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Infrared Spectropolarimetric Bidirectional Reflectance
of LIDAR Targets and Building Materials—C.E. Mungan, Spring 2000

Introduction

Measurements of the reflectances of a variety of different lidar target samples and building

construction materials have been performed under ambient conditions for a variety of incident

and scattering angles in the near-infrared over all possible polarization states. This gives what is

called the spectropolarimetric bidirectional reflectance. The target samples are of interest for

laser radar calibrations, while the building materials are applicable to remote sensing

applications. A Fourier-transform spectrometer (shown in Fig. 1) fitted with an external

reflectance goniometer and with an incident and scattered polarization generator and analyzer,

respectively, was used for this purpose at Eglin Air Force Base.

Fig. 1. Photograph of the Fourier transform interferometer at Eglin AFB.
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Experimental Setup

Fig. 2. Raw intensity spectrum of the source.

The Xe arc lamp spectrum in Fig. 2 shows discrete atomic emission lines, superimposed on

top of a smooth thermal background. This blackbody background spectrum looks weak only

because of the sharpness of the atomic lines; in fact, the thermal spectrum has enough strength

for spectroscopy and the sharp lines are not of interest. In order to eliminate residual unratioed

features at these strong lamp spectral peaks, the reflectance data were smoothed slightly.

The most general mapping of the bidirectional reflectance distribution function (BRDF) of a

flat sample requires that four angles be continuously variable over the hemisphere about the

sample’s normal: the incident polar and azimuthal angles, θi and φi, and the reflected angles, θr

and φr. These angles are sketched in Fig. 3. Note that the sample normal defines the z-axis, while

the x-axis can be chosen to coincide with some preferred surface feature of the sample, such as

striations, a crystallographic direction, or an optical axis. For an isotropic surface, having no such
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preferred features, the BRDF is a function only of φr – φi and not of the two azimuthal angles

individually. The samples investigated in the present study are assumed to be isotropic when

averaged over the area of illumination scattered into the detector aperture. Arbitrarily fixing φi at

0˚ by suitable choice of the coordinate system, this means that the BRDF only depends on φr.

Fig. 3. General geometry of the incident and reflected beams.
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The spectropolarimetric reflectometer at Eglin AFB has the following geometry, as sketched

in Fig. 4. The output retarder and polarizer, together with the mirror and detector, rotate around

the sample on a motor-driven stage. The sample also rotates on an independently driven stage. A

particular choice of the detector and sample positions fixes the incident and reflected polar

angles. (Note carefully that the z-axis in Fig. 3 has been rotated by 90˚ in Fig. 4, so that rotations

of the two stages determine the polar not the azimuthal angles.) In principle, out-of-plane

azimuthal measurements can be performed by tilting the sample about the axis parallel to the

optical bench in the plane of the sample. However, in the present work, only in-plane

measurements (i.e., φr = 180˚) were made, in which the sample normal lies in the plane of the

incident and reflected beams.
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Fig. 4. Block diagram of the spectropolarimetric reflectometer.

Legend: A = attenuators, P = linear polarizer, R = achromatic retarder,

M = off-axis parabolic mirror, D = silicon detector.
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The device in Fig. 4 can be conceptually divided into three parts: a spectrometer, a

polarimeter, and a reflectometer. The spectrometer modulates the radiation from the Xe arc

source using a scanning Michelson-Morley interferometer with a quartz beamsplitter. The

parameters for the spectrometer are as follows:

• speed of the scanning mirror = 5 kHz

• electronic filter = 5 kHz

• undersampling ratio = 1

• resolution = 16 cm-1

• aperture = fully open

• number of scans to co-add = 64

• wavelength range = 0.65–1.06 µm
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The modulated beam exits the spectrometer through its external port. Attenuators can be inserted

or removed into this beam, as needed to limit the signal strength which ultimately falls on the

detector to ±10 V. In addition, the sensitivity (which is an electronic gain) can be adjusted to

boost weak signals; typically a sensitivity of 1 was used for the reference scans and a value of 16

for the sample scans.

The polarimeter consists of two matched pairs of polarizers and retarders. On the input side,

the unpolarized incident beam first passes through a dichroic sheet linear polarizer, and the

resulting linearly polarized beam next traverses an achromatic two-plate MgF2 retarder, whose

slow axis is delayed by a quarter wavelength compared to its fast axis. By rotating the optical

axis of the retarder, it is possible to encode any desired elliptical polarization state into the

harmonics of the intensity signal (Chenault et al., 1998), i.e., with the major axis oriented at any

desired angle, of either handedness, and with any desired ellipticity between 0 (circular) and 1

(linear). On the output side, the reflected beam passes through a matching polarizer-retarder

combination in the opposite order. By suitably rotating the optical axis of the retarder, it is

possible to transform any elliptical polarization state into a linearly polarized wave which can be

analyzed by the linear polarizer. The polarimetric properties of a sample can be described in

terms of its Mueller matrix, which is a 4 × 4 matrix M defining the transformation of the incident

polarization state into the reflected polarization state—cf. Eq. (13) below.

Finally, the reflectometer consists of the rotating sample and detector stages. There are two

ways of specifying the incident and reflected angles (cf. Fig. 5): either relative to the sample

normal, or absolutely with respect to the optical bench. The former pair are the polar angles θi

and θr defined previously in Fig. 3. By choice of our x-axis, θi is always positive. Taking φr to

always be equal to 180˚ implies that θr is positive whenever the reflected beam lies on the other

side of the sample normal than the incident beam, which is hereafter referred to as forward

scattering. On the other hand, θr is taken to be negative for backward scattering, when the
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incident and reflected beams both lie within the same x-z quadrant. Although this is contrary to

the usual convention for the specification of polar angles, it simplifies the notation in the present

work. The absolute angles θd and θs are measured with reference to the incident direction, using

the convention that positive angles are measured in the clockwise direction and negative angles

in the counter-clockwise direction. (This is not actually contrary to the standard convention for

plane polar angles, because the incident beam points in the –x direction according to Fig. 3.)

With these definitions, the conversion formulae from relative to absolute angles are

θ θ
θ θ θ

s i

d i r

= −
= − −

  and

180˚ .
(1)

Fig. 5. Specification of the incident and reflected angles.
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It is conventional in optics to employ the relative angles; for example, specular scattering

corresponds to the case of θr = θi, while monostatic scattering (also referred to as backscattering)

corresponds to θr = –θi, so called because in radar work it corresponds to using the same antenna

both as the source and as the detector (as opposed to separate transmitting and receiving dishes

for the bistatic case). However, it is simpler from the point of view of the experimental setup of

Fig. 4 to use the absolute angles in practice. The absolute zero angle can be found for θd by

peaking up the signal in the absence of a sample, and for θs by replacing the sample with a flat

mirror and checking that the incident beam is reflected straight back toward the source.

Combining the spectrometer, polarimeter, and reflectometer components, it is evident that a

data run consists of measuring a 4 × 4 array of spectra for each of a variety of different incident

and reflected angles. Each data run is begun by collecting calibration data with no sample in

place and with the detector looking straight back at the source through the spectrometer

(i.e., θd = 0˚). This generates both a background reference spectrum for determination of the

reflectance, and error corrections for the retarders and polarizers. There are five possible errors,

indicated as small angles ε in Fig. 6: discrepancies in the 90˚ retardances δ of the quarter-wave

plates and orientation misalignments of the output polarization axis and of the retarder optical

axes. (The input polarization axis is not crucial because the source beam is unpolarized and the

polarizers remain fixed in orientation during the runs, in order to eliminate any possible

polarization dependence of the optics either before the input polarizer or following the output

polarizer.) Fortunately, the procedure for collecting the data and performing the Mueller matrix

calculations is automated. Nevertheless, it requires large amounts of time, generally on the order

of a couple of days per sample. A wealth of information can in principle be extracted from this

large quantity of data.
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Fig. 6. Polarization and retardation errors.
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Thirteen samples were selected for study in the present work: six construction materials and

seven lidar target board samples. They are all flat, square items measuring several inches on a

side. A brief description of each is presented in Table 1 below.
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Table 1. Description of samples studied.

Sample Description

Construction Materials

Foam blue polystyrene housing insulation

Drywall standard housing drywall material

Rubber piece of soft black rubber

Wood piece of standard plywood

Shingle speckled grey roof shingle

Steel steel plate painted military grey

LIDAR Target Boards

2% black paint

5% black paint with slight sparkles

10% black paint with more sparkles

A grey paint with a sandpaper texture

B grey-black paint with a sandpaper texture

E grey-white paint with a sandpaper texture

Resolution flat grey paint

In this report, the term “reflectance” always refer to the bidirectional reflectance, wherein

light incident from one direction—within a narrow element of solid angle Ωi defined by the

iris—is reflected into some other direction—within a narrow element of solid angle Ωr defined

by the detector aperture. Dividing the bidirectional reflectance by the projected reflection solid

angle, Ωr rcosθ , gives the BRDF.
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Theory of Polarized Light Scattering

The incident optical power P per unit illuminated area A of an object is known as the

illuminance H ≡ dP/dA in units of W/m2; the corresponding scattered quantity is called the

exitance. [Note that the element dA of area is taken to be small on the macroscopic scales of

interest, but large compared to the sub-resolution irregularities in the sample surface, and is taken

to be perpendicular to the macroscopic surface normal (Nicodemus, 1965).] When it is desired to

speak of either the illuminance or the exitance, without specifying which, this report will refer to

the irradiance of the surface. This is to be distinguished from the intensity of the irradiating

beam, I ≡ dP/(dA cosθ), where the cosθ term projects the element of surface area dA into the

direction of propagation of the beam, which is inclined at polar angle θ to the (macroscopic)

surface normal. The irradiance per unit projected solid angle is called the radiance or luminance,

which corresponds to the photometric concept of brightness, L ≡ dH/(cosθ dΩ) = dI/dΩ in units

of W/m2/sr. Here the element of solid angle is dΩ ≡ sinθ dθ dφ; sometimes (Nicodemus et al.,

1977) a separate symbol is also introduced for the element of projected solid angle cosθ dΩ,

though I will not do so here. Let the subscript i refer to incident quantities and r to reflected

(scattered) terms. The bidirectional reflectance distribution function (BRDF) can now be defined

as

f
dL

dH

dP

dP di i r r
r

i

r

i r r
( , ; , )

cos
θ φ θ φ

θ
≡ =

Ω
(2)

with units of sr-1; here dPi is the incident power illuminating dA from direction (θi,φi) and dPr is

the radiant power reflected from dA into the outgoing solid angle dΩr centered about the

direction (θr,φr). In the present work, all of the sample surfaces are macroscopically planar and

the incident beam has a spatially uniform (“top hat”) intensity profile, so that one can integrate

Eq. (2) over a macroscopic area A of the sample to get
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f
dP

P di r r i
r

i r r
( ; , )

cos
θ θ φ φ

θ
− =

Ω
(3)

where now Pi is the incident power illuminating A and dPr is the flux reflected from A into dΩr.

Since the surfaces investigated here are taken to be isotropic, f is a function only of φr – φi

(which is fixed at 180˚ in this study) as explained previously. Unlike reflectances, which cannot

exceed unity, the BRDF can be very large, becoming infinite for a purely specular reflector.

By integrating the BRDF over all scattered angles, one gets the dimensionless directional-

hemispherical reflectance

ρ θ φ π θ φ θ φ θ
π

( , ; ) ( , ; , )cosi i i i r r r rf d2
2

= ∫ Ω , (4)

which gives the fractional amount of power reflected into the entire hemisphere out of that

incident from a particular direction. (The integral over 2π is a shorthand meaning integrate θ

from 0 to π/2 and φ from 0 to 2π, for a total solid angle of 2π.) If instead one averages over all

incident angles, the hemispherical-directional reflectance is obtained as

d
d

f dr r
r r

i i r r i iρ π θ φ θ
π

θ φ θ φ θ
π

( ; , )
cos

( , ; , )cos2
2

= ∫Ω Ω . (5)

Note that the denominator is π and not 2π because of the cosθi projection factor. In the spirit of

Eqs. (4) and (5), the bihemispherical reflectance (or albedo) is given by

ρ π π
π

θ φ θ φ θ θ
π

( ; ) ( , ; , )cos cos2 2
1

2

= ∫∫ f d di i r r i i r rΩ Ω . (6)
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Other similar quantities, such as the conical-hemispherical reflectance, have been tabulated by

Judd (1967) and by Nicodemus et al. (1977). If the prefactor before the integral in Eq. (5) is left

off, the resulting quantity is instead called the hemispherical-directional reflectance factor, which

is defined as the ratio of the flux reflected by the sample to that which would be reflected by an

ideal Lambertian reflector for the same geometry, because f = 1/π for the latter (Mungan, 1998).

From the definition of the BRDF, the scattered radiance can be related to the incident

radiance by

L L f dr r r i i i i i r r i i

i

( , ) ( , ) ( , ; , )cosθ φ θ φ θ φ θ φ θ= ∫ Ω
Ω

, (7)

which can be rather complicated to evaluate analytically. The emissivity is given by Kirchhoff’s

law as

ε θ φ θ φ θ φ θ
π

( , ) ( , ; , )cosi i i i r r r rf d= − ∫1
2

Ω (8)

and is thus determined by the BRDF. Hence a separate measurement of the emissivity is not

required.

According to the Helmholtz reciprocity theorem, f(θi,φi;θr,φr) = f(θr,φr;θi,φi), so that either

direction may be that of the incident beam with the other the reflected beam. Note from Eqs. (4)

and (5) that this would imply that the directional-hemispherical reflectance equals the

hemispherical-directional reflectance factor; interestingly enough, however, equality of these two

reflectance terms remains true even when Helmholtz reciprocity does not (Nicodemus, 1970).

There has been considerable discussion about the conditions under which reciprocity holds

(Clarke and Parry, 1985; Kriebel, 1996; Shirley et al., 1997; Snyder, 1998)—for example, it

clearly does not apply to a Faraday isolator. It is generally accepted however that the theorem is

obeyed by most materials (including compound objects) under ordinary conditions and hence

models which are not reciprocal are generally considered unphysical and experimental failures
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are often attributed to measurement errors or limitations.

Equation (3) contains no polarization information and relates only the total incident and

reflected optical fluxes to each other. In order to quantify the polarimetric scattering, we need to

retain the phase information about the electric fields associated with the beams and not simply

their intensities. There are two alternative representations for doing so (Hecht, 1998). The Jones

calculus writes each electric field as a vector of two complex components, and the scattering is

then described by a 2 × 2 matrix. This formalism is not applicable to the present work, as it

implicitly assumes that each beam is fully polarized and coherent. To instead handle incoherent

light which is partially polarized in general, as we need here, each beam can be represented by a

column vector of four real components. This vector is called the Stokes vector S and its four

components are called the Stokes parameters {S0,S1,S2,S3}. These parameters can be defined

either operationally or from electromagnetic theory. To get the former, imagine a set of three

ideal polarizers, i.e., they perfectly transmit a specific polarization state and perfectly block the

complementary polarization state. (That is, their diattenuations, as defined below, for the

appropriate polarization states are 100%.) Note that each polarizer therefore transmits half of the

intensity of incident unpolarized light. Filter 1 is a linear polarizer whose pass axis is horizontal;

filter 2 is another linear polarizer but with a pass axis inclined at +45˚; and filter 3 is a right-

handed circular polarizer. (For the present case of surface scattering, these axes are defined

relative to the plane of incidence or reflection, as appropriate. That is, horizontal means

s-polarized and vertical means p-polarized.) Let I0 be the incident beam intensity, and denote the

intensities transmitted by each polarizer as I1, I2, and I3, respectively. Then the normalized Stokes

parameters are given by

S

S I I

S I I

S I I

0

1 1 0

2 2 0

3 3 0

1

2 1

2 1

2 1

=
= −
= −
= −

/

/

/

(9)
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so that S1, S2, and S3 each vary between –1 and +1 and specify the state of polarization: S1 > 0

means the beam is preferentially horizontally (H) polarized, while S1 < 0 indicates it is

predominantly vertically (V) polarized; S2 refers to the tendency to be linearly polarized at +45˚

(S2 > 0) or –45˚ (S2 < 0); and finally S3 indicates preferential right-handed circular (RHC) versus

left-handed circular (LHC) polarizations by its sign. If the normalized Stokes vector is multiplied

by the total beam intensity, then the unnormalized Stokes vector (denoted by a tilde) results,

S̃ S= I0 (10)

so that S̃ I0 0= . Alternatively, from an electromagnetic point of view, if the complex amplitude

of an electric field vector is written as ( , )E e E ex
i

y
ix y

0 0
ϕ ϕ

, then

S E E E E

S E E E E

S E E E E

x y x y

x y x y

x y x y

1 0
2

0
2

0
2

0
2

2 0 0 0
2

0
2

3 0 0 0
2

0
2

2

2

= − +

= +

= +

cos

sin

ϕ

ϕ

(11)

where ϕ ϕ ϕ≡ −y x  and the angular brackets denote time averages. From this we see that if the

beam is unpolarized, then E Ex y0
2

0
2=  and ϕ = 0 independently of the real amplitudes, so

that S S S1 2 3 0= = = . At the other extreme, for fully polarized light Eq. (11) implies that

S S S1
2

2
2

3
2 1+ + = . In general, the degree of polarization of a beam is defined as

DOP
I

I

S S S

S
S S Spol≡ =

+ +
= + +

0

1
2

2
2

3
2

0
1
2

2
2

3
2

˜ ˜ ˜

˜ , (12)

where the total intensity I0 is equal to the sum of its polarized portion, Ipol, and its unpolarized

portion, Iunpol. For example, DOP = 0 for an unpolarized beam, while DOP = 1 for fully polarized

light.

Now, the incident and reflected beams are related by a 4 × 4 matrix called the unnormalized

Mueller matrix,

˜ ˜ ˜S MSr i= (13a)
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which we can write out explicitly in component form using Eq. (10) as

I

S

S

S

M M M M

M M M M

M M M M

M M M M

I

S

S

S

r

r

r

r

i

i

i

i

0

1

2

3

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

0

1

2

3

˜

˜

˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜

˜

˜



















=







































. (13b)

Comparing this to Eq. (2), we see that for incident and reflected unpolarized beams,

˜ ( , ; , )cosM f di i r r r r00 = θ φ θ φ θ Ω , (14)

i.e., the top leftmost element of the unnormalized Mueller matrix is equal to the bidirectional

reflectance. The other elements in the matrix give polarimetric information. Thus, the Mueller

matrix can be thought of as a generalization of the BRDF to polarized scattering (Flynn and

Alexander, 1995). It is conventional to normalize the Mueller matrix by ratioing out the

unpolarized reflectance,

M M≡ ˜ / M̃00 . (15)

From this normalized Mueller matrix, all polarization properties of interest can be calculated.

For example, if unpolarized light is incident on the sample, then Eq. (13b) becomes

˜

˜

˜

˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜S

S

S

S

M M M M

M M M M

M M M M

M M M M

I

I

r

r

r

r

i

i

0

1

2

3

00 01 02 03
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0

0
0

0

0





















=







































=

MM

M

M

M

00

10

20

30

˜

˜

˜





















(16)

so that the scattered beam is in general polarized. The degree of polarization of the reflected

beam for an unpolarized incident beam defines the polarizance, P (Sornsin and Chipman, 1996).

Using Eq. (12), this is seen to be

P
I M I M I M

I M
M M Mi i i

i

=
+ +

= + +
( ˜ ) ( ˜ ) ( ˜ )

˜
0 10

2
0 20

2
0 30

2

0 00
10
2

20
2

30
2 (17)

and is thus determined by the first column of the Mueller matrix. It is a fraction varying between

0 and 1, and is thus conveniently expressed as a percentage. For example, P = 1 for an ideal
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polarizer, while P = 0 for an ideal retarder. An ideal polarizer, as previously mentioned, fully

passes one polarization state while completely blocking the complementary polarization state.

This is described by a quantity called the diattenuation, D, that quantifies variations in the

scattered power as a function of the incident polarization state. The diattenuation vector D has

three components, each of which can vary from –1 to +1: D1 = M01 which describes H–V

diattenuation, D2 = M02 which describes ±45˚ diattenuation, and D3 = M03 which describes

RHC–LHC diattenuation. The overall magnitude of this vector is

D M M M= + +01
2

02
2

03
2 , (18)

determined by the first row of the Mueller matrix. Like P, it is a fraction conveniently expressed

as a percentage between 0 and 100%.

In studying the polarimetry of materials, an important question is the extent to which the

polarization state of a beam is preserved by the interaction with the sample or device. This is

described by the general concept of “depolarization.” Unfortunately, two distinct definitions of

depolarization are used in the literature. To avoid this confusion, I will here coin two alternate

names for these processes. On the one hand, one can ask for the degree to which a polarized

beam becomes unpolarized; this will be called the unpolarizance, U. On the other hand, one can

ask about changes from one state to another state of polarization; let’s term this the

transpolarizance. For example, suppose an s-polarized beam is incident on some device or

material, and the exiting beam is 10% s, 20% p, 40% RHC, and 30% unpolarized. Then we

would say that the s-unpolarizance is 30% and the s-transpolarizance is 60%. A measure of the

unpolarizance is given by (Sornsin and Chipman, 1996)

U

Mij
i j= −









 −

=
∑

1

1

3

2

0

3

,
, (19)

expressed as a percentage between 0 and 100%. If U = 0, then the exiting light is fully polarized
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for any incident polarization state; this occurs when Mi
2 1= , where Mi is the ith row vector of

the Mueller matrix and the average is over all four rows. For example, U = 0 for an ideal

polarizer or retarder. Note that since the sum of Mij
2  equals the trace of M multiplied by its

transpose, this definition is equivalent to Eq. (29) of Kim et al. (1987).

If a material does not unpolarize light, then its Mueller matrix can be uniquely decomposed

into the product of a diattenuating component and a retarding component (Chenault et al., 1998).

While the diattenuation vector D measures the relative changes in the real amplitudes of the

scattered electric field components for complementary polarization states, the retardance vector

R measures the relative changes in their phases. The overall magnitude of the retardance is given

by a fairly involved expression,

R

M M M D

D

ii
i

i i
i=







−







+ −( )

−
−





















− = =
∑ ∑

cos .1 1

3

0 0
1

3
2

2

1 1

2 1
0 5 (20)

which can vary between 0 and 180˚. For example, this expression gives R = 90˚ for a quarter-

wave plate for any orientation of its fast axis, but an indeterminate answer for any ideal polarizer,

as expected because the complex number z = 0 has an undefined phase angle.

Experimental Results

The data for the polarizance, diattenuation, retardance, and unpolarizance were found for all

samples to be relatively constant over the 800–1000 nm spectral range. Consequently they were

averaged over this interval and are reported in the following tables.

In Table 2, three pairs of angles are specular, θi = θr. In Table 3, as in many cases, most

angles were chosen to correspond to forward scattering, for which interesting polarimetric

behavior is expected.
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Table 2. Averaged results for the 2% lidar target sample.

θi θr P D R U

45˚ 45˚ 73.5% 69.8% 92.9˚ 15.1%

75˚ 75˚ 40.7% 41.5% 89.7˚ 6.2%

75˚ 0˚ 54.4% 64.9% 111.8˚ 12.6%

20˚ 20˚ 15.0% 16.1% 90.2˚ 7.7%

45˚ 75˚ 77.8% 77.5% 93.7˚ 13.0%

Table 3. Averaged results for the 5% lidar target sample.

θi θr P D R U

45˚ 45˚ 47.1% 48.8% 100.0˚ 34.1%

75˚ 75˚ 38.0% 37.6% 87.2˚ 6.5%

45˚ 75˚ 66.6% 66.9% 93.0˚ 20.4%

Table 4. Averaged results for the 10% lidar target sample.

θi θr P D R U

45˚ 45˚ 31.9% 31.7% 93.1˚ 17.7%

75˚ 75˚ 43.5% 43.7% 89.6˚ 14.4%

75˚ 0˚ 57.7% 62.4% 119.4˚ –

0˚ 75˚ 16.8% 34.8% 111.3˚ 12.5%

20˚ 20˚ 5.7% 5.8% 93.4˚ 8.7%
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In Table 4, the 75˚–0˚ data afford a test of reciprocity, wherein the incident and reflected beams

are swapped. Note however from Eq. (14) that this requires a correction for the projection factor

and has not been pursued in this report. The dash indicates a small value, but the data were too

noisy to permit a reliable determination of it.

Table 5. Averaged results for lidar target sample A.

θi θr P D R U

45˚ 45˚ 18.3% 18.0% 113.1˚ 76.6%

45˚ 75˚ 39.2% 40.3% 107.1˚ 56.4%

20˚ 20˚ 2.7% 3.8% 116.8˚ 85.6%

Note in Table 5 how large the unpolarizance values are. As discussed in connection with

Eq. (20), this renders the determinations of the retardance questionable.

Table 6. Averaged results for lidar target sample B.

θi θr P D R U

45˚ 45˚ 45.8% 46.3% 104.8˚ 43.4%

75˚ 75˚ 54.2% 54.4% 89.6˚ 6.3%

60˚ 0˚ 34.3% 26.8% 116.7˚ 30.1%

Note in Table 6, as is the case for most of the samples, that the retardance is about 100˚ for any

pair of angles.
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Table 7. Averaged results for lidar target sample E.

θi θr P D R U

45˚ 45˚ 4.5% 4.3% 137.0˚ 34.5%

45˚ 25˚ 2.4% 2.4% 137.1˚ 38.9%

45˚ 75˚ 14.5% 17.1% 90.4˚ 3.5%

20˚ 20˚ 2.2% 11.3% 103.5˚ 44.1%

75˚ 45˚ 10.1% 18.4% 95.5˚ 12.5%

75˚ 60˚ 13.8% 22.2% 94.8˚ –

75˚ 75˚ 18.1% 26.3% 95.4˚ –

45˚ 45˚ 4.7% 4.4% 100.3˚ 32.1%

75˚ –45˚ 0.7% 0.7% 106.3˚ 44.9%

75˚ 75˚ 19.2% 18.9% 93.1˚ 28.5%

75˚ 85˚ 22.3% 22.2% 91.4˚ 22.8%

Two sets of runs in Table 7 were repeated many months apart, after the spectropolarimeter had

been moved to a new lab and realigned from scratch, resulting in a substantial improvement in

signal-to-noise for the later runs below the double line. In view of this, the reproducibility of the

data is seen to be fairly good in these two cases. One might thus reasonably expect self-

consistency among the runs for the other samples, which were collected as a set either with the

old or the new setup.
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Table 8. Averaged results for the resolution board sample.

θi θr P D R U

45˚ 45˚ 83.4% 85.4% 90.5˚ 2.5%

75˚ 75˚ 48.2% 50.2% 88.1˚ 1.4%

75˚ 0˚ 1.1% 11.5% 117.4˚ 86.8%

20˚ 20˚ 16.6% 17.0% 93.8˚ 10.6%

Note the surprisingly large range of values for P, D, and U in Table 8.

Table 9. Averaged results for the construction samples for θi = θr = 45˚.

Sample P D R U

foam 54.7% 67.9% 101.3˚ 25.9%

wood 17.0% 20.8% 113.7˚ 72.3%

drywall 19.4% 24.7% 112.3˚ 72.2%

rubber 68.7% 80.9% 88.7˚ 12.3%

shingle 11.5% 16.2% 116.3˚ 83.3%

steel 58.5% 69.3% 92.1˚ 18.8%
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It is easier to understand these data visually. A number of different graphs are possible and

presented below.

Fig. 7. Lidar target samples at θi = 45˚ and θr = 45˚.

In Fig. 7, I have plotted the averaged data for the lidar samples for the important case of 45˚

specular scattering. The albedos are estimated from their nominal ratings or visual appearances,

as listed in Table 10.

We see from the top left graph in Fig. 7 that the polarizance decreases with the reflectance.

More highly absorbing samples polarize the light more efficiently. The explanation for this is the

well-known fact that the reflectance of p-polarized light is lower than that of s-polarized light at

any oblique angle (Hecht, 1998). In particular, the former equals zero at the Brewster angle for a
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dielectric medium such as the paint coating on the samples. (Even for metal surfaces, the

p-reflectance has a minimum, albeit not a zero, at the pseudo-Brewster angle.) Thus, as the

sample absorptance increases, and hence the reflectance decreases (since the reflectance and

absorptance sum to unity for an opaque sample), only the s-polarized beam survives. The top

right graph in Fig. 7 shows that the polarizance is strongly linearly correlated to the

diattenuation, confirming this conclusion.

In the lower right graph in Fig. 7, it can be seen that the retardance hovers around 90˚ at low

sample reflectances, but rises at larger reflectances. In fact, perfect mirror-like reflection can be

obtained for a real surface at 180˚ forward scattering (i.e., specular scattering at grazing

incidence), whether a dielectric or a conductor. We might then be tempted to predict a simple

180˚ phase shift upon reflection from a high albedo sample for any polarization state, following a

consideration of the electromagnetic boundary conditions for grazing scattering (Hecht, 1998).

However, this line of reasoning can be seen to be incorrect by examining the lower left graph in

Fig. 7: at high retardances, the samples unpolarize an incident beam, in striking contradistinction

to the effect of a mirror. At high albedos, our samples become perfect diffuse not specular

reflectors, i.e., they are more nearly Lambertian than mirror-like and hence it is no surprise that

the scattered light is unpolarized.

Table 10. Estimated bihemispherical reflectances of the lidar samples.

Target Sample Estimated Albedo

2% 2%

5% 5%

B 7%

10% 10%

A 12%

E 15%
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Fig. 8. Construction samples at θi = 45˚ and θr = 45˚.

Figure 8 presents results for the construction materials at 45˚ specular scattering. The upper two

graphs are similar in their trends to the corresponding graphs in Fig. 7. Since it is difficult to

estimate the albedos for these samples, the other two graphs in Fig. 7 have been combined into

the lower graph in Fig. 8. The retardance appears to approach 90˚ as the polarizance and hence

the diattenuation rises toward 100%. An average retardance of 90˚ can result if the p-component

of the scattered light has a 0˚ phase shift while the s-component has a 180˚ shift, as is true for

specular reflection from a dielectric at angles of incidence below the Brewster angle (Hecht,

1998).
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Figure 9 plots target sample E for three different cases of specular reflection, θi = θr.

Fig. 9. Lidar sample E for specular scattering.

The top graph in Fig. 9 implies that the polarizance rises with the specular angle. This suggests a

rather high Brewster angle and hence real part of the index of refraction of the surface, just as the

glare off the surface of a lake is preferentially horizontally polarized. Surprisingly, the retardance

is seen in the lower right graph in Fig. 9 to decrease with the scattering angle, in contrast to the

180˚ phase shift expected for a mirror.

Similar behavior is observed for specular scattering from the 2%, 10%, and resolution board

lidar samples. On the other hand, Fig. 10 shows what happens if we fix the angle of incidence at

45˚ and allow the angle of reflection to sweep through the specular direction.
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Fig. 10. Lidar sample E at θi = 45˚.

The polarizance increases as θr moves toward grazing, and correspondingly the diattenuation

rises in step. The lower two plots in Fig. 10 resemble those of Fig. 9, indicating that the

polarimetric dependence of the specular and off-specular beams are very similar, which is

perhaps not surprising for diffuse scattering. Similar, although noisier, results are found for

θi = 75˚. In further confirmation of this, the lidar target samples for θi = 45˚ and θr = 75˚ give

graphs like those of Fig. 7.
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