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Abstract
Defining the eccentricity vector as the dimensionless Runge-Lenz vector
provides an alternative elementary derivation of the Keplerian polar orbit
equation.

In a recent issue of this journal, Bringuier [1] provides an elegant derivation of Keplerian
orbits at an elementary calculus-based physics level by introducing the concept of eccentricity
as a vector. In this comment, a similar derivation is reviewed, using an alternative definition
of the eccentricity vector, as presented in programme 22 of the Mechanical Universe video
series [2].

Let the orbiting body have mass m and position vector r relative to a stationary (heavy)
mass M at the origin. Then Newton’s second law reads
S 1)

r
where a is the acceleration of the orbiting body and G is the gravitational constant. Since
this gravitational force is radial, it exerts no torque about the origin, and hence the angular
momentum L of the orbiting body is constant. Let the direction of this constant angular
momentum vector define the z-axis, with the motion of body m confined to the 7— plane in
polar coordinates, and thus

ma =

,do .
L =mr-—Kk. 2)
dr
Taking the cross-product of equations (1) and (2) gives
do.

axL:GMmEer. 3)
But the radial unit vector in the plane is = cos 61 + sin Gj, and it therefore follows that

3 N 2 s % df

k X f =cosfj —sinfi = —. 4)

do
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Noting that the acceleration of the orbiting body is the time derivative of its velocity v and
that its angular momentum is constant, one can rewrite equation (3) as

d (vxL)=GM o ®)
—(wxL)= m—
dr dr

where the right-hand side was simplified using equation (4). Integrate this to obtain
vxL=GMm( +e) (6)

where the integration constant is e, the eccentricity vector, whose direction is chosen to define
the x-axis.

As an aside, Bringuier chose his eccentricity vector—call it &—to define the y-axis, which
is not as intuitively appealing. The eccentricity vector e in equation (6) is in fact what Bringuier
calls the Laplace—Runge—Lenz vector A divided by GMm to make it properly dimensionless.
Note that the connection between the two eccentricity vectors is simply

ée=kxe, (N

so they have the same magnitude and differ only in choice of direction. (I would prefer to
define the y-axis to be the direction of a vector ¢, whose magnitude is defined below. We
then have three physically meaningful constant vectors {e, ¢, L} in the directions of {i, j, i(}
respectively.) By vector multiplying k by equation (6), one obtains

GMm
v= ——
L

since the middle expression in equation (4) is the azimuthal unit vector 0. Equation (8) is
the same as Bringuier’s equation (5). The present approach can therefore reproduce all of the
merits of Bringuier’s formulation. This ends the aside.

To complete the derivation of the Keplerian orbital equation, take the dot product of the
position vector with equation (6) to get

r-(vxL)=GMmr- (t+e). ©))

0 +9), (8)

Since the ‘dot’ and ‘cross’ can be interchanged in a triple scalar product, this becomes
M6 x v)-L =GMm(r +ercos0). (10)
m

Noting that the left-hand side can be rewritten as L?/m, this gives the polar equation of the
Keplerian orbits,
c

1D

- 1+ecosb

where ¢ = L?/(GMm?) is a constant called the semilatus rectum. If ¢ = 0 then r = ¢ for
all 6, which defines a circular orbit. On the other hand, note that r diverges (implying an
unbounded orbit) if cos® = —1/e, which occurs if e > 1. A geometric interpretation of the
two constants e and c¢ in equation (11) is that c is the y-intercept and ryj, = ¢/(1 + e) is the
x-intercept of the orbit. The polar equation can be recast in the rectangular form of an ellipse,
parabola or hyperbola by cross-multiplying to get \/x2 + y2 +ex = ¢ = x> + y? = (c — ex)?
and then (if e # 1) completing the square in x.

The preceding derivation assumed that the heavier mass is stationary at the origin.
However, it is straightforward to generalize the derivation to the exact case where both masses
orbit their common centre of mass at the origin. Simply reinterpret m as the reduced mass, r
as the relative coordinate (with time derivatives v and a), M as the total mass, and L as the
total angular momentum.
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The Mechanical Universe series is available in streaming video online at no charge [3]
which makes it convenient for presentation in 30 minutes of class time. Retention is enhanced
by having students fill in a worksheet as they watch and summarizing the derivation afterward.
The videos also animate the circular velocity hodograph [4], although it is not called that
name.
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