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A simple strategy is presented for solving the “inverse rocket” problem of a particle accumulating
material from a medium through which it falls vertically. Some forms of drag can also be easily
included, thereby changing the constant acceleration to a more realistic value.
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Sokal1 has introduced a general version of the problem of
a raindrop accumulating mass as it falls through mist and
solved it using the chain rule and an integrating factor. In this
Note, it is shown that his solution can be simplified by using
momentum as the dependent variable, making the solution
more accessible to introductory physics majors. In addition,
the problem is further generalized to include a drag force.

In the absence of drag, Newton’s second law for the drop
is

dp

dt
= mg , �1�

where p=m� is its momentum and the gravitational field g is
assumed to be constant. The mass accretion rate is assumed
to scale with powers of the mass �or size� and speed of the
drop,

dm

dt
= �m��� = �m�−�p�, �2�

with values of the parameters ��0, 1���0, and ��0
chosen to ensure stability. Dividing Eq. �1� by Eq. �2� gives

p�dp =
g

�
m1+�−�dm , �3�

which has the general solution

p1+�

1 + �
=

gm2+�−�

��2 + � − ��
+

C

1 + �
, �4�

where the last term is a constant of integration. If we substi-
tute p=m�, Eq. �4� becomes the same as Sokal’s solution.

Drag can be included by adding a term to the right-hand
side of Eq. �1�,

dp

dt
= mg − �m��� = mg − �m�−�p�, �5�

with ��0 and ��0 and where the same exponent � for m is
used for the drag and mass accretion terms because both
effects are expected to scale similarly with the size of
the drop.2 Solving Eqs. �2� and �5� simultaneously is straight-

forward when �=1+�, which includes the important special
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cases �=1 and �=0 �linear drag with speed-independent
mass accretion� and �=2 and �=1 �quadratic drag with lin-
ear speed accretion�. The solution when �=1+� can be ob-
tained by dividing Eq. �5� by Eq. �2�, which leads to

dp

dm
+

�

�

p

m
=

g

�
m1+�−�p−�. �6�

The left-hand side of Eq. �6� suggests changing the depen-
dent variable to u=m�/�p, which yields3

u�du =
g

�
m�1+���1+�/��−�dm �7�

as a generalization of Eq. �3�. This separated equation can be
integrated. Rewriting the resulting solution in terms of �

gives

�1+� =
g�1 + ��m1−�

��2 + � − �� + ��1 + ��
+

C

m�1+���1+�/�� . �8�

We let C=0 �assuming �=0 when m=0� in Eq. �8�, differen-
tiate it with respect to time t, and then substitute Eq. �2� into
the right-hand side and find the acceleration a�d� /dt to be a
constant,

a =
ng

1 + ��1 − n�/�
, �9�

where n��1−�� / �2+�−��. This acceleration reduces to
Sokal’s drag-free result for �=0. By including a value for �

of the order of 100�, the acceleration of a raindrop can be
reduced to a more realistic value4 of a few thousandths of g
�for typical values of n of a few tenths�.
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