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Abstract
A current-carrying wire hanging between two suspension points in a transverse
magnetic field adopts a shape intermediate between a circle and a hyperbolic
cosine. This magnetocatenary can be analytically calculated as a novel
extension of the standard hanging chain problem in an intermediate mechanics
course.

(Some figures may appear in colour only in the online journal)

1. Introduction

A freely hanging cable adopts the shape of a catenary between adjacent suspension points.
Many interesting variations on catenary problems have been considered [1, 2 and references
therein]. In this paper we analyze the change in shape of the cable when a magnetic force
also acts on it, arising from a current in the wire responding to a uniform magnetic field. To
maximize the effect, the magnetic field is everywhere perpendicular to the wire. An analytic
solution is found as a function of the ratio of the gravitational and magnetic forces. The shape
varies continuously from a catenary when the magnetic force is negligible to a circular arc
when the magnetic force dominates. (A circular shape is obtained in the latter case because the
magnetic force acts perpendicularly outward on every segment of the wire, just as a jumping
wire [3] would do if its two ends were pinned so that it could not escape the field region.)

As one possible physical realization of the problem, the following setup is suggested. A
small smooth board of width W and height H is hinged along its upper edge, so that it can be
oriented at any desired angle between a horizontal and a vertical position. A flexible wire with
a length exceeding W has its two ends A and C affixed to the midpoints of the two side edges
of the board. Connecting leads are attached from those two ends to a power supply driving
a dc current I through the wire. Helmholtz coils of diameter much larger than both W and
H are positioned above and below the board, parallel to it, so that the wire is immersed in
a uniform magnetic field B. The coils are attached by posts to the board, to ensure that they
remain parallel to the board when it is reoriented, so that the field �B is always perpendicular to
the wire. Increasing the board’s angle from horizontal to vertical has the effect of increasing
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Figure 1. Current-carrying wire suspended between two points at the same height.

the magnitude of the apparent gravitational field3 �g directed toward the bottom edge of the
board from 0 to 9.8 m s−2.

2. Differential equation for the hanging wire

The geometry is sketched in figure 1. The wire is suspended between two points A and C at the
same altitude above earth’s surface. Choose a coordinate system with the origin at the lowest
point of the wire, midway along its length. Points A and C lie along a line parallel to the x
axis. The gravitational field �g is vertically downward in the −y direction, and the magnetic
field �B is initially assumed to be in the +z direction. The current I runs from A to C. Consider
an infinitesimal segment d�s = dx î + dy ĵ directed along the current at arbitrary position D
where the cable makes angle θ relative to the horizontal. The element of magnetic force on
that segment is

d�F = I d�s × �B = IB(dy î − dx ĵ). (1)

Integrating this expression, the magnetic force on the piece of the wire that runs from the
origin to point D at coordinates (x, y, 0) is then

�F = IB(y î − x ĵ), (2)

neglecting spatial variations in the magnitude and direction of the magnetic field (as would
arise for a real Helmholtz coil, or if one included the magnetic field of the earth or that is
created by neighboring segments of the wire). There are three additional forces acting on this
piece of the cable: its weight −W ĵ, the tension T cos θ î+T sin θ ĵ at point D, and the tension
−T0 î at the origin [4]. Balancing the vertical components of the forces leads to

T sin θ = W + IBx, (3)

whereas the horizontal force balance implies

T cos θ = T0 − IBy. (4)

Dividing equation (3) by (4) eliminates the unknown T to give

tan θ ≡ dy

dx
= W + IBx

T0 − IBy
. (5)

Letting s be the length of the piece of wire extending from the origin to point D, equation (5)
can be rewritten as

(T0 − IBy)
dy

dx
= μgs + IBx, (6)

3 This apparent field actually results from the sum of the gravitational and normal forces acting on the wire.
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where μ is the linear mass density of the cable. According to the Pythagoras theorem,

ds =
√

(dx)2 + (dy)2, (7)

so that the x-derivative of equation (6) becomes

d

dx

[
(T0 − IBy)

dy

dx

]
= μg

√
1 +

(
dy

dx

)2

+ IB. (8)

This second-order differential equation describes the shape of the cable, for which we
coin the term ‘magnetocatenary’.

3. Solving the differential equation

It is helpful to introduce the three dimensionless quantities β ≡ μg
/

IB which gives the ratio of
the gravitational to the magnetic force on any short segment, and X ≡ IBx/T0 and Y ≡ IBy/T0

which are scaled coordinates along the wire. For the directions of the current and magnetic
field indicated in figure 1, the magnetic force pulls the cable downward. However, I and B can
point in the opposite directions. Since they enter the problem only in the combination IB, it
suffices to let just one of them have this freedom of direction. We will choose to define +x
to always point along the current at the origin. However the magnetic field can either point in
the +z direction which we will call a ‘forward’ field, or in the −z direction defining a ‘reverse’
field. In contrast the combination μg can never be negative, although one could imagine it
being zero. A forward or reverse magnetic field therefore implies that the coefficient β is
positive or negative, respectively.

Equation (8) can be rewritten in terms of the three dimensionless variables as

(1 − Y )
d2Y

dX2
= β

√
1 +

(
dY

dX

)2

+ 1 +
(

dY

dX

)2

. (9)

The form of the right-hand side suggests the change in variable

U ≡
√

1 +
(

dY

dX

)2

. (10)

(The physical interpretation of U is that it is equal to sec θ in figure 1.) Equation (10) implies

d(U2)

dX
= 2

dY

dX

d2Y

dX2
(11)

and multiplying both sides of equation (11) by dX/dY results in

d(U2)

dY
= 2

d2Y

dX2
⇒ U

dU

dY
= d2Y

dX2
. (12)

Substituting equations (10) and (12) into (9) leads to the separable equation

(1 − Y )
dU

dY
= β + U, (13)

whose solution is

(1 − Y )(β + U ) = K, (14)

where K is a constant. At the origin, Y = 0 and the chain is horizontal so that U = 1 according
to equation (10), and thus equation (14) implies K = 1 + β. Substituting that value back into
equation (14) solved for U and equating it to the right-hand side of equation (10) leads to

1 +
(

dY

dX

)2

=
(

1 + βY

1 − Y

)2

. (15)
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This equation can be manipulated into the form

dY

dX
= ±

√
1 + β

1 − Y

√
2Y − Y 2 + βY 2, (16)

which again can be separated and integrated. Provided |β| < 1, which corresponds to a strong
magnetic field in the sense that |IB| > μg, one obtains

± X
√

1 + β = 1

1 − β

[∫
1 − Y + βY√

2Y − Y 2 + βY 2
dY − β

∫
dY√

2Y − Y 2 + βY 2

]
(17)

and the last two integrals can both be done by change of variables: the first by w ≡
(2Y − Y 2 + βY 2)1/2 and the second by Y ≡ (2 sin2 φ)/(1 − β). The final result is

± X = 1

1 − β

⎡
⎣

√
2Y − Y 2 + βY 2

1 + β
− 2β√

1 − β2
sin−1

√
(1 − β)Y

2

⎤
⎦ , (18a)

where the constant of integration is zero because the cable passes through the origin. Although
this equation cannot be inverted to find Y (X ), it can be plotted in a spreadsheet such as Excel,
as presented in section 4.

For any point on the chain with coordinates (X,Y ) there is another point on the chain
reflected symmetrically across the vertical axis which has opposite signs of X and dY/dX , thus
explaining the ± signs in equations (16) and (18).

Next consider the two cases when |β| = 1. First for β = −1, equation (16) implies
dY/dX = 0. The simplest solution is that the wire runs horizontally along the x axis and then
vertically up or down to its two endpoints A and C, because the magnetic and gravitational
forces are equal and opposite on any horizontal segment of the cable. (However, it is not
clear what maintains a nonzero tension T0 at the origin and patterns such as a ‘staircase’ of
horizontal and vertical segments from A to the origin are also theoretically possible.) Second
for β = 1, equation (16) rearranges into

± X =
∫

dY

2
√

Y
−

∫ √
Y

2
dY =

√
Y − 1

3Y 3/2, (18b)

which passes through the origin. Alternatively, one can obtain equation (18b) directly from
(18a) by taking the limit as β → 1. For this purpose, define α ≡ 1−β to rewrite equation (18a)
as

± X =
√

2

2 − α

√
Y

α

[(
1 − αY

2

)1/2

− (1 − α)

(
2

αY

)1/2

sin−1

(
αY

2

)1/2]
. (19)

Now use the first two terms of the binomial series and of the Taylor series for inverse sine to
obtain

± X = lim
α→0

√
2

2 − α
· lim

α→0

√
Y

α

[ (
1 − αY

4

)
− (1 − α)

(
2

αY

)1/2

×
{(

αY

2

)1/2

+ 1

6

(
αY

2

)3/2
} ]

(20)

in the limit that β approaches 1. Expanding all products inside the square bracket, equation (20)
simplifies to (18b).

Finally, for a weak magnetic field such that |β| > 1, the identity

sin−1(iw) = i ln
[√

1 + w2 + w
]

(21)
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converts equation (18a) into

± X = 1

1 − β

⎡
⎣

√
2Y −Y 2 + βY 2

1 + β
− 2β√

β2 − 1
ln

(√
1 + (β − 1)Y

2
+

√
(β − 1)Y

2

)⎤
⎦ . (22)

When the magnetic field is weak, it makes sense to redefine the scaled coordinates as
βX → X ≡ μgx/T0 and βY → Y ≡ μgy/T0 so that equation (22) becomes

± X = 1

1 − β

⎡
⎣

√
2βY − Y 2 + βY 2

1 + β
− 2β√

1 − β−2
ln

(√
1 + (β − 1)Y

2β
+

√
(β − 1)Y

2β

)⎤
⎦ .

(18c)

Equations (18a), (18b), and (18c) describe the various possible analytic forms X (Y ) of a
magnetocatenary.

4. Plotting the solutions

The shapes of the magnetocatenaries only need to be plotted for X � 0 because the curves have
a mirror-reflected shape for negative X. There are a variety of cases to consider, depending on
the strength and direction of the magnetic field.

4.1. Magnetocatenaries for a forward magnetic field

For a forward field, β, y, and Y are all positive. First consider the limit in which β approaches
zero from positive values, which arises when the wire is massless or is in zero (apparent or real)
gravity, or more generally whenever the magnetic force is much larger than the gravitational
force in magnitude. Equation (18a) immediately becomes

± X =
√

2Y − Y 2 ⇒ X2 + (Y − 1)2 = 1 (23)

and thus the cable has the shape of a circular arc centered at (0, 1) with unit radius, as plotted
in figure 2(a).

The interpretation of any of the panels in this figure (or in figure 3 below) is that end
C of the cable can lie anywhere along the curve, depending on the strength of the field and
the length of the wire. That terminated graph can then be reflected across the vertical axis to
display the entire shape of the cable.

Figure 2(b) plots the magnetocatenary from equation (18a) for β = 1/2. Compared to
figure 2(a), there is now a gravitational force on the cable which causes it to sag downward.
When β = 1, the gravitational and magnetic forces have equal magnitude and both act
downward on a horizontal segment. The shape of the curve, given by equation (18b) and
plotted in figure 2(c), is similar to that of figure 2(b), in agreement with the limiting behavior
found from equations (19) and (20). Continuing the trend, figure 2(d) plots equation (18c) for
the magnetocatenary with β = 2. By comparing figures 2(a)–(d), one sees that the upper Y
intercept increases in value as β gets larger.

Finally, if β gets very large, only the bottom part of the graph is accessible for a wire of
realistic length. For example, figure 3(a) plots equation (18c) for β = 500 as the continuous
curve. For comparison, the dots plot a standard catenary that passes through the origin with
zero slope, given by

Y = cosh(±X ) − 1. (24)

With a bit of algebra, one can show that equation (24) is obtained from equation (18c) in the
limit that β → ±∞, as expected when the magnetic field is zero.
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Figure 2. Plot of Y versus X when (a) β = 0+, (b) β = 0.5, (c) β = 1, and (d) β = 2.

4.2. Magnetocatenaries for a reverse magnetic field

For a strong reverse field, β and y are negative, and thus it makes sense to reverse the sign of Y
so that it is also negative. Starting again with the case of β approaching zero but this time from
negative values, the wire has the shape of figure 2(a) upside-down, as plotted in figure 3(b)
using equation (23).

Figure 3(c) plots the magnetocatenary for β = −1/2 from equation (18a) with the sign
of Y reversed. There is a minimum (largest negative) value of Y such that the two terms in
equation (18a) remain well defined, 2 |Y | − Y 2 + βY 2 > 0 and (1 − β) |Y |/2 < 1. Either
of these inequalities rearranges into Ymin = −2/(1 − β), which equals −4/3 for the case of
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Figure 3. (a) The continuous curve is a plot of Y versus X when β = 500; the dots plot the
limiting catenary given by equation (24). Plot of Y versus X when (b) β = 0−, (c) β = −0.5, and
(d) β = −2.

figure 3(c). Note from equation (16) that dY/dX = 0 at this lowest point on the graph. If the
wire were longer, its end would hook back up around to the left and cross over the segment
plotted in figure 3(c), giving rise eventually to quite an ornate pattern (which might however
be experimentally unstable).

As β approaches –1 from larger values (e.g., if equation (18a) with the sign of Y reversed
is plotted for β = −0.999), then the graph approximately follows the X axis out past 5 in value
before dropping down to Ymin = −1. When β < −1, the upward magnetic force becomes
weaker than the downward gravitational force, and we return to using the unreversed sign of
Y. For example, if β = −1.001 the graph follows the X axis out past 5 in value before rising
sharply upward. These results are consistent with the discussion in the sentences preceding
equation (18b).
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Figure 4. Geometry in horizontal and vertical units of centimeters for a 10-cm-long wire suspended
between two endpoints horizontally separated by 2 cm if the fields, current, and wire gauge are
chosen such that IB = μg.

Finally figure 3(d) plots equation (18c) for the magnetocatenary with β = −2. The curve
is returning to the gravity-dominated shape of figure 3(a).

5. Closing remarks

Reviewing figures 2 and 3, any of these half magnetocatenaries exhibit a distinctive D shape,
albeit sometimes inverted or cut off after some distance from the origin. The simplest case
for classroom presentation which has this characteristic shape is β = 1, plotted in figure 2(c).
A cubic equation is obtained by squaring equation (18b) and it can be inverted to find Y (X ),
unlike equations (18a) and (18c). The shape of the curve can be explained either by beginning
from figure 2(a) and turning on gravity, or by beginning from figure 3(a) and turning on a
magnetic field. The two fields act in concert near the origin. In contrast, along a vertical
segment, gravity pulls the cable down whereas the magnetic force pushes it outward.

These scaled graphs and equations can be converted into real units. Assume that values
have been measured for the cable’s linear mass density μ, the gravitational field g, the current
I, the magnetic field B, the total length L of the wire, and the horizontal positions of the two
suspension points ± xC. Substituting equation (16) into (6) and evaluating it at point C gives
one equation in the two unknowns T0 and yC. A second equation is obtained by selecting the
appropriate version of equation (18) and evaluating it at point C. Those two algebraic equations
can then be simultaneously solved (numerically, if not analytically). This procedure is similar
to the one used in a standard catenary problem, where T0 and yC are also unknown.
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As a specific example, consider the case of β = 1 so that IB = μg. The simultaneous
solution then becomes

T0

μg
= (L/2 + xC)2√

3L2 − 12x2
C

and yC =
√

3L2 − 12x2
C

4
. (25)

These two expressions have real values only if L > 2xC, as expected because the wire
extends horizontally from −xC to + xC. For instance, suppose a wire of length L = 10 cm
is suspended between two points A and C that are 2 cm apart, so that xC = 1 cm. Then
equation (25) implies that T0/μg ≈ 2.12 cm and yC ≈ 4.24 cm. The latter value implies
that the lowest point of the hanging wire will be 4.24 cm below the suspension points A and
C. Meanwhile, the ratio of the tension in the wire at the lowest point to the product of the
wire’s mass density and the gravitational field, T0/μg = T0/IB, implies that we can convert
figure 2(c) into length units of centimeters by multiplying the values along both axes by 2.12.
Doing so, cutting the curve off after it reaches endpoint C at (1 cm, 4.24 cm), and then mirror
reflecting it across the vertical axis to show the entire 10-cm-long wire gives figure 4. A similar
method can be used to find the actual geometry for any other values of μ, g, I, B, L, and xC.
In all cases, one ends up with a pair of equations similar to (25) that determine the endpoint
coordinates and a scaling factor for the overall size of the curve.
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