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Describing First-Surface Scattering—C.E. Mungan, Summer 1998

Abstract

The bidirectional reflectance distribution function (BRDF) is a measure of the amount of
light scattered by some medium from one direction into another. Integrating it over specified
incident and reflected solid angles defines the reflectance, which can be easily related to the
absorptance (or emissivity) of a sample. The BRDF can thus be taken as a fundamental quantity
for the optical characterization of an object and it correspondingly is important in a large variety
of applications. When a beam of electromagnetic radiation (visible, infrared, radar, etc.) strikes a
body, it can scatter off the top or first surface, as well as from the volume or subsequent
interfaces. However, the total amount of light reflected from the first surface depends primarily
on the complex index of refraction of the illuminated medium (relative to that of the incident
medium) and is often sufficiently large that this dominates the scattering from the material. On
the other hand, the topography of this interface determines the angular distribution of the
scattered radiation—smooth surfaces reflect almost entirely into the specular direction, while
with increasing roughness the light tends to diffract into all possible directions. Ultimately an
object will appear equally bright throughout the outgoing hemisphere if its surface is perfectly
diffuse (i.e., Lambertian). Measuring and modeling the BRDF can thus give valuable information
about the nature of a target sample.

This paper is organized as follows. The introduction lists some domains of study in which
reflectance plays an important role, as well as the relationship between it and other quantities of
importance in optics. Next, the nomenclature needed to define and characterize the BRDF is
presented, along with some related issues. Following this, a long section reviews the principal
analytical and numerical models used to describe first-surface scattering; this comprises the heart
of the present paper and considerable effort has been expended to unify the often disparate
notations and points of view in the literature. Finally, this report ends with a summary of select
experimental measurements, most of which are quite recent and varied in style and purpose; this
gives a flavor for the ongoing efforts in this field.

Introduction

A variety of models and measurements of reflectance have been described in the literature
but their range of validity is generally restricted by the domain of interest of the authors.
Roughly speaking, these domains can be described as follows:

Remote sensing—aircraft or satellite measurements of terrestial vegetation and geography,
usually under ambient atmospheric lighting conditions;

Astronomy—telescopic measurements of planets and moons in the solar system illuminated
directly or indirectly by the sun;

Computer graphics—development of techniques intended to photorealistically simulate the
surface appearance of a wide variety of materials;

Military/commercial—field measurements under carefully controlled conditions of man-
made objects, typically painted or bare-metal air or ground based targets;

Optics—goniometric laboratory measurements of small, well-characterized samples.

Select models and experiments applicable to each of these five domains are discussed in this
paper.

In general, theoretical models begin by considering light to be incident on a spot on the
surface of an object from a range of solid angles Ωi (which can vary from a delta function for a
fully directional beam to 2π for the hemisphere) centered on polar (zenith) angle θi (defined with
respect to the macroscopic surface normal) and azimuthal angle φi (conveniently defined with
respect to some sample feature in the case of an anisotropic surface or arbitrarily and irrelevantly
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for an isotropic one). This light must be either transmitted, absorbed, or reflected by the object;
the fraction of the incident flux P (radiant power in W) which is subsumed by each of these
mechanisms is specified by the dimensionless ratios called the transmittance τ, the absorptivity
(or absorptance) α (not to be confused with the absorption coefficient given by –ln[1–α]/L where
L is the sample length), and the reflectance ρ, respectively. I will always assume that the
illuminated object is opaque, so that τ = 0; accordingly, α + ρ = 1. The reflected light (which can
be more generally described as scattered light) is collected by a detector spanning a solid angle
Ωr centered on angles θr and φr. The emissivity ε of the sample is defined to be the dimensionless
ratio of the total radiant flux emitted by the sample to that of a blackbody having the same
geometry and temperature. Kirchhoff’s law says that ε = α, as follows by imagining the sample
to be enclosed inside an opaque cavity whose temperature is equal to that of the sample: this
equality means that there can be no net gain from or loss to the blackbody environment by the
object. Furthermore, by interposing narrowband filters between the sample and cavity, it is
evident that the spectral emissivity ε(λ), defined in terms of the ratio of emitted fluxes in a unit
wavelength interval centered around λ, must equal the spectral absorptivity α(λ), whose
definition is similarly a ratio of spectral fluxes. [Note that I have eschewed the notation ελ, to
avoid confusion with the spectral emission coefficient defined in Sec. 13.1.1 of Hecht (1998).]
An object is said to be a graybody if ε(λ) is a constant less than 1. Nicodemus (1965, 1970) has
argued that equality also holds for the directional quantities, ε(θ,φ) = α(θ,φ), for emission into
some direction and absorption from the same direction. [One could then call ε the hemispherical
emissivity, equal to the average of the directional emissivity over all projected solid angles,
analogous to Eq. (2) below.] Thus the directional and spectral dependence of the emitted light
can be related to the reflectance and temperature (via the Stefan-Boltzmann law) of the sample.
Furthermore the polarization of the emission is seen to be the complement of that of the reflected
radiation at the same wavelength, a result which can also be understood by visualizing an
emitting center as lying slightly below the surface of the sample, so that the light escapes in
accordance with the Fresnel relations [cf. Eq. (6) below]; in fact, Sandus (1965) has argued that
this holds even for emitting centers lying on the surface. Consequently, I will mainly focus
attention on the reflectance for the remainder of this paper, even in the infrared region where the
sample emission is significant at the ambient temperatures of interest.

Reflectance Nomenclature

The incident flux P per unit illuminated area A of an object is known as the irradiance (or
illuminance) H ≡ dP/dA in units of W/m2; the corresponding emitted or scattered quantity is
called the emittance or exitance. [Note that the element dA of area is taken to be small on the
macroscopic scales of interest, but large compared to the sub-resolution irregularities in the
sample surface, and is taken to be perpendicular to the macroscopic surface normal (Nicodemus,
1965).] For simplicity, both the illuminance and the exitance will be referred to as the irradiance
of the surface, to be distinguished from the intensity of the irradiating beam, I ≡ dP/(dA cosθ),
where the cosθ term projects the element of surface area dA into the direction of propagation of
the beam, which is inclined at polar angle θ to the (macroscopic) surface normal. The irradiance
per unit projected solid angle is called the radiance (or luminance, which corresponds to the
photometric concept of brightness), L ≡ dH/(cosθ dΩ) = dI/dΩ in units of W m-2 sr-1. Here the
element of solid angle is dΩ ≡ sinθ dθ dφ; sometimes (Nicodemus et al., 1977) a separate
symbol is also introduced for the element of projected solid angle cosθ dΩ, though I will not do
so, to keep things simpler. Let the subscript i refer to incident quantities and r to reflected
(scattered) terms. The bidirectional reflectance distribution function (BRDF) can now be defined
as f(θi,φi;θr,φr) ≡ dLr/dHi = dPr/(dPi cosθr dΩr) with units of sr-1; here dPi is the incident power
illuminating dA from direction (θi,φi) and dPr is the radiant power reflected from dA into the
outgoing solid angle dΩr centered about the direction (θr,φr). Usually the surface is taken to be
(macroscopically) planar and the incident beam to have a spatially uniform intensity profile, so
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that one can integrate over a macroscopic area A of the sample to get f = dPr/(Pi cosθr dΩr) where
now Pi is the incident power illuminating A and dPr is the flux reflected from A into dΩr. For an
isotropic surface, f is a function only of φr – φi and not of the two azimuthal angles individually.
Unlike reflectances, which cannot exceed unity, the BRDF can be very large, becoming
unbounded for a purely specular reflector—cf. Eq. (5) below. When necessary, a double
subscript can be added to f to denote the polarizations of first the source and second the detector
relative to the planes of incidence and reflection, respectively. In that case, these four values of f
can be thought of as the elements of a 2×2 matrix f and the component intensities of the incident
and reflected radiation as two-vectors such that dLr = f dHi. However, this description does not
suffice to determine the scattering for other states of incident and reflected polarization, such as
circular, because the phase information of the fields has not been retained. One approach to
circumventing this limitation is to work instead with the (complex) components of the incident
and reflected electric fields, Ei and Er, respectively, which are connected by a 2×2 scattering
matrix S (i.e., Er = S Ei), which is known as the Jones calculus (Ruck et al., 1970). Alternatively,
the Mueller matrix and Stokes vector representation can be used, wherein f is expressed as a 4×4
matrix and the beams as intensity 4-vectors (Flynn and Alexander, 1995). This latter approach is
needed for describing partially polarized radiation, while the Jones notation is used for coherent
illumination and reflection. If the radiation is partially coherent, then a treatment in terms of the
coherency (or polarization) matrix is necessary. For a nice discussion of the relation between the
Jones, Mueller, and coherency matrices, with particular reference to the ensemble averaging
necessary for handling scattering from statistical media, see Kim et al. (1987).

By integrating the BRDF over all scattered angles, one gets the dimensionless directional-
hemispherical reflectance

ρ θ φ π θ φ θ φ θ
π

( , ; ) ( , ; , )cosi i i i r r r rf d2
2

= ∫ Ω , (1)

which gives the fractional amount of flux reflected into the entire hemisphere out of that incident
from a particular direction. (The integral over 2π is of course a shorthand meaning integrate θ
from 0 to π/2 and φ from 0 to 2π, for a total solid angle of 2π.) If instead one averages over all
incident angles, the hemispherical-directional reflectance is obtained as

d
d

f dr r
r r

i i r r i iρ π θ φ θ
π

θ φ θ φ θ
π

( ; , )
cos

( , ; , )cos2
2

= ∫Ω
Ω . (2)

Note that the denominator is π and not 2π because of the cosθi projection factor. It should be
clear from inspection of these two equations how to write other quantities of interest, such as the
conical-hemispherical reflectance, the bihemispherical reflectance (or albedo), and so
on—Nicodemus et al. (1977) tabulate a variety of such entities. If the prefactor before the
integral in Eq. (2) is left off, the resulting quantity is instead called the hemispherical-directional
reflectance factor, which is defined as the ratio of the flux reflected by the sample to that which
would be reflected by an ideal Lambertian reflector for the same geometry, because f = 1/π for
the latter according to the discussion following Eq. (9).

From the definition of the BRDF, the scattered radiance can be related to the incident
radiance by

L L f dr r r i i i i i r r i i

i

( , ) ( , ) ( , ; , )cosθ φ θ φ θ φ θ φ θ= ∫ Ω
Ω

, (3)

which can be rather complicated to evaluate analytically. The emissivity is given by Kirchhoff’s
law as

ε θ φ θ φ θ φ θ
π

( , ) ( , ; , )cosi i i i r r r rf d= − ∫1
2

Ω (4)

and is thus simply related to the (directional-hemispherical) reflectance, as discussed in the
introduction.
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According to the Helmholtz reciprocity theorem, f(θi,φi;θr,φr) = f(θr,φr;θi,φi), so that either
direction may be that of the incident beam with the other the reflected beam. Note from Eqs. (1)
and (2) that this would imply that the directional-hemispherical reflectance equals the
hemispherical-directional reflectance factor; interestingly enough, however, equality of these two
reflectance terms remains true even when Helmholtz reciprocity does not (Nicodemus, 1970).
There has been considerable discussion about the conditions under which reciprocity holds
(Clarke and Parry, 1985; Kriebel, 1996; Shirley et al., 1997; Snyder, 1998)—for example, it
clearly does not apply to a Faraday isolator. It is generally accepted however that the theorem is
obeyed by most materials (including compound objects) under ordinary conditions and hence
models which are not reciprocal are generally considered unphysical and experimental failures
are often attributed to measurement errors or limitations.

BRDF Models of Surface Scattering

It is often possible to distinguish surface scattering from volume scattering. Some samples
(e.g., bare metals) have a penetration depth (equal to the reciprocal of the absorption coefficient)
which is so small that all of the reflection can be assumed to occur at its illuminated or first
surface. Other samples (e.g., a painted object) exhibit scattering both from the first surface (and
possibly subsequent surfaces, such as the paint-substrate interface) as well as from the bulk
interior (e.g., due to defects or paint pigments). Still other samples (e.g., a forest imaged from an
airplane) do not have a well-defined first surface at all and could perhaps be best described as
pure volume scatterers (Snyder and Wan, 1998). Volumetric reflection almost invariably
involves multiple scattering (although a sufficiently cratered surface can as well). This greatly
adds to the complexity of the problem and is not fully understood. For this reason, I will restrict
attention to first-surface scattering.

Begin by considering the simplest case. A purely specular reflector (i.e., a perfectly smooth
and planar mirror) has a BRDF equal to zero unless θr = θi and φr = φi + π, in which case the
reflectance is described by the Fresnel equations, so that (Ellis, 1994)

f R i
r i r i

r r
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− − −
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, (5)

assuming that the illuminated area of the mirror is large enough (compared to the wavelength of
the light) that diffraction from it into off-specular directions is negligible. For nonmagnetic
materials (Hecht, 1998),
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for polarization perpendicular (“senkrecht,” also called horizontal or TE and denoted by an h, –,
or ⊥ ) and parallel (sometimes referred to as vertical or TM and symbolized by υ, +, or ||) to the
plane of incidence, respectively. Here n ≡ nt/ni where ni and nt are the (complex) refractive
indices of the incident medium and the transmitted medium (i.e., the top layer of the sample),
respectively; ni = 1 and nt ≡ n correspond to the usual case of light in space scattering off a
medium of index n. Any incident beam can of course be decomposed into s and p components,
provided that proper accounting is made of their relative phase. Recall that these Fresnel
reflectances are strongly dependent upon the angle of incidence—for example, Rp falls to zero at
the Brewster angle for a dielectric (or has a minimum at the pseudo-Brewster angle for a
conducting medium) but rises to unity for grazing incidence. Substitution of Eq. (5) into Eq. (1)
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identifies R(θi) as the directional-hemispherical reflectance; if the mirror is ideal (i.e., has infinite
conductivity) then this reflectance is unity for any polarization and wavelength (Born and Wolf,
1965). Note that a flat specular reflector does not depolarize incident s or p radiation, although it
will reverse the handedness of circular light and rotate the plane of polarization of light linearly
polarized in directions other than s and p, as discussed in more detail later.

All real surfaces have some roughness however. If the characteristic size scales (to be
defined more precisely below) of this roughness are large compared to the wavelength of the
light, then the approximation of geometrical optics holds. In that case, the simplest model for the
surface scattering is that of Torrance and Sparrow (1967), who pictured the surface as being
comprised of small, randomly oriented, specular facets. Neglecting shadowing and masking of
the facets by each other, the BRDF for single scattering from this isotropic surface is easily
shown to be

f R n

i r
= ( )

( )
cos cos

β θ
θ θ

Ξ
4

, (7)

where 2β is the angle between the incident and reflected directions, known as the bistatic angle
(2β = 0 corresponds to monostatic or back scattering, while 2β = π refers to forward scattering
pertinent to the optical extinction theorem for example), and Ξ(θn) is the density function (in
units of sr-1) of facet normals pointing in the direction θn relative to the macroscopic surface
normal, i.e., Ξ(θn) dΩn dA is the total (not the projected) surface area of the facets spanned by dA
which have normals lying within solid angle dΩn (Maxwell and Weiner, 1974). Clearly this
density function must be normalized such that

2 1
0

2

π θ θ θ θ
π

Ξ( )cos sin
/

n n n nd∫ = . (8)

Torrance and Sparrow took Ξ to be a Gaussian distribution function with zero mean. It can be
shown that cos2β  = cosθicosθr + sinθisinθrcos(φr–φi), cosθn = (cosθi + cosθr)/2cosβ, and
dΩn = dΩr/4cosβ using spherical geometry. Observe that Eq. (7) explicitly satisfies Helmholtz
reciprocity. It can be rewritten in terms of experimentally measurable quantities by noting that
Ξ(θn) is proportional to the monostatic BRDF f(θn,0;θn,0). The polarization dependence is
determined solely by the Fresnel coefficients; hence, in the plane of incidence there are only 4
independent Mueller matrix elements—e.g., the 11, 12, 33, and 34 terms, which can be related to
the real and imaginary parts of the 2 diagonal elements, rs(β) and rp(β), of the Jones scattering
matrix. Videen et al. (1992) have shown that this simple polarization prediction is in quite good
agreement with experimental measurements on scratched or sandblasted copper and aluminum.
Sung and Eberhardt (1978) have improved on the model by allowing the facets to be slightly
curved and calculating a perturbative correction using the Rayleigh-Rice method described later.
The above BRDF needs to be multiplied by a geometric attenuation factor G( î , n̂, r̂) to correct
for shadowing and masking, the former referring to the partial illumination of a facet shadowed
by an adjacent one and the latter to the partial visibility of a facet occluded by another. Here î ,
n̂, and r̂  refer to unit vectors in the source, facet normal, and detector directions respectively, as
seen from the illuminated spot; note that 2β = cos-1( î • r̂). For simplicity, Torrance and Sparrow
supposed that each facet forms the side of a symmetric V-groove cavity whose axes are parallel
to the macroscopic surface (but have random azimuthal orientations) and whose upper edges all
lie in the same plane. In that case, the fraction G of a given facet surface which contributes to the
reflected flux (i.e., which is both illuminated and visible) can be found geometrically in terms of
a range of unobscured angles of the projections of î  and r̂  into the plane defined by n̂ and the
macroscopic surface normal; the grooves are assumed to be long enough that end effects can be
neglected. Although this model for the geometric attenuation is very simple, it successfully
predicts that for large angles of incidence the peak in the BRDF in the plane of incidence occurs
at an angle of reflection larger than specular. Such off-specular peaks are seen experimentally,
both for coarsely roughened metals and dielectrics.
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Finally, Torrance and Sparrow assumed that the multiply reflected light (and any volume
scattering) was purely diffused. A purely diffuse (Lambertian) scatterer has two properties. First,
its reflected radiance Lr is independent of the viewing angle and hence is equal to the
hemispherical exitance Hr divided by π (again not 2π). The reflected flux per unit solid angle is
proportional to cosθr, which is called Lambert’s law; since the projected area of a surface
element also varies as cosθr, this is consistent with the fact that Lr is independent of the viewing
angle. Equation (3) then implies that f is independent of θr and φr, and so Eq. (1) becomes
f = ρ(θi,φi;2π)/π. Second, its directional-hemispherical reflectance is independent of the angle of
incidence and thus is equal to the bihemispherical reflectance; this property is a statement of
reciprocity. The BRDF is then related to the bihemispherical reflectance according to

f =
ρ π π

π
( ; )2 2

(9)

and is independent of both the incident and reflected angles. If the surface is ideal (i.e., has unit
albedo) then the BRDF further simplifies to 1/π. Incidentally, note that a blackbody has zero
albedo according to Eq. (4) and hence obeys Lambert’s law in emission; this explains why the
sun appears as a uniformly bright disk even though it actually is a sphere. It should be
emphasized that Eq. (9) does not imply that Lr is independent of the incident angle: on the
contrary, Eq. (3) says that the reflected radiance due to a well-collimated incident beam of fixed
radiance is proportional to cosθi because the flux incident on a unit area of the surface varies in
this way (Torrance and Sparrow, 1967); this means that a spherical Lambertian scatterer
illuminated from a fixed direction will appear shaded around the edges (Oren and Nayar, 1995),
not flat as some authors have incorrectly claimed (Ellis, 1994), in striking contrast to a spherical
Lambertian emitter. It should also be borne in mind that many rough objects, such as an ordinary
piece of paper, are reasonably Lambertian at near-normal viewing angles, but become
increasingly specular at grazing angles due to the increase in the first-surface Fresnel reflectance
as well as to the compression of the surface roughness in the viewing direction—this latter effect
gives rise, for example, to the horizontally streaked reflections commonly seen off waxed tile
floors (Shirley et al., 1997). Finally, note that by substituting Eq. (5) or (9) into (1) or (2), the
directional-hemispherical reflectances of an ideal mirror and of an ideal diffuser are found to be
equal, and likewise for the hemispherical-directional reflectances (Judd, 1967).

Multiple scattering from the surface or volume of an object tends to depolarize the incident
light; even two reflections from a valley can cross s or p polarization, as nicely illustrated in
Fig. 14 of O’Donnell and Mendez (1987). For this reason, the light scattered by a Lambertian
surface is typically assumed to have random polarization. However, this is not necessarily true,
because the two defining properties which led to Eq. (9) do not explicitly require multiple
scattering. For example, one could imagine choosing the density function in Eq. (7) to give a
BRDF that is at least approximately independent of incident and reflected angles, thus
characterizing a Lambertian diffuser, although only singly scattered, specular reflections from
isotropic facets are involved which consequently cannot depolarize s or p light. Even volume
scattering from a paint does not fully randomize the polarization of the radiation, as Ellis (1996b)
has demonstrated experimentally. Therefore, one should be careful about assuming that diffusers
always reduce the degree of polarization of a beam to nearly zero, in the absence of detailed
knowledge of the scattering processes.

Oren and Nayar (1995) have developed an alternative form of Torrance and Sparrow’s model
in which each facet is assumed to reflect purely diffusely rather than specularly. In effect, this
presumes that the surface has two distinct roughness scales and hence is said to be compositely
rough (Barrick, 1970): a coarse range specified by macroscopically flat facets whose dimensions
are large compared to the wavelength of the light, and a fine range responsible for Lambertian
scattering from each facet. [A very different two-roughness-scale model has been developed by
Leader (1979).] Their model was developed to describe the reflectances of materials such as
plaster, sandpaper, and cloth for computer rendering applications, and they performed
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experimental measurements which gave fairly good agreement with the calculations. Although
one might suppose that the overall effect of the two roughness scales in the model is merely to
further roughen the surface and hence leave the overall scattering approximately Lambertian, this
is incorrect: the reflectance is markedly non-Lambertian and in fact has a strong backscattering
peak for large angles of incidence which gets cut off for reflection angles beyond the source
direction (i.e., θr < –θi). Notice that this is completely opposite to the strong forward scattering
peak predicted by the Torrance and Sparrow model.

The cause of the backscattering peak is reminiscent of Hapke’s (1963) shadow-hiding
explanation for the opposition effect of the moon, wherein its brightness peaks at full moon when
the sun is directly behind the earth. In the lunar case, the relevant scattering is volumetric,
because the dust on the moon is very porous and is taken to be an open network of particles.
Particles closer to the surface cast shadows down on the lower particles, which thus reduces the
reflected radiance in every direction except the incident one where the shadows are hidden by the
particles that created them. To put it another way, the light will be attenuated both as it
penetrates the medium and as it leaves it after being reflected, unless it backscatters into the
incident direction in which case it can retrace its path out and escape without being blocked. It is
assumed that the albedo ρ of the individual particles is small enough that multiple scattering is
negligible and that the particles are large enough that diffraction around their edges is minimal,
since either of these would tend to wash out the effect. After making a number of simplifying
approximations, the BRDF of the medium can then be expressed as the product of three factors,
each of which satisfies Helmholtz reciprocity,

f R g S
i r

B=
+

⋅ ⋅
1

cos cos
( , ) ( )

θ θ
β β . (10)

The first factor is the well-known Lommel-Seeliger scattering term arising from the total
distance traveled through the attenuating medium in the course of reflecting from a typical
particle. The second term is called the retroreflection function and decreases monotonically in
value from 2 for 2β = 0 (backscattering) to 1 for 2β ≥ π/2. It depends on a constant, g, of the
order of unity, which is called the compaction parameter because it is related to the fractional
volume of the medium occupied by the particles. The last factor is the scatter function, defined as
the ratio of the scattered power per unit solid angle to the power incident on a particle by a plane
wave, averaged over all orientations and shapes of the particles. Taking the incident plane wave
to be of unit intensity, this implies

S
dP

A d
r

r
( )β ≡

⊥ Ω
(11)

where A⊥  is the cross-sectional area of the particle (i.e., the projected area of the particle onto an
incident wave front). Notice that S(β) is approximately equal to the ensemble average of the
cosine-corrected BRDF (Stover, 1990) of the particles, dPr/(dPi dΩr); the equality becomes exact
for pancake-shaped (i.e., planar) particles. The scatter function is written by Hapke as
S(β) = ρ Σ(β), where Σ(β) has been normalized such that

4 2 1
0

2

π β β β
π

Σ( )sin( )
/

d∫ = . (12)

Both S(β) and Σ(β), just like f, have units of sr-1. For example, S(β) = 1/4π describes isotropic
scattering from smooth, infinitely conducting (i.e., ideally specular) spheroids—if the
conductivity is not infinite, then Eq. (6) implies that there will be a broad forward scattering peak
(Van de Hulst, 1957) since the Fresnel reflectances only become equal to unity at grazing
angles—while Σ(β) = 2[sin(2β) + (π–2β)cos(2β)]/3π2 describes backscattering from Lambertian
spheres, as first calculated by Schönberg. As can be seen from Hapke Fig. 6, substituting this
latter scattering function into Eq. (10) results in a strong backscattering peak. This is also the
explanation for the glory seen when looking down on clouds from an airplane with the sun at
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one’s back and for the hot spots which appear on vegetation in remote sensing.
Experimental retroreflectance measurements of MgCO3, BaSO4, sulfur, and white, red, blue,

and black Nextel paints were later performed by Egan and Hilgeman (1976) using a cube
beamsplitter, which was cleverly followed (rather than preceded) by a chopper so as to reject
light scattered by the room or the prism. Both a bandpass-filtered tungsten iodide lamp and a
632.8-nm HeNe laser were used as sources. In all cases an opposition effect was observed that
could reasonably be described by Eq. (10), except for the blue and black paints under laser
illumination which exhibited an anomalously strong backscattering peak attributed to
interference effects. Presciently, the opposition effect of the moon is now known to result not
from shadow hiding but instead from coherent backscatter (Hapke et al., 1993). This
phenomenon, related to weak localization, arises as follows (Wolf and Maret, 1985). Suppose
that a wave of incident propagation vector k0 experiences m elastic scattering events, where
m ≥ 2. Let ki denote the propagation vector after the ith event, so that km points in the direction of
observation. In the case of backscattering, km = –k0, and hence some of the incident field can also
follow the time-reversed path –km → –km–1 → … → –k0. The phase difference between these two
paths is obviously zero and thus they will interfere constructively, giving double the signal
calculated for the otherwise incoherent addition of intensities. Convincing evidence that this
enhancement effect is responsible for lunar backscattering was provided by examining the
circular polarization ratio of scattered radiation from soil samples with incident circular laser
light. Shadow hiding involves primarily single scattering so that the helicity should be reversed,
while coherent backscatter involves multiple scatterings, many of which are into the forward
direction, and hence the original polarization should be partially preserved, and this is what is in
fact observed. The angular width of this coherent backscatter peak is supposed to approximately
equal λ/l, where l is the transport mean free path for photons in the medium; for strongly
absorbing particles as in the case of the moon, l is roughly equal to the average spacing between
scatterers. Analysis of the data implies l = 1 µm, in contrast to the 40 µm mean particle size in
the lunar dust; hence, the scatterers must be small asperities on the grain surfaces, rather than the
particles themselves. This is consistent with the observation of coherent backscatter from
wavelength-sized roughness on well-characterized surfaces (O’Donnell and Mendez, 1987).

Returning to Oren and Nayar’s model, suppose that a V-cavity is illuminated from the right.
Then the left facet will be brighter than the right one because it receives more light. Viewed from
the left, an observed sees principally the darker right facet and comparatively little of the
foreshortened left facet. But as he moves toward the source direction, the fraction of the brighter
area increases while that of the darker decreases and hence the BRDF increases in the
backscattering direction and is inherently non-Lambertian. Specifically, the BRDF for a single
Lambertian facet whose normal is inclined at polar angle θn and azimuthal angle φn relative to the
macroscopic surface normal is

f n i n i n r n r n= + − + −
ρ
π

θ θ θ φ φ θ θ φ φcos [ tan tan cos( )][ tan tan cos( )]1 1 , (13)

where ρ is the albedo of the facet. This expression is then multiplied by a geometric attenuation
factor G( î , n̂, r̂) to account for shadowing and masking, and the result is averaged over φn

assuming a uniform distribution of azimuthal orientations of the V-grooves. Finally, that is
multiplied by the density function of facet normals Ξ(θn) and integrated with respect to sinθndθn

over the hemisphere. Oren and Nayar chose Ξ(θn) cosθn to be a Gaussian with zero mean, which
differs slightly from Torrance and Sparrow (1967) or Maxwell and Weiner (1974) who chose
Ξ(θn) itself to be such. Finally, two-bounce interreflections were taken into account by
integrating over all positions on the two faces of a V-groove which connect directions î  and r̂
geometrically, where shadowing and masking determine the limits of integration, and finally
again integrating over φn and θn. The singly scattered and doubly scattered BRDFs were then
added to give the total BRDF, which exhibits reciprocity. Some of the required integrals are
fairly complicated and were evaluated numerically or approximated functionally. The resulting
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BRDF is nearly Lambertian for small angles of incidence, wherein both facets of every V-cavity
have similar irradiance, as well as for azimuthal angles 90° out of the plane of incidence since
the relative irradiance of both facets is then approximately constant with respect to the polar
angle of reflection. But there is a strong backscattering peak when the source and viewing
directions coincide, as well as an interreflection enhancement in the forward direction, and the
rendered image of a curved surface illuminated from the viewer direction can be made very flat,
mimicking the appearance of the moon or of a photographed clay vase for example. Of course
the model reduces to pure Lambertian scattering if the roughness (as parametrized by the
Gaussian standard deviation in the facet density function) is set equal to zero.

The facets in Torrance and Sparrow’s or Oren and Nayar’s model are assumed to be large
compared to the wavelength λ of the incident light. More specifically, any non-composite,
isotropic surface (or any individual component of a composite surface) can be characterized by
two roughness scales—an out-of-plane length quantified by the rms surface height variation σ
and an in-plane distance parametrized by the correlation length l. In the facet models, both of
these parameters (for the coarse component in Oren and Nayar’s case) must be much larger than
λ. Mathematically (Bennett and Porteus, 1961), the surface height profile is taken to be z = ζ(x,y)
with the zero level set equal to the mean,

< >≡ =
→∞ −−

∫∫z
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x y dxdy
X Y

X

X

Y

Y
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,

/

/

/

/
1

0
2

2
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2

ζ , (14)

where the sample has been taken to be infinite in area, macroscopically spanning the xy-plane,
for simplicity. With these definitions, the mean square surface height is given by the variance,

σ ζ2 2 2
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2
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, (15)

and the autocorrelation (or autocovariance) function is (Hecht, 1998)

A s t
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→∞ −−
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2

2

2

2

ζ ζ , (16)

so that A(0,0) = σ2. For an isotropic surface, A(s,t) = A(t,s) so that the correlation function is only
a function of a single variable τ ≡ (s2 + t2)1/2 known as the lag; the correlation length l is defined
as that lag for which A diminishes to 1/e of its peak value (i.e., to σ2/e). There are two commonly
used statistical distributions for rough surfaces (Barrick, 1970). The first assumes Gaussian
correlations,

A s t e s t l( , ) ( )/= − +σ 2 2 2 2
, (17)

for which the rms slope of the surface can be shown to be

m
x y l

≡
∂
∂





 +

∂
∂







=
ζ ζ σ2 2

2
(18)

(which equals the rms value of tanθn in the facet models and hence is determined in turn by the
density function). The other supposes the surface height autocorrelation function to be
exponential,

A s t e s t l( , ) /= − +σ 2 2 2
, (19)

in which case m turns out to be undefined, because such surfaces are jagged with many vertical
facets, describing, as an example in remote sensing, an urban area including buildings.

The requirement that σ >> λ, as well as the naive model of V-grooves having coplanar top
edges, can be relaxed by invoking wave rather than geometrical optics. Nevertheless, many
simplifying assumptions remain in order to make the physics tractable; the general problem of
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optical scattering by an arbitrarily specified surface has not been solved, even without
considering volumetric scattering of the portion of the beam transmitted below the first surface.
Briefly, the goal is to find the reflected electromagnetic field for some known incident field and
characterized surface by satisfying the required boundary conditions. Typically shadowing,
masking, multiple reflections, and surface waves are neglected. One approach has been
developed in great detail by the radar scattering community (Beckmann and Spizzichino, 1987);
note that the (differential) radar cross section σ (having units of area) is related to the BRDF by
f = σ/4πAcosθicosθr where A is the (macroscopic) illuminated surface area of the sample (Ruck
et al., 1970). O’Donnell and Mendez (1987) have verified that this theory is in good agreement
with optical measurements on appropriately fabricated samples.

In detail, Maxwell’s equations imply that the electric field satisfies a wave equation, and if
the time dependence is separated out (Fourier analyzing the constituent frequencies if necessary),
the Helmholtz equation is obtained for any scalar component of the field (typically the incident
and reflected radiation are decomposed into s and p polarizations). Green’s theorem can be used
to recast this differential equation as the Kirchhoff integral, which expresses the field anywhere
in space in terms of the electric field and its gradient at every point on any closed surface
enclosing the spatial point of interest. In the present application, the surface is taken to be that of
the object together with an enclosing hemisphere at infinity, with the latter giving zero
contribution to the result. In accord with Huygens’ principle, each point on the material surface
is taken to be the source of a spherical wave, and the Fraunhofer far-field limit is considered, in
which the incident and scattered beams are taken to be plane waves. Finally, the Kirchhoff
approximation is invoked to obtain the electric field and its normal derivative on the reflecting
surface, by assuming that the scattering from any point on the surface is described by the Fresnel
amplitude reflection coefficients, r in Eq. (6), from a smooth plane tangent to that point. This is
the most serious restriction of the validity of this approach, as it obviously requires that the radii
of curvature of any surface irregularities be large compared to the wavelength, or equivalently,
that l >> λ, implying a gently rolling surface. A formal integral solution to the problem of
scattering by a rough surface of finite conductivity is then obtained. Unfortunately it is too
complicated to evaluate for real situations of interest unless the relevant amplitude reflection
coefficient, which depends on the angle of incidence relative to the local surface normal, is
constant across the surface. In practice, this occurs either because the conductivity can be taken
to be infinite or because the surface roughness is sufficiently small that we can replace the
reflection coefficient by its average value. For the simpler, perfectly conducting case, integration
by parts gives the scattered field in terms of a Fourier transform over the area A of the isotropic
surface,

E

E
F

A
e dxdyr

r smooth
i r r i

i

A

i r s

,

( )( , , )= − − •∫∫θ θ φ φ 1 k k r (20)

neglecting edge effects, where ki and kr are the incident and reflected propagation vectors,
respectively, with magnitude k ≡ 2π/λ, Er,smooth is the field which would be diffracted into the
specular direction if the finite-sized, infinitely-conducting surface were smooth and the incident
wave were s-polarized, F = [1 + cosθicosθr + sinθisinθrcos(φr–φi)]/[cosθi (cosθi + cosθr)], and
rs = (x,y,ζ) is a point on the surface.Accounting for the Huygens-Fresnel Principle
(cf. Sec. 10.3.1 of Hecht, 1998), the projected area of the sample (A cosθi), and the solid angle
subtended at the detector (dΩr), I find that the BRDF is given by

f
A E

E
i

r

r

r smooth
=

cos

cos ,

θ
λ θ2

2

, (21)

which satisfies Helmholtz reciprocity. For a statistically rough surface, Eq. (21) needs to be
averaged by multiplying it by the normalized height distribution p(ζ) and integrating over all ζ.
The usual assumption is that this distribution is Gaussian, i.e.,
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p e( ) /ζ
σ π

ζ σ= −1

2

2 22 . (22)

Notice that Eq. (21) will involve a quadruple integral (over say dAdA') which can be recast in
terms of the autocorrelation function. Assuming that this is also Gaussian and given by Eq. (17),
a rather complicated final expression for the scattering results.

Two special cases are of most interest however. For a slightly rough surface (σ << λ), the
scattering is predominantly specular and the directional-conical reflectance is approximately

ρ θ φ σ θ
spec i i spec

ke i( , ; ) ( cos )∆Ω = − 2 2
, (23)

where ∆Ωspec spans the specular lobe centered about θr = θi and φr = φi + π and has a projected
value of roughly λ2/A due to diffraction from the finite-sized surface A (which is determined, for
example, by the usual product of sinc-squared functions for a rectangular surface). Equation (23)
is a well-known result nicely derived from the Fraunhofer diffraction formula by Davies (1954).
Bennett and Porteus (1961) have experimentally verified that it gives the specular reflectance, at
sufficiently long wavelengths, of a slightly rough surface relative to a smooth surface of the same
material. Good agreement was obtained with measurements in the mid-infrared for glass disks
roughened with ~10-µm grit, overcoated with aluminum, and characterized by stylus
profilometry. Normal incidence was employed, thus minimizing effects such as shadowing and
any polarization dependence. These measurements can also be described in terms of the total
integrated scatter (TIS), defined as the ratio of the diffusely to the specularly scattered powers.
Writing the specularly, diffusely, and total scattered powers as Pspec, Pdiff, and Ptot ≡ Pspec + Pdiff,
respectively, one sees for a slightly rough surface that

TIS cos=
−

=
−

≈ ( )P P

P
k

tot spec

spec

spec

spec
i

1
2

2ρ
ρ

σ θ , (24)

where the second equality presumes that slight roughening merely redistributes the total power
scattered by a smooth sample without diminishing it, as follows from the assumption of infinite
conductivity. Note that to the level of the approximations used above, the TIS is also equal to
1 – (Pspec/Ptot) = 1 – (Pspec/Pspec,smooth), where, recalling Eq. (5), Pspec,smooth = R(θi)Pi is the specularly
reflected power by a smooth surface of the same material, thus explaining other definitions of the
TIS used in the literature (e.g., Elson and Bennett, 1979b). Church et al. (1977) have shown,
from the Rayleigh-Rice perturbation theory discussed below, that Eq. (24) holds regardless of the
specific form chosen for the height distribution function p(ζ) in Eq. (22) and hence is not
dependent on the assumption of Gaussian statistics—see, for example, the discussion in
connection with Eq. (34) below. A particularly nice feature of TIS measurements is that no
reference sample is necessary: the diffusely reflected power can be measured using an
integrating sphere and one detector, while a small hole (coincident with the input hole for normal
incidence) and a second detector is used to measure the specularly reflected power (Stover,
1990). Also note that Eq. (24) provides a quantitative basis for the Rayleigh criterion for the
roughness of a sample, wherein a surface is respectively considered rough or smooth if
4πσcosθi/λ, which equals the phase difference between two specular rays reflected from points
separated by a height σ on the surface, is large or small compared to π/2 or approximately 1
(Beckmann and Spizzichino, 1987).

Equation (23), giving the specular reflectance of a slightly rough surface, is in fact
proportional to |<Er>|2. However, the total scattered intensity is more exactly given by
<|Er|

2> = |<Er>|2 + <|Er – <Er>|2>. The angular distribution of the diffusely scattered radiation is
determined by the second term on the right-hand side of this equality, which defines the variance
of the complex scalar amplitude Er, given in turn by the sum of the variances of its real and
imaginary parts. In general, this depends upon the joint probability distribution of finding the
height to be ζ2 at a lag τ away from a point where the height is ζ1. However, for a slightly rough
surface the integral of interest can be expanded to first order in ζ/λ and σ/λ, with the result that
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the variance depends only on the autocorrelation function of Eq. (17). The diffuse BRDF is then
approximately found to be (Beckmann and Spizzichino, 1987)
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Similar results have been obtained by Davies (1954) and Leader (1979) except for the angular
prefactor—as discussed by Stover (1990), as well as in a footnote on page 75 and in Appendix A
of Beckmann and Spizzichino (1987), the form of this angular term depends on the obliquity
factor used, of which considerable variation exists in the literature.

The other important case of Eq. (21) averaged using Eq. (22) is very rough scattering
(σ >> λ), for which the reflection is predominantly diffuse and given by the BRDF
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where, as defined in Eq. (18), m is the rms surface slope. In Davies (1954), the argument of the
exponential is larger by a factor of 2, apparently stemming from a different assumed form for the
surface-height joint probability distribution.

It is emphasized again that the tangent-plane approximation inherent in the above physical-
optics method implies that the solution will only be correct in the high-optical-frequency limit
(λ << l) and in this respect is not more accurate than geometrical optics, although it can be
applied to a wider variety of target geometries. A perturbation approach can be used to
approximate the scattering at lower frequencies (λ <  l; obviously at very low frequencies a
rough surface will ultimately appear smooth and scatter specularly) and has the added advantage
that it is explicitly vector based. However, the relevant perturbation is of the surface height and
hence the method only applies to slightly rough samples (σ << λ). The basic idea was first
proposed by Rayleigh in 1895 and later extended by Rice (1951), so that it is today known as the
Rayleigh-Rice method. The height profile ζ(x,y) is Fourier analyzed into its sinusoidal
components Z(kx,ky). Any individual component acts like a periodic grating, scattering an
incident plane wave into a set of directions given by the 2D grating equations. Assuming the
surface is only slightly rough, the diffuse scattering will be dominated by the first-order peaks, so
that

( ) ˆ (sin cos sin )

( ) ˆ sin sin

k k x

k k y
r i r r i x

r i r r y

k k

k k

− • = − =
− • = =

θ φ θ
θ φ (27)

where kx and ky can be either positive or negative so as to include all four first-order peaks, and
where I have followed the usual convention (e.g., Beckmann and Spizzichino, 1987; Church and
Zavada, 1975) of orienting the x-axis so that φi = –π. Equation (27) can be viewed as an
expression of conservation of linear momentum. The total electric field above the surface (which
for simplicity is taken to be infinitely conducting) in the case of incident s-polarization (which
avoids coupling to surface waves) is then

E E E Ek r k r k r= − −• • •∑0 0
0 0
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x y
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,

( , ) , (28)

where the 0 subscripts on the electric fields denote the complex amplitudes, suppressing the
unimportant time dependences. The first term on the right-hand side of Eq. (28) is the incident
field; the second is the specularly reflected field, whose amplitude is equal to that of the incident
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field to lowest order in the roughness and whose sign arises from the 180° phase shift for
external TE reflection from Eq. (6a); and the last term is the diffusely reflected field, given by
the sum of the first-order diffraction peaks. (Note that Rice writes kx = mK and ky = nK, where K
is some arbitrarily small fundamental spatial frequency, which in practice can be chosen by
requiring 2π/K to be of the order of the largest experimentally observable spatial wavelength,
namely the sample or beam diameter. Furthermore, there are upper limits on the values of kx and
ky, beyond which the diffracted orders disappear into the surface; for example, one must have
(kx

2+ky
2)1/2 ≤ k at normal incidence, i.e., λ <  l. Thus, the above summation can actually be

considered to be over a finite set of integers m and n.) Maxwell’s equation ∇ •E = 0 requires that
each component wave in the scattered field be transverse, kr•E0r = 0. Furthermore,
electromagnetic boundary conditions must be imposed at the surface. For example, the two
tangential components of the total electric field must vanish on the surface, n̂×E|z=ζ = 0, where n̂
is the local surface normal given by

ˆ
( / , / , )

( / ) ( / )
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ζ ζ

ζ ζ

x y

x y

1

1 2 2
, (29)

or approximately (–∂ζ/∂x,–∂ζ/∂y,1) using the perturbation assumption (which implies the surface
slopes are gentle, again consistent with λ <  l). These first derivatives of the surface profile are
given by the Fourier transforms of kxZ(kx,ky) and kyZ(kx,ky). A matrix equation is thus obtained for
the Cartesian components of the unknown amplitudes E0r, which (as for n̂) are expanded to
lowest nonzero order in ζ. The statistical character of the surface profile is now introduced by
assuming that Z(kx,ky) is distributed normally about zero and that the variables kx and ky are
independent. In particular, the ensemble average of the squared modulus of Z(kx,ky) defines the
power spectral density (PSD),

W k k
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2

ζ (30)

where A denotes the area of the sample. (In the present context, the 1/A prefactor normalizes the
scattered power to the incident power.) According to the Wiener-Khinchin relation, Eq. (30) can
also be expressed as the Fourier transform of the autocorrelation function. In polar coordinates,
the azimuthal integration yields a Bessel function of order zero for an isotropic surface (Elson
and Bennett, 1979b), so that W is only a function of (kx

2+ky
2)1/2. Specifically, assuming a

Gaussian autocorrelation function as given by Eq. (17), the radial integration can also be
performed, giving

W k k l ex y
k k lx y( , )

( ) /= − +π σ2 2 42 2 2

, (31)
while for the exponential surface height correlations of Eq. (19), one obtains
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(32)

which becomes a Lorentzian in the case of 1D roughness, ζ(x). Note that, strictly speaking,
Eq. (32) cannot be used in the present context because it implies (infinitely) steep surface slopes,
as discussed in connection with Eq. (19); however, many researchers have ignored this point and
used it anyway, implicitly assuming that the correlation function eventually becomes non-
exponential for lags below the range of measurement (which is on the order of λ in optical
experiments and of the radius of the stylus when using mechanical profilometry). Specifically,
the autocorrelation function must have zero slope at zero lag to be physically meaningful (Elson
and Bennett, 1979a).

Elson (1975; also see Elson and Ritchie, 1974) has performed an analysis which is essentially
equivalent to the preceding Rayleigh-Rice vector theory, except that he has used the full
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electromagnetic boundary conditions rather than assuming infinite conductivity. The wave
equations were expanded to first order in ζ(x,y) and solved by Green function methods. His
oft-quoted result for the diffuse BRDF is

f
k

Q W k kdiff i r x y= ⋅ ⋅ ⋅
4

2π
θ θcos cos ( , ) (33)

assuming that m << 1. If W is given by Eq. (31), this result reduces to Eq. (25) provided that the
form of Q applicable to an infinitely conducting surface is adopted and that the polarization
factor of Eq. (36) below is accounted for. Note that some authors (e.g., Church et al., 1977)
employ the symmetric form of the Fourier transform in Eq. (30), and hence the first term on the
right becomes 4k4 instead. Here, k4 is the usual “Rayleigh blue-sky” factor; the angles comprise
an obliquity factor and have a significant effect near grazing; Q, which is proportional to the
scattering matrix elements, is called the optical factor and depends on the relevant material and
polarization properties—it has been tabulated for a variety of cases of interest by Barrick (1970)
and Church et al. (1977), reducing to the Fresnel reflectances R of Eq. (6) for small-angle
(i.e., near specular) scattering, and should be summed (averaged) for a polarization-insensitive
detector (unpolarized source); finally, in the present context W(kx,ky) from Eq. (30) is called the
surface factor (Elson and Bennett, 1979a). Since each Fourier component of the surface diffracts
the incident light into a unique set of first-order directions, it makes intuitive sense that there is a
one-to-one mapping between the angular distribution of the scattered light (as given by f) and the
power spectral density of the roughness profile (as given by W). Specifically, consider a 1D
sinusoidal grating given by z(x) = 21/2σ sin(Kx). Then the PSD is proportional to a product of two
Dirac delta functions,

W k k k K kx y x y( , ) ( ) ( )= ±2 2 2π σ δ δ , (34)
where kx = ±K gives the two first-order peaks. Using this to evaluate f in Eq. (33), assuming
small-angle scattering [which by Eq. (27) implies K/k << sinθi, i.e., a low-spatial-frequency
grating and an angle of incidence not too far off-normal], integrating it with respect to cosθrdΩr

over the outgoing hemisphere (implicitly excluding the specular beam), and dividing that by
R(θi) gives the TIS, which agrees with Eq. (24). This result can also be written, to lowest order in
σ, as TIS = 2p, where p is called the diffraction efficiency and is defined as the ratio of the power
diffracted into the +1 and 0 orders (Stover, 1975; Church et al., 1977), with the factor of 2
arising from the fact that the same amount of power is diffracted into the +1 and –1 orders in the
small-angle-scattering limit.

Equation (33) has been compared to experimental measurements (Germer et al., 1997) on a
fabricated silicon microroughness standard having a pseudorandom distribution of circular pits
(with ~1-µm diameters and 1-nm depths) using a cw doubled Nd:YAG laser. Excellent
agreement resulted for an incident angle of θi = 45°, reflected polar angles of θr = 30°, 45°, and
60° and azimuthal angles of φr = 10°–170°, and the four polarization combinations ss, sp, ps, and
pp. An interesting feature of the data is that the pp scattering vanishes for certain out-of-plane
angles (e.g., φr ≅  60° for θr = 45°) which are the bidirectional analogs of the Brewster angle.
Furthermore, ellipsometry indicates that, for incident linearly polarized light, the out-of-plane
(lateral) scattered light remains strongly linearly polarized, albeit with a rotated plane of
vibration in general. Both of these effects can be used to probe other scattering mechanisms,
such as those due to surface particles or bulk defects (Germer, 1997), whose signals might
otherwise be masked by the microroughness surface scattering.

The optical factor Q describes the polarization of the reflected beam relative to that of the
incident beam and can be considered a generalization of the Fresnel reflectances of Eq. (6). In
particular, the cross-polarization terms Qsp and Qps are zero for scattering into the plane of
incidence. For the common case of in-plane (longitudinal) ss scattering, it is convenient to note
(Stover, 1990) that the optical factor is simply the geometric mean of Rs(θi) and Rs(θr). If the
incident light is polarized but neither s nor p (i.e., linearly polarized at an oblique angle,
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circularly polarized, or elliptically polarized), then for both the specular and diffuse components
even the singly scattered light is depolarized. To put this on a more precise footing, the
polarization factor p of a wave is defined as E0p/E0s, where the complex amplitude E0 has been
resolved into its vertical and horizontal components (Beckmann and Spizzichino, 1987). I choose
to follow the sign convention wherein any scalar component of the field is written as

E E e E ei t i t= =• − + • −
0 0

( ) ( )k r k rω ε ω , (35)
where ω = ck in vacuum, while some authors choose the opposite signs for k•r and ωt.
Accordingly, Im{p} = 0 implies linear polarization (e.g., p = 0 is horizontal and p = ∞ is
vertical), while Im{p} greater or less than 0 refers to left-handed or right-handed polarization,
respectively (e.g., p = i is left circular and p = –i is right circular). If the polarization of the
incident wave is described by pi and that of the reflected wave by pr, then the (complex)
depolarization factor q is defined by the relation pr = qpi; specifically, q = 1 implies no
depolarization, while q = 0 or ∞ corresponds to a filter, scattering only one component of the
incident light, as occurs at the Brewster angle for example. [Note carefully that depolarization
here refers to a change in the state of polarization of a beam, not in its degree of polarization.
Both the incident and scattered waves are assumed to be fully polarized. However, many workers
(e.g., Renau et al., 1967) use the term to refer instead to an increase in the randomly polarized
fraction of a beam.] For an ideal specular reflector, q = –1, so that an infinite, flat, perfect
conductor will depolarize all incident polarizations except s and p, changing both the orientation
of the polarization ellipse and its handedness; this same result holds for longitudinal scattering by
a rough surface (of infinite conductivity) if the tangent-plane approximation holds (i.e., l >> λ).
If a smooth plane has finite conductivity instead, then q = rp(θi)/rs(θi) and one sees that an
obliquely linearly polarized beam (i.e., neither s nor p) incident at an oblique angle (i.e., neither
normal to nor grazing the surface) gives rise to a (longitudinal) specularly reflected beam which
in the case of a dielectric remains linearly polarized but with a rotated plane of vibration, and
which in the case of a metal is elliptically polarized (Jenkins and White, 1957); in contrast,
q = –1 at normal incidence and +1 at grazing incidence.

In the case of lateral scattering, even incident s or p light is depolarized. Consider, for
example, a vertically polarized wave at near grazing incidence scattering off a perfectly
conducting surface element tilted upwards about the x axis by 45°. Resolving the incident field
into tangential and normal components and applying the boundary conditions, the reflected wave
is found to be horizontally polarized. This effect is responsible for the depolarization of
television waves by tin rooves in cities. The general result for specular reflection off facets of
finite conductivity is shown from spherical geometry (Beckmann and Spizzichino, 1987) to be

p
p r r r r

r r p r rr
i s p p s

s p i s p
=

+ + −
+ − −

( tan tan ) ( )tan

tan tan ( tan tan )

β β β
β β β β

1 2 1

1 2 2 1
, (36a)

where

β θ φ

θ θ θ θ φ
1

1
21

≡
− −













−sin
sin sin

(cos cos sin sin cos )

r r

i r i r r

(36b)
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1 1≡ −[ ]−cos cos cos sin cos sinr i r , (36c)

with φi = –π, as in Eq. (27). It is easy to check that for longitudinal scattering (φr = 0), one gets
β1 = β2 = 0, so that q = rp/rs as above. These expressions are already rather complicated, without
even considering the depolarization of waves diffracted into non-specular directions, as occurs in
the Rayleigh-Rice model for example. Note that knowledge of the optical factors is not sufficient
to describe scattering from and to states of arbitrary polarization, because the four Q values
involve intensity rather than amplitude ratios and hence the necessary phase information is not
available. For example, a beam linearly polarized at 45° to the vertical and a circularly polarized
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wave both have equal-intensity s and p components and hence cannot be distinguished on that
basis alone. Unfortunately, no general analytical solution to the problem of depolarization by a
rough surface exists.

To circumvent this situation and the limitations inherent in the Kirchhoff method (i.e., the
tangent-plane approximation l >> λ and the assumption of infinite conductivity) or in the
Rayleigh-Rice theory (namely, the assumption of slight roughness σ << λ and gentle slopes
λ <  l), direct numerical solutions of the electromagnetic equations have been undertaken. In
essence, one starts from a vector form of the Kirchhoff integral (Jackson, 1975)—also known as
the Chu-Stratton integrals (Ruck et al., 1970)—for the electric and magnetic fields, E and H,
which express the total fields (or more simply, the scattered fields if the incident fields are
subtracted off) at any point in space in terms of their values on the sample surface and a free-
space Green function. In turn, the surface fields can be related to the induced surface current
density J. Finally, J can be obtained from a similar integral by relating the scattered fields on the
surface to the incident fields via the boundary conditions, taking care to handle the singularity
when the argument of the Green function is zero (i.e., when the source point is identified with the
field point). These integral equations can also be obtained more directly from the optical
extinction theorem (Soto-Crespo and Nieto-Vesperinas, 1989). To solve them numerically, the
finite surface is chopped into a discrete number of sampling points, say N in all. The elements of
surface area, secθndxdy, and the surface-normal unit vectors n̂ (where n̂• ẑ ≡ cosθn) are
determined by ζ(x,y) from Eq. (29). The integrals expressing the boundary conditions can then
be written as two N×N matrix equations for the N values of Ei and Hi on the surface in terms of
the N values of the two tangential components of J. These equations are inverted to give J,
which is inserted in turn into the finite approximations for the integrals for Er and Hr, completing
the solution. This is known as the point-matching method. The N sampled values of the surface
roughness profile are generated by a Monte Carlo procedure constructed to give zero mean with
the desired root variance σ and autocorrelation function A(τ). The scattered power is proportional
to <|Er|

2>, where the average is over an ensemble of such sequences of sampled values.
For example, Soto-Crespo and Nieto-Vesperinas (1989) have computed the scattering from

1D infinitely-conducting random (Gaussian-correlated) or periodic surfaces. For this geometry,
the Green function is a zeroth-order Hankel function of the first kind. Interestingly, there is an
intermediate range of roughness (between the regimes of mostly specular scattering and
enhanced backscattering at small and large values of σ/λ, respectively) for which the reflection is
very nearly Lambertian, at least for near-normal angles of incidence. Furthermore,these
researchers compared their numerical results to the analytical predictions of the Kirchhoff
approximation and were thus able to prepare a useful graph indicating the range of values of σ/l
versus l/λ for given angles of incidence for which the two integrated scattered powers agree with
each other to within a specified percentage. Saillard and Maystre (1990) have considered 1D
random surfaces of finite but large conductivity, applicable for instance to gold at infrared (IR)
wavelengths. In this case, the kernels of the integral equations are sharply peaked and hence
difficult to accurately evaluate by the above numerical procedures. So instead, an “impedance
boundary condition” is imposed, whereby a local linear relationship between the total field in the
metal and its normal derivative on the surface is assumed. Knotts et al. (1993) have numerically
evaluated the complete Mueller matrix for these same conditions and compared the results to
experimental measurements on well-defined samples, prepared by overcoating a photoresist plate
exposed to a suitable 1D laser pattern. Qualitative agreement resulted when Gaussian statistics
were employed, but detailed agreement required that the sequences of surface-height values be
taken directly from digitized profilometer data rather than be generated by the Monte Carlo
technique, indicating that rather subtle statistical properties of a surface can play a significant
role in determining the scattering. This emphasizes the most important limitation of such
numerical techniques: they must be repeated from scatch for each specific set of sample
properties and illumination characteristics.
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Experimental Measurements of Surface BRDFs

In this section, an assortment of experimental papers are briefly discussed, but no attempt at
completeness is made—for this purpose, reviews such as the one by Asmail (1991) should be
consulted. It is logical to begin with the reflectometers used to measure BRDFs in the laboratory.
Typical examples are described by Roche and Pelletier (1984), Zaworski et al. (1993), and
Sandmeier et al. (1997). At their hearts are a goniometer which permits one to choose values of
θi, φi, θr, and/or φr in certain ranges, to within specified angular resolutions and source and
detector solid angles. Two common design geometries are: type (i) where the source and detector
are each mounted on a pair of arc rails so that they can be scanned throughout the hemisphere
above a stationary sample; and type (ii) for which the source is fixed in place, the sample rotates
about the x and y axes defining its surface, and the detector orbits around the sample in a single
plane. Various choices for the collimation or focusing of the incident light are discussed in
Nicodemus et al. (1977). Sometimes the sample is rapidly spun about its normal direction to
average out inhomogeneities such as laser speckle, and the incident beam chopped so that lock-in
detection can be used to eliminate scattering by ambient light. Oppenheim et al. (1994) have
made measurements on various recommended standards of diffuse (nearly Lambertian)
reflectance in the IR used in calibrating such instruments.

Moving on to applications in the domains of interest outlined in the introduction, Snyder and
Wan (1996) have used a Fourier-transform IR spectrometer mounted on a type (i) goniometer to
investigate soil samples. It proved necessary to make measurements both with the source on and
off, in order to correct for sample heating by it. The ultimate goal is to determine the BRDF for
analysis of satellite-based thermometric imaging of earth’s surface. Stavridi et al. (1997) have
examined brick, tile, and concrete with a CCD camera in a type (ii) geometry for architectural
applications. As is typical of many experimental papers, these researchers have fitted their data
by combining several models discussed in the previous section. Specifically, they chose a linear
combination of the Torrance-Sparrow and Oren-Nayar facet models. There is no theoretical
justification for such ad hoc combinations, and so they are probably best viewed as empirical
fitting functions which work because they contain a sufficient number of free parameters. Newell
and Keski-Kuha (1996) have looked at extreme-ultraviolet (UV) scatterers and baffles of interest
to astronomers. Perhaps not surprisingly, materials which perform well in the IR and visible
spectral ranges often make poor choices for the UV. Similarly, Watkins et al. (1993) made s- and
p-polarized measurements of high-reflectance dielectric coatings using laser sources and an
InGaAs or photomultiplier detector in a type (ii) configuration. Superpolishing of the substrates
can reduce the BRDF, but generally only at the design wavelength—scatter characteristics at
different wavelengths tend to be uncorrelated. Bickel et al. (1987; also see Iafelice and Bickel,
1987) have measured the complete Mueller matrices for smooth and distorted metal surfaces by
periodically modulating the incident polarization state from a laser and measuring the
fundamental and second harmonic of the scattered light in a type (ii) setup; this demonstrates the
sensitivity of polarimetric optical scattering to surface perturbations. An alternative technique for
finding the Mueller matrix uses a fixed linear polarizer and a variable retarder in both the source
and receiver arms (Sornsin and Chipman, 1996); an integrating sphere scrambles the analyzed
state to compensate for any polarization sensitivity of the detector. Burnell et al. (1994) have
studied oxidized nickel collected from the interior of furnace tubes for the purposes of
distinguishing emitted and reflected radiation in pyrometric measurements. After finding that the
data could not be fit with physically realistic values of the parameters in the Torrance-Sparrow
model, they also modified it in an ad hoc fashion to give a function which worked better but
could not be interpreted physically. This is reminiscent of the approach used to devise the
coupled model (Shirley et al., 1997) or the (similar) modified Beard-Maxwell model (Ellis,
1996a) for glossy surfaces.
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