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Abstract
The ancient Babylonians had an iterative technique for numerically
approximating the values of square roots. Their method can be physically
implemented using series and parallel resistor networks. A recursive formula
for the equivalent resistance Req is developed and converted into a nonrecursive
solution for circuits using geometrically increasing numbers of identical
resistors. As an example, 24 resistors R are assembled into a second-order
network and Req/R is measured to equal

√
2 to better than 0.2%, as could be

done in an introductory physics laboratory.

(Some figures may appear in colour only in the online journal)

1. Aim

Given a bucket of identical resistors R, construct a circuit whose equivalent resistance
approximates

√
2R (to any desired degree of accuracy, limited only by the precision of the

resistors). To ensure that the construction is accessible to introductory physics students, the
resistors are to be combined either in series or in parallel at each stage of the circuit [1].

2. Theoretical analysis

To simplify the equations that follow, choose units of resistance so that R = 1. In the next
section, it will be explained how to restore conventional units of ohms to the terms.

Start by putting two resistors in series to get a resistance of 2. Denote that combination as
S0 where the ‘S’ refers to putting two initial resistors in series and the subscript ‘0’ denotes a
zeroth-order approximation to

√
2. However, S0 is larger than

√
2 and is thus an overestimate.

On the other hand, one gets an underestimate by constructing

P0 = 2

S0
= 1 (1)

where in later steps, ‘P’ will refer to putting two previous resistor combinations in parallel.
These two zeroth-order circuits are illustrated in figure 1.
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Figure 1. Starting circuits to construct a resistor network whose equivalent resistance approximates√
2.
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Figure 2. The two circuits that can be constructed using six unit resistors whose equivalent
resistances are nearest in value to

√
2.

To achieve an equivalent resistance that is nearer in value to
√

2, one can average together
S0 and P0 to get

S1 = 1

2
(S0 + P0) = 3

2
. (2)

To accomplish that, first put S0 and P0 in series with each other. Then put that trio of unit
resistors in parallel with an identical trio to halve the total resistance. On the other hand, if
one first puts S0 and P0 in parallel, and then puts that trio in series with an identical trio, one
doubles the resistance of each trio to end up with

P1 = 2

(
1

S0
+ 1

P0

)−1

= 2
S0P0

S0 + P0
= S0P0

S1
(3)

using equation (2) in the last step. Consequently

S1P1 = S0P0 = 2 (4)

from equation (1) and therefore

P1 = 2

S1
= 4

3
. (5)

These two first-order resistor combinations are sketched in figure 2. Again S1 is an
overestimate and P1 is an underestimate to the value of

√
2.
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Table 1. Values predicted by equation (9) for a starting value of S0 = 2.

n Sn

0 2
1 3/2 = 1.5
2 17/12 ≈ 1.417
3 577/408 ≈ 1.414 22

These two constructions can now be iterated to successively approach an equivalent
resistance of

√
2. To form S2 and P2, simply replace every occurrence of S0 and P0 in figure 2

with S1 and P1, respectively. Then equation (2) becomes

S2 = 1

2
(S1 + P1) = 1

2

(
S1 + 2

S1

)
(6)

using equation (5) in the last step, and equation (4) becomes

S2P2 = S1P1 = 2 (7)

so that

P2 = 2

S2
. (8)

It takes 24 unit resistors to build either of the second-order networks S2 or P2.
More generally for n � 1 one can use 1.5 × 4n unit resistors to construct the two circuits

Sn = 1

2

(
Sn−1 + 2

Sn−1

)
(9)

and

Pn = 2

Sn
. (10)

Equivalent resistances computed recursively using equation (9) are listed in table 1. One
sees that Sn rapidly converges to

√
2 ≈ 1.41421.

Recursion relation (9) can be converted into a nonrecursive formula valid for n � 0,

Sn =
√

2
1 + r f (n)

1 − r f (n)
(11)

where f (n) ≡ 2n and r ≡ (
√

2 − 1)/(
√

2 + 1) ≈ 0.1716, as verified in appendix A. It follows
immediately from this formula that Sn → √

2 as n → ∞. One can more compactly write this
result as

Sn =
√

2 coth
(

2nacoth
√

2
)

(12)

where coth and acoth are the forward and inverse hyperbolic cotangent functions. (This formula
again implies Sn → √

2 as n → ∞ because coth ∞ = 1.) This explicit formula for Sn is plotted
in figure 3 as the solid curve, treating n as a continuous variable. Its values for the integers
n = 0 to 5 are indicated by the dots. The asymptotic value

√
2 is denoted by the horizontal

dashed line.
To prove that equation (9) converges to

√
2 without using equations (11) or (12), assume

[2] that a limiting value of Sn−1 exists and call it S. That must also be the limiting value of Sn

and hence equation (9) in the limit n → ∞ becomes

S = 1

2

(
S + 2

S

)
⇒ S2 = 2 (13)
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Figure 3. Explicit and recursive values of Sn asymptotically approaching the value
√

2.

whose positive solution is S = √
2. (For another approach, see appendix B.) This limiting

value can be understood intuitively by writing equation (9) as

Sn = 1

2
(Sn−1 + Pn−1) . (14)

Since Sn−1 is slightly larger than
√

2, it follows that Pn−1 = 2/Sn−1 will be slightly smaller than√
2. Therefore averaging together these two values gives an improved estimate for

√
2. This

iterative method of approximating
√

2 was known to the ancient Babylonians [3], motivating
the title of this paper.

3. Experimental verification

Students can assemble one of these Babylonian resistor circuits and measure its resistance.
Noting from figure 3 that good accuracy is already obtained for n = 2 and that it would be
difficult to correctly wire 96 or more resistors together, it is reasonable to build a second-order
network. Since Pn is closer in value to

√
2 than is Sn (for any value of n), it makes sense

to construct P2 rather than S2. All of the equations in section 2 assumed unit resistors; for
laboratory resistors of resistance R, one simply has to multiply any value or expression for Sn

or Pn by R. (For example, S1 in figure 2 then has a resistance of 1.5R.)
The required components are 24 identical resistors R and five short jumper wires. First

wire the resistors together as four parallel lines of 6R each by twisting their ends together
(and securing them with solder), and then add the jumper wires indicated in red in figure 4.
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Figure 4. Circuit P2 redrawn to make it easy to assemble.

Figure 5. Measurement of the equivalent resistance of circuit P2.

The equivalent resistance between the left and right ends is predicted to be

24

17
R ≈

√
2R. (15)

The difference between 24/17 and
√

2 is less than 0.2%.
The circuit in figure 4 was constructed using 24 nominally 1 k� resistors. The actual

resistances were measured using a multimeter prior to assembly and were found to be
R = 983 ± 5�. Thus, either the resistors are systematically low or the multimeter is a
bit out of calibration, but that will not affect the ratio Req/R as long as the same multimeter is
used to measure the equivalent resistance Req. As can be seen in the photograph of the setup
in figure 5, we measured Req = 1388�, which differs by less than 0.2% from

√
2R = 1390 �

and is well within the 5 � variation in the individual resistors.

4. Conclusions

Discussion and assembly of these resistor networks provide an interesting alternative to routine
series and parallel circuits in an introductory physics course. An extension of the results
presented here is to keep P0 = R (in laboratory units) but replace S0 with any resistance kR
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instead of 2R. The equivalent resistance of networks iterated in the style of figure 2 will then
asymptotically approach the value

√
kR rather than

√
2R. The number k need not even be an

integer but can have any real, positive value. (For example, if P0 = 200� and S0 = 4.7 k�,
then k = S0/P0 = 23.5.) Such Babylonian networks can thus be thought of as an analogue
calculator of square roots. Another option is to replace the resistors with capacitors or springs
because they too obey series and parallel combination rules.

Appendix A. Verification of equations (11) and (12)

Since f (n + 1) = 2 · 2n, equation (11) implies that

Sn+1 =
√

2
1 + r2 f

1 − r2 f
. (A.1)

But according to equations (9) and (11) this result is supposed to be equal to

1

2

(
Sn + 2

Sn

)
= 1√

2

1 + r f

1 − r f
+ 1√

2

1 − r f

1 + r f
. (A.2)

In other words, one needs to show that
√

2
1 + r2 f

1 − r2 f
= 1√

2

(1 + r f )2

1 − r2 f
+ 1√

2

(1 − r f )2

1 − r2 f
. (A.3)

But this equality is verified by expanding the two squares in the numerators of the right-
hand side. Different values of r give rise to different initial values for S0. In particular,
r ≡ (

√
2 − 1)/(

√
2 + 1) results in S0 = 2.

To directly obtain equation (12), run the recursion solver command

RSolve[{S[n + 1] == S[n]/2 + 1/S[n], S[0] == 2}, S[n], n] (A.3)

in Mathematica. Alternatively one can convert between equations (11) and (12) using standard
exponential and logarithmic identities for coth and acoth.

Appendix B. A physics-based approach to finding the limiting value of Sn

Rewrite equation (9) as

Sn+1 − Sn

(n + 1) − n
= 1

Sn
− Sn

2
. (B.1)

The left-hand side is �Sn/�n ≈ dSn/dn by treating Sn and n as continuous variables.
Substituting that derivative into equation (B.1) and multiplying through by 2Sn, one obtains

d(S2
n)

dn
≈ 2 − S2

n. (B.2)

By viewing Sn as a velocity, equation (B.2) can be interpreted as the change in kinetic energy
of a particle falling in a uniform gravitational field while subject to a quadratic drag force. The
differential equation is separated and integrated to get

Sn ≈ √
2 − e−n. (B.3)

The limit n → ∞ corresponds to a terminal speed of
√

2 in which case the left-hand side of
equation (B.2) is zero since the velocity is no longer changing. Equation (B.3), unlike equations
(11) and (12), is only approximate for finite n, however. In contrast to the red curve in figure 3,
equation (B.3) describes a graph which starts at 1 and increases towards an asymptotic value
of

√
2.
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