that would be ACTIVE.  The 

developments in this section are to be set in the passive view.  The physical system is not to be 

disturbed. 



ax

ax

ay





x

x’

y

y’

ax

ay

ax

ay

 

After some effort, one finds that  / /cos sin , sin cos , /
x x y y x y za a a a a a a a        z .  The 

transformation for the z-component is trivial because the primed observer frame was rotated by  

about the z-axis of the original unprimed observer. The observers share a common z axis. 

 

Powerful techniques such as projection facilitate the computation of transformation relations. To 

simplify the notation the subscripts 1, 2, 3 are to be substituted for x, y, z.  Consider a velocity v


 

represented in an original ‘fixed’ system and in a primed system rotated about the origin relative to the 

first. It is the representation of the velocity v


, its components and the coordinate directions that 

transform, not the physical vector .  It has representations in each frame. v


/ / / / / /ˆ ˆˆ ˆ ˆ ˆ
x y z x y zv v i v j v k v i v j v k      / / / / / /

1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆv v i v j v k v i v j v k      

The x or 1 component in the primed frame is projected out of the sum using the inner product. 

         / / / / / / / / / / / /
1 2 3 1 2 3 1 2 3

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi v i v i v j v k i v i v j v k v i i v i j v i k               ˆ

Therefore:      / / / / /
1 1 2 3

ˆˆ ˆ ˆ ˆ ˆi v v v i i v i j v i k        ˆ

These relations can be collected into a compact representation: 
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/ / /

/ / /

/ / /

/
1 1
/
2 2
/
3 3

ˆˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

i i i j i k

j i j j j k

k i k j k k

v v
v v
v v

                           

  

The result has the form of matrix multiplication: 

/
1 11 12 13 1
/
2 21 22 23
/
3 31 32 33

v v
v v
v v

  
  
  

 

2

3

  
 


    


  

 


       

 

Note that ij  is /cos( , )i jx x , the cosine of the angle between the i axis in the rotated system and the j 

axis in the original system which are called the direction cosines.  The mechanics text by J. B. Marion 

and S. T. Thornton is recommended for further reading on this point. A shorter discussion can be 

found in section 14.8 of Taylor. That discussion includes the generalization to space-time. 

 

Exercise:  Use the identification ij  = /cos( , )i jx x  to develop the matrix equation appropriate for a 

rotation of the observer frame by  about the z-axis.  Compare with the equations below the figure 

above.

  

Note that the transformation rule is based on the rule for the transformation of the coordinate systems 

against which displacements are referenced.   All physical vectors must use this same coordinate based 

rule. A simple consequence is that a vector must have as many components as the coordinate space has 

dimensions.   Some of those components may be zero in a particular representation (coordinate 

system), but there are always three components for a physical vector in a three dimensional universe.   

This statement is not intended to conflict with the practice of restricting problems to two (or even one) 

dimensions with a corresponding reduction in the number of components for vectors such as force and 

velocity. Further, in special relativity, physicists work in a four dimension space-time vector space.   

Physical vectors are 4D when considered in (special) relativity and must transform according to the 

same Lorentz transformations that apply to coordinates differences between events (space-time 

intervals or displacements). 

 

Tools of the Trade: 
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Expansions in terms of Legendre polynomials:  The first few Legendre polynomials are: 

0 ( ) 1P x  ,   ,  1( )P x x 2
2

3 1
2 2

( )P x x  ,  3
3

5 3
2 2

( )P x x x  ,   4 2
4

35 30 3
8 8

( ) xP x x  
8

 

The typical task is to represent 3x  as a sum of the Legendre polynomials.  The standard method is to 

project out the coefficients.  

The Long Method:  First one assumes that a general expansion exists: 
1

( ) ( )m m
m

f x a P




 x

m

m

. The 

second step is to multiply by a Legendre polynomial that might be represented in the sum. 

 . The next step is to integrate the equation from -1 to 1.  
1

( ) ( ) ( ) ( )n m n
m

P x f x a P x P x






1 1

1 1
1

( ) ( ) ( ) ( )n m n
m

P x f x dx a P x P x dx


 


   

The equation is simplified by invoking the orthogonality relation:  

1

1

2
2 1( ) ( )n m

mn
mP x P x dx 

   

Substituting,  

1 1

1 1
1 1

2 2
2 1 2 1( ) ( ) ( ) ( )n m n m m

m m
n

mn
m nP x f x dx a P x P x dx a a 

 
 

       

Rearranging  

1

1

2 1
2 ( ) ( )n n
na P x f



  x dx  

The Short Method: In practice xn can be represented as a sum of the polynomials of order n or less.  

Even- or odd-ness is a distinguishing behavior.  So x3, as 3 is odd, requires only odd polynomials of 

order less than or equal 3.   

     3 3
3 1

5 3
2 2

( ) ( )x a P x b P x a x x b x        

Match the highest power first:  3 35
2

1 x a x   or 2
5

a  . This choice leaves an excess of 

  1
3 3 32

5 2 5 5
( )x x P    x  which is easily remedied by adding 1

3
5

( )P x .  It follows that 

   3
3 3

32
5 5

( ) ( )x P x P x  .   

 

In general, after the highest power n is matched, a multiple of the n - 2 polynomial is added to kill off 
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the x 
n – 2 term. Onward to n - 4 and so on until then = 0 or 1 term is reached, and the task is 

accomplished. 

 

Matthew Davis Method for Generating Matrix Representations for the raising and lowering 

operators.: Use this method once or twice and then try the row-column approach introduced below. 

 

The matrix that represents an operator is defined as: 

1 1 1 2 1

2 1 2 2

ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ

N

m n
mn

N N

u O u u O u u O u

u O u u O u
O O

u O u

 
 
       
 
 
 


    

 

ˆu O u  

where the set { |u1, |u2|ui is the chosen basis set for the representation of operators 

and vectors for the space. The Matthew Davis method is to be demonstrated in the case of the lowering 

operator encountered in the quantum harmonic oscillator problem. The basis set is represented as { |0, 

|1|n,  ....  , ... } where (0 n < ). (One must remember that the states rows and columns are 

numbered from zero for this problem.) The action of the lowering operator is ˆ 1a n n n   and the 

state vectors satisfy the ortho-normality condition n|m = mn. Each matrix entry  is ˆ
mn

a 
 

, 1ˆ ˆ 1 m nn nm a n m a n m n     . Recognizing that many errors can be avoiding by 

breaking a task into a series of simple steps, the Matthew Davis method to construct matrices for 

raising and lowering operators uses the result ˆ
mn

a 
 

= , 1m nn    to fill in a matrix for a representative 

array of row numbers m and column numbers n. Evaluation of the entries is postponed and treated as a 

separate step. 
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0,0 1 0,1 1 0,2 1 0,3 1 0,4 1 0,5 1

1,0 1 1,1 1 1,2 1 1,3 1 1,4 1 1,5 1

2,0 1 2,1 1 2,2 1 2,3 1 2,4 1 2,5 1

3,0 1 3,1 1 3,2 1 3,3 1 3,4 1 3,5 1

4,0 1 4,1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1

\

ˆ

n
m

a

     

     

     

     

 

    

    

    

    






0 1 2 3 4 5

0
1
2
3
4
5









1 4,2 1 4,3 1 4,4 1 4,5

5,0 1 5,1 1 5,2 1 5,3 1 5,4 1 5,5 1

2 3 4 5

0 1 2 3 4 5

   

     
   

    

 
 
 
 
 
 
 
 
 
  

1



 

Evaluation: 

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 4 0

0 0 0 0 0 5

0 0 0 0 0 0

â

 
 
 


 
 
 
 
  




0 1 2 3 4 5

0
1
2
3
4
5


     on the first super diagonal column #

Breaking a task into a sequence of simpler steps decreases the likelihood of errors. 

 

The row-column approach: = ˆ
mn

a 
 

, 1m nn    or = 
,

ˆ
row col

a 
 

,row colcol  1  where row is the row 

number and col is the column number. The Kronecker delta ensures that all the elements are zero 

except for those for which the row number is one less than the column number. Each element in this 

set is one row above an element on the main diagonal (the elements with row number equal to the 

column number). That is all the non-zero entries are on the first super diagonal, and each entry on the 

super diagonal is the square root of the column number. 

 

The elements with column number one less than their row number form the first sub-diagonal. 
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1 2 3 4

1 2 3
1

1 2
2 1

1
3 2 1

4 3 2 1

D D D D D

D D D D D

D D D D D

D D D D D

D D D D D

 
 




  






 

  
 

D: diagonal element 

Dn: element on the nth
 super diagonal 

Dn: element on the nth sub-diagonal 

 

 

 

Warm Up Problems: 

VSA1. A collection of elements must have two operations defined to be a vector space. What are they? 

Give the vector space axioms related to each of these operations. 

 

VSA2. Give the definition of linear dependence of a set of vectors. Use the definition to class and to 

justify the classification of the following sets as linearly independent or as linearly 

dependent. ˆˆ ˆ ˆ, ,3i j i k ,  ˆ ˆ ˆ ˆ, ,3i j i j ,  ˆ ˆ ˆ,i j i j   and  ˆˆ ˆ ˆ ˆ ˆ, ,3 3i j i j i j k    . 

 

VSA3. Develop the Gram-Schmidt basis sets from:  ˆˆ ˆ ˆ, ,3i j i k ,  ˆ ˆ ˆ ˆ, ,3i j i j ,  and 

 ˆˆ ˆ ˆ ˆ ˆ, ,3 3i j i j i j k     working with each vector in the order that it appears. Give the dimension of 

the space spanned in each case. 

 

VSA4. Show that the collection of elements of the form 1 1 1 1
ˆˆ ˆv a i b j c   k  where ai, bi and ci can be 

any real number is a vector space if addition is defined as: 

1 2 1 2 1 2 1 2
ˆˆ ˆ( ) ( ) (v v a a i b b j c c       ) k  and scalar multiplication is defined as: 

1 1 1
ˆˆ ˆd v d a i d b j d c k   1  where d is any real number. 

 

3/10/2010 Physics Handout Series: More Linear Vector Spaces      VSM-23 



VSA5. State the axioms for an inner product. Show that an inner product defined as 

x x y y zA B A B A B A B   z  satisfies those axioms for the space of vectors of the form ˆˆ ˆ
x y zA i A j A k   

where Ax, Ay, and Az can be any real number. Use ˆ ˆi j ije e    where { , . 1 2
ˆˆ ˆ ˆ ˆ, } { , ,i j k e e 3̂}e

 

Problems: 

 

1.) Prove that if a set of n (numbered 1 to n; left to right) non-zero vectors is linearly dependent, that 

one of the vectors can be expressed as a linear combination of the previous members (ones numbered 

lower).  Further that member can be removed from the set without the loss of any vectors from the 

span of the original set of n vectors.  You may assume that the span of any set of vectors is a vector 

space. 
 

2.) Suppose that you have a space  which is the span of a set of n vectors 1 2{ , ,....., }nV V V  and 

you have a set of m linearly independent vectors 1 2{ , ,....., }mW W W  . Show that the Ws can be 

used to replace m members of the original set to yield a set 1 2{ , ,....., , ( ) }mW W W and n m of the Vs  

that is a spanning set for the entire space .  Conclude that m n .  APPROACH: Study the definitions of 

all the terms.  Use the axioms and previously established results related to linear independence.  Base your 

solution on the Replacement Lemma.  When you substitute the second W  into the spanning set you cast out a 

'current' member.  What member must you argue is not cast out?  Assume that one (or more) W 's remains 

outside the spanning set after the n  V 's have been replaced by n W 's.  What property of the W 's would 

be contradicted? 
 

3.) Prove that if your have a basis set B1 with m members and a basis set B2 with n members for the 

same space  then m = n. APPROACH: Use problem VS2. 
 

 
 

4.) Prove that the largest number of vectors in a linearly independent set of vectors in an n dimensional 

space is n.   That is: If you have a set of n +1 vectors in an n dimensional space, then the set must be 

linearly dependent. APPROACH: Use the properties of a basis set and problem VS2. 
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5.) Consider a spanning set  ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 , 2 2 , 2 2 2i j k i j k i j k      ˆ .  Apply the Gram-Schmidt 

procedure to find an orthonormal (orthogonal and unity normalized) basis.  What is the dimension of 

the space spanned by this basis set? 
 

6.)  A set has members of the form  1 2 3I a e b e c e     where the constants ai, bi, and ci are 

arbitrary real numbers, the components of the vector.  Addition is defined by the relation 

     1 2i j i j i j 3I J a a e b b e c c e        and scalar multiplication by 

     1 2d I d a e d b e d c e   3 . This set satisfies the requirements to be a vector space.  

a.)  The basis vectors ie  have the following inner products i j ije e   as they are orthogonal and 

normalized.  Find an expression for J I  where 1 2i i i 3I a e b e c e    and  

1 2j j jJ a e b e c e   3 . Note * * *
1 2j j jJ a e b e c e   3   for a complex vector space. 

See property I3 of the inner product. 

b.) Find the component of J  along 2e .   What is a component ?  You should create a definition! 

 

7.) Given any two vectors in an inner product space A  and B , prove the Schwarz Inequality: 

A B A B .    Use the vector 
1

C A B B B A B


      and the properties of an inner 

product.  The form of the vector C  reminds you of a procedure studied in this handout. Name that 

procedure. Study the dagger operation as it provides the rule for computing the BRA vector conjugate to a 

given KET vector.  Recall that 
2

V V V . 

 

8.) Argue that 2A B B A A B  .  Hint: Regard A B  as an arbitrary complex number.  

 

9.) Use the Schwarz Inequality: A B A B , the previous problem  and 
2

V V V  to 

establish the triangle inequality: The magnitude of the sum of two vectors is between the magnitude of 

the difference of the magnitudes of the two vectors and the sum of their magnitudes.       
A B A B A B       Compare the expressions 
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2
2A B A A A B B    B  and 

2
A B  with the expression for 

2
A B . 

A

B

 A + B

 

10.) A vector is expanded in terms of a basis set as  1 2 3I a e b e c e     where the constants ai, 

bi, and ci are scalar values. Show that the components of the vector, the values ai, bi, and ci, are 

unique. HINT: Review the definition of a basis set. 

 

11.) A space of 3rd order polynomials is defined with domain the interval [-1,1]. An inner product for 

functions on that interval is defined to be:  

1

1
( ) ( )g f g x f x dx


   

A possible basis set for the space is { 1, x, x2, x3 }.  Choose 1 1B   and then work upward power by 

power.  Use the Gram-Schmidt process to develop an orthogonal set of vectors (polynomials). Apply 

the normalization condition the Pn( 1) = 1  to set the overall scaling (normalization of the polynomials. 

From Mathematica: 

LegendreP[2,x] = 231
2 2 x  ;  LegendreP[3,x] = 33 5

2 2x x  .(See Boas p. 485.) 

 

12.) A space of 3rd order polynomials is defined with domain the interval [-,]. An inner product for 

functions on that interval is defined to be:  

2
( ) ( ) xg f g x f x e dx

 


           Note the weight function: 

2xe  

A possible basis set for the space is {1, x, x2, x3 }.  Choose 1 1B   and then work upward power by 
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power.  Use the Gram-Schmidt process to develop an orthogonal set of vectors (polynomials). The 

resulting polynomials are the Hermite polynomials that use yet another weird normalization. For the 

nth order polynomial, the lead term is 2n xn. Multiply the Gram-Schmidt result by whatever factor is 

necessary to yield the desired highest order term. (See Boas p. 530.)  

From Mathematica:   HermiteH[2,x] = 24 x 2 ;  HermiteH[3,x] = 38 12x x .   

 

    22 31 1
2 2 ...n xx e dx n n

 


   2  

The integral vanishes for odd powers of x. 

 

13.) An infinite dimensional function space is defined with domain the interval  

[-,]. An inner product for functions on that interval is defined to be:  

( ) ( )g f g x f x dx



    

A possible basis set for the space is: 
       2 2 2 2

2 3/ 2 / 2 / 2 / 2
, , ...1 , ,

x x x x
e x e x e x e
    

 
 

.  Choose 

 2

1

/ 2
1

x
B e


  and then work upward using  2

1

/ 2n
n

x
B x e


  as an initial basis function.  Use the 

Gram-Schmidt process to develop an orthogonal set of vectors (functions). The resulting functions are 

the Hermite functions and are to be unity normalized using the prescribed inner product. Find the first 

four Hermite functions. (Compare with the harmonic oscillator wave functions found in Harris or 

Eisberg.) Hint: One could just apply the unity normalization to the results of the Hermite polynomial 

problem above. What happened to the weight function? 

Use: 
2xe dx 

 


  and     22 31 1

2 2 ...n xx e dx n n
 


   2  

The integral vanishes for odd powers of x. 

 

14.) a.) Use the Gram-Schmidt procedure to create an ortho-normal basis from the spanning set 

 ˆ ˆˆ ˆ ˆ ˆ; 2 ;i j k i j k k    ˆ .  What is the dimension of the space spanned by the set?  Start with  

1
ˆˆ ˆB i j k    and work to the right. 
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b.) Consider the space spanned by the set of vectors:  ˆˆ ˆ ˆ ˆ, ,i j k i j k   ˆ .  Use the Gram-Schmidt 

procedure to create an ortho-normal basis for the space. What is the dimension of the space?  Start with  

1
ˆˆ ˆB i j k    and work to the right. 

 

c.) Consider the components of each of the vectors in the initial spanning set as the row of a matrix. 

Compute the determinant of that matrix for the case of exercise one and for the case of exercise two. 

Comment on the outcomes. 

 

15.) a.) Starting with B1 apply the Gram-Schmidt procedure to develop an ortho-normal basis set 

from:  1 2 3
ˆ ˆˆ ˆ ˆ; ;B i k B i j B k      

b.) Compare with the results for the set   1 2 3
ˆ ˆˆ ˆ ˆ; 2 ; 3B i k B i j B k     . 

c.) Compare with the results for the set 1 2 3
ˆ ˆˆ ˆ ˆ; ;B i j B i k B k     . 

d.) Compare with the results for the set 1 2 3
ˆˆ ˆ ˆ; ; ˆB i k B i j B i     .  

 

The Replacement Lemma:  Suppose that  1 2, ,..., mv v v  spans a vector space . 

Given any non-zero w    , the vector w  can be substituted into the spanning set for one of the 

v 's (say iv ) and the resulting set  1 2 1 1, , , , , , ,i i mw v v v v v    still spans the space .   

 

16.) The set of vectors ˆˆ ˆ ˆ ˆ ˆ{ , , } { , , }x y zi j k e e e

ˆ ˆ ˆ

 is a complete orthonormal basis set for three dimensional 

vectors such as x x y y z ze A e A e  A A


 and ˆ ˆ ˆx x y y z zB B e B e B e  


. Adopt the new notation where 

{|1, |2|3} represents ˆ ˆ ˆ{ , , }x y ze e e  and A|B represents A B
 

.  

a.) What are 2|B and 1|A?   What are 1|23|3 and m|n

b.) Evaluate 
3

1

ˆ ˆ(m m
m

e e A


)


 and  
3

1

ˆ ˆ( )m m
m

e e B





.   

c.) Write out  in the new notation. Repeat for 
3

1

ˆ ˆ(m m
m

e e A




)

3

1

ˆ ˆ( )m m
m

e e B





. 
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d.) Consider 
3

1m

m m

  as an operator on the three dimensional space of vectors. Let |V be an 

arbitrary three dimensional vector in this space. What is {
3

1m

m m

 }|V 

e.) It is said that 
3

1m

m m

  is equal to 1. What is 1|V 

f.)  What is {
3

1n

n n



3

1m

m m

 }|V ? 

g.) Compare  and A|{
3

1n

n n



3

1m

m m

 }|B = 

3

, 1

{ }
m n

A n n m m

 B }  Evaluate n m . 

Execute the sum over n. Finally, execute the sum over m. 

h.) Rewrite A|{
3

1n

n n



3

1m

m m

 }|B using summation convention. That is with summations over 

repeated indices being implicit removing the need for the ’s. 

i.) Would it make sense to say that 
3

1m

m m

  is equal to 1? Would it make sense to say that 

2

1m

m m

  is equal to 1. Why not?  The sum should be over the vectors in a complete orthonormal 

basis set. The operator 
2

1m

m m

  maps vectors into their projections onto the x-y (1-2) plane. 

 

17. The span of a set of vectors:  Consider all the vectors that can be represented as ia I  where 

the ai are arbitrary scalar coefficients. The set  = ..., ,...I  is said to span the space of elements 

ia I . 

Span( ..., ,...I ) = ...., ,.....ia I  for any  ia    . 

a.)  The members of the set  = ..., ,...I  are linearly independent. This linearly independence 

immediately identifies one vector that cannot be a member of the set. What is that excluded vector? 
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b.) The representation of a vector as a linear combination of vectors in a linearly independent set is 

unique. Prove this proposition. Begin by assuming that there are two distinct linear combinations of 

the vectors that equal the vector |v. 

1 2 1 21 2 ... and 1 2 ...N Nv a a a N v b b b N         

Show that this assumption leads to a contradiction. It follows immediately that 

1 2 1 21 2 ... 1 2 ...Na a a N b b b N       N  requires that ai = bi for1  i Compare this 

problem with FS3 and LS9. Add the result from the next problem and compare again! 

 

Consider displacements of lengths 2 meters and 3 meters whose direction make an angle of 750 with 

respect to one another. Are these displacements linearly independent? A third displacement is added 

to the set. What character must it possess if the set of the three displacements is to be linearly 

independent? 

 

18.) Consider a set of vectors that is mutually orthogonal. That is: every member has a vanishing inner 

product with every other member of the set. Prove that the set of vectors is linearly independent. Well, 

slow down a little. There is one trivial little bothersome vector that can never appear in a set that is to 

be linearly independent. a.) What is that irksome little vector? b.) Add the statement that the irksome 

vector is not a member of our set of mutually orthogonal vectors and prove that such a set of mutually 

orthogonal vectors is linearly independent. The conclusion is that, absent |zero, a mutually orthogonal 

set is linearly independent so all propositions proven for linearly independent sets are also true for 

mutually orthogonal sets. Note that |zero cannot be a member of an orthonormal set.

 

Consider a set of three mutually perpendicular (orthogonal) displacements. Are they linearly 

independent? 

 

19.)  Consider operators defined by their actions on a set of vectors as:  

ˆ 1a n n n   and ˆ 1 1b n n n    where mnm n   

The vector labels are the real positive integers: (0 n < ). Show that 

 ˆ ˆ ˆ for all andm nb m n m a n a m n  . Note that you must get must get the operator to the 

KET side to use its defined operation. Use inner product property I3: 
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*

ˆˆ ˆ n b mb m n n b m


  

 . This final result suggests that there might be a special 

relationship between the operators  and . What is that relationship? â b̂

 

20.) Consider the vector space  containing all the vectors that are linear combinations of the 

orthonormal basis set  0 , 1 , 2 ,...,...  introduced in the previous problem.  (READ the previous 

problem before proceeding. The task is to be repeated the previous problem for  and  acting on 

general vectors rather than just on basis vectors. Note that even the most general vector can be 

represented as a linear combination of the basis vectors.) 

b̂ â

General Vectors: *

0 0 0
n k m

n k m

c k c m    
  

  

    c n  

The operators defined by their actions on a set of basis vectors as:  

â n n n 1  and ˆ 1 1b n n n    where mnm n   

It follows from the previous problem that  ˆ ˆ ˆ for all andm nb m n m a n a m n  .  

Show that, in general, ˆˆ ˆ|a a b        for all  and  in the space. This result firmly 

establishes that .  ˆ ˆ( )b a †

 

It must be shown that ˆâ b     for all vectors | and |   to show that . We 

conclude that it is only necessary to verify the adjoint property of a linear operator for all the vectors in 

a basis. It then follows for all vectors in the space using linearity and the fact that any vector in the 

space is a linear combination of basis vector.

ˆ ˆ( )b a †

 

In as much as the operators are linear, the result in the previous problem that 

ˆ ˆ for all andb m n m a n m n  in the basis set ensures that: ˆâ b    . 

 

21.) Consider the bizarre operators defined by their actions as:  (0 n < )

ˆ 1a n n n   and ˆ 1 1a n n n  † . Sketch the forms of the matrices for these operators. The 
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state vectors satisfy the ortho-normality condition n|m = mn. Each matrix entry [ ]mn is â

ˆm a n m a n ˆ . By repeating the operations, it follows that: 2ˆ ( 1 2a n n n ) n   ; 

ˆ ˆa a n n n†  and  2
ˆ ( 1)( 2) 2a n n n n   † . What is ˆ ˆa a n† ? What is ˆ ˆ ˆ ˆ( )a a a a n† † ? 

 

22.) Sketch the forms of the matrices for the operators: ;  and 2â ˆ ˆa a†  2
â† . Show that these results 

can be found as corresponding matrix products of the matrices for the individual operators  and â â† . 

 

22.1) The quantum oscillator state | k is represented by the column vector with zeroes everywhere 

except in row k + 1. (Recall that the QHO representation starts at n = 0.) Form the column vector (the 

first six rows) that represents the state |2. Matrix multiply on the left by the matrices representing ; 

 and  . Identify the result of the multiplication in each case. 

2â

ˆ ˆa a† 2
â†

 

22.2) The quantum oscillator state | k is represented by the column vector with zeroes everywhere 

except in row k + 1. (Recall that the QHO representation starts at n = 0.) Form the column vector (the 

first six rows) that represents 1
2

1 3[  ]. The hamiltonian is  0 ˆ ˆ ˆ ˆ½ a a a a   
† †  and ˆ ˆ ˆ ˆa a a a  

† †  

has a matrix representation that is diagonal with diagonal values 2 n + 1. That is: the element in (row 0, 

column 0) is 1. The matrix representation for the state bra is the Hermitian conjugate (complex 

conjugate of the transpose, a row vector). Display it. Use the matrices to compute 

1 1
2 2

1 3 | 1 3[     ], the normalization inner product, and 1
2

ˆ1 3 |H   
1
2

1 3[ ] , the 

expectation value of the energy in the state. For 1 1
2 2

ˆ1 3 | 1 3[ ]H     , 1
2

1 3[  ] is a column 

vector which is multiplied by the matrix that represents Ĥ which, in turn, is multiplied on the left by 

the row matrix that represents the bra, 1
2

1 3    . Repeat the calculations for the general state | = 

0
k

k

a k



  so that the matrix representing | is the column matrix of the ak’s . What interpretation do 

you assign to the value am* am?
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23.) It is proposed that the inner product of complex-valued functions with the domain of the real line 

(, - ) be defined as: [ ( )]* ( )x x dx   



  . The operation returns a scalar value as required. 

Show that the proposed definition meets the requirements of the four axioms for inner products. The 

space of function is restricted to functions (x) such that 2| ( ) |x dx


  is defined  that is: functions 

that are square integrable. 

 

24.) Suppose that [ ( )]* ( )x x dx   



   is a valid inner product for complex-valued functions 

with the domain of the real line (, - ). What can be said about the values |, | and |? 

What name is associated with the relationship that you propose?

 

25.) Show that V|ZERO  = 0 for all vectors |V . Build your proof on the properties of the inner 

product. 

 

26.) Suppose that |n is represented by a column vector with zeros in each row except for row n which 

has a one. (Recall: rows are numbered 0, 1, 2, … .) Multiply a column matrix for the state n on the left 

by matrices that represent ˆ anda †

  
â âˆ anda † . Do the matrices provide a faithful, working 

representation of the operators and states? Let them operate (multiply) the column vector for the state 

|3. What matrix representation would you choose for m|? … for the inner product m|n? Do your 

results support the claim that the matrix representing an operator is the complex conjugate of the 

transpose of the matrix representing the adjoint operator? Start by examining the matrices ˆ anda â†

  
 for 

. In matrix-speak, the complex conjugate of the transpose is called the Hermitian conjugate.ˆ anda †â

ˆ

 

27.)  Show that for two operators  that 1 2
ˆ andO O 1 2 2 1

ˆ ˆ ˆ ˆO O O O   
† † † . The Hermitian conjugate of a 

product of operators is the product of the Hermitian conjugates of the individual operators taken in the 

reverse order.   

Compare with the results for matrices that: (     )
t
 = 

 t
 

 t
 and (     )

-1 =f 
-1

 
-1
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28.) Given an operator   and its Hermitian conjugate Ô Ô† , show that the operators   

ˆ ˆ ˆ½[ ]S O O  †  and 2
ˆ ˆ ˆ[iA O O  †]  are Hermitian.  Note that the defining property for the conjugate 

or adjoint operator involves replacing an action on the KET by an action on the BRA. Which of the 

inner product axioms involves interchanging BRAs and KETs? 

 

 

29.)  Once a basis set has been identified for a vector space , operators on that space can be 

represented by matrices that reference that basis set. Suppose the basis set  is { … , |n … , |m, … }. 

The matrix that represents the operator  has elements Ô 0
mn

 
 

 = m| |n. Find the relation that 

defines the adjoint operator † and copy it as an initial step. Use this relation and the properties of the 

inner product to show that m| |nm|( |n and †m| nn|| †m*. That is: 

. Use this to show that the matrix that represents a Hermitian operator is equal to 

the complex conjugate of its transpose. The complex conjugate of the transpose of a matrix is called its 

Hermitian conjugate. The symbol 0  is the rectangular array of numbers that represent the operator  

given the choice of basis 

Ô

Ô

Ô

Ô Ô Ô

 *0 0
mn nm

        
†


Ô

. (The exact values in that array depend on the choice of basis just as the 

three components of the gravitational, the linear array of three numbers representing , field depend 

on the choice of the basis vectors  the orientation of the axes. This issue is tackled in the linear 

transformations handout.) 

g


 

 

Quantum Problems: 

1.  Prove that eigenvalues of Hermitian operators are real. 

2.  Prove that eigenvectors of a Hermitian operator with distinctly different eigenvalues are orthogonal. 

3.  Starting from the energy eigenvalue equation H |> = E | >, show that by expanding in a 

complete set of states |j> that this becomes the matrix equation 

j
ii H j j E i    

4.  Show that the commutator    ipx x ,  
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5.  Show that the commutator    
dx

dV
ipV x ,  

6.  Starting from the basic equation which gives the time evolution of expectation values, 

show that Vp
dt

d
 ,  which can be interpreted as the equivalent  Newton’s Equation of 

Motion  
dp

/dt = F from kindergarten physics. t

A
HA

i
A

dt

d




 ],[
1
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