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Abstract
The shapes of two wires in a vertical plane with the same starting and
ending points are described as complementary curves of descent if beads
frictionlessly slide down both of them in the same time, starting from rest. Every
analytic curve has a unique complement, except for a cycloid (solution of the
brachistochrone problem), which is self complementary. A striking example is
a straight wire whose complement is a lemniscate of Bernoulli. Alternatively,
the wires can be tracks down which round objects undergo a rolling race. The
level of presentation is appropriate for an intermediate undergraduate course in
classical mechanics.

(Some figures may appear in colour only in the online journal)

1. Introduction

A common mechanics demonstration consists of racing cars or balls down tracks of various
shapes and qualitatively or quantitatively measuring the times required to reach the ends
starting from rest [1–4]. For example, PASCO sells a roller coaster set [5] that can be used for
such a purpose. Even at the introductory level, students can understand why the curve of fastest
descent is not a straight line if the finish point does not lie directly beneath the starting point.
That is, the curve of shortest time is not the curve of shortest distance between the two points.
The distinction becomes obvious if one considers the limiting case where the finish point is
at the same height above the floor as the starting point: a straight track between them would
be horizontal and hence a cart placed at the start would not accelerate and would permanently
remain at rest there. In contrast, a cart placed on a U-shaped track would accelerate down
the first half and then symmetrically slow back down along the second half of the track,
just making it to the finish in the absence of friction or air drag. So it is clear that an initial
downward slope decreases the total transit time along the track even though it increases the
overall distance the cart must travel. On the other hand, it is also clear that the midpoint of the
U cannot be extended arbitrarily far below the level of the starting and ending points of
the track. Eventually the increase in average speed of the cart along the early portion of the
track as one makes it more nearly vertical is compensated by the fact that the cart is then
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Figure 1. A straight wire shown in blue is inclined at angle θ = tan−1(y/x) measured clockwise
from the x-axis in the direction of the y-axis, where 0 < θ < π/2, and it has length r = (x2+y2)1/2.
Another wire drawn in red is in the shape of a lemniscate symmetric about a 45◦ line; it passes
through the same endpoint (x, y) as the blue wire.

making little horizontal progress toward the finish mark. The best compromise is a track of
cycloidal shape [6], as is typically proven in an intermediate course in mechanics.

Demonstrating and getting students to talk about the physics of motion along such tracks
is an appealing way to bring to life concepts of kinematics and dynamics. Mathematically
deriving the brachistochrone solution for the curve of fastest descent is also an excellent
illustration of the utility of the calculus of variations. Similar pedagogical lessons in physics
and mathematics can be developed by extending the analysis to descent along curves that are
not cycloidal in shape. For example, if one track lies everywhere below a cycloid (having the
same starting and ending points) then it will take some additional time �t for a car or ball
to traverse its length than it would along the brachistochrone. Intuitively there must be some
other curve (again with the same starting and ending coordinates) lying everywhere above the
cycloid that also takes longer to descend by the same extra time �t.

2. Calculation of complementary curves of descent

Consider two wires along which beads can frictionlessly slide in a vertical plane, as in
figure 1. Each wire has the shape of a smooth curve connecting the origin (0, 0) to an arbitrary
endpoint (x, y) in rectangular coordinates with both x and y positive, or equivalently (r, θ ) in
polar coordinates, where the x-axis points positive to the right and the y-axis points positive
downward in the direction of the gravitational field �g. Suppose that the time it takes a bead to
slide down the first wire, starting from rest at the origin, has been determined as a function of
the endpoint to be T (r, θ ). In general, the time needed for a bead to descend the second wire is
given by the integral of the differential arclength ds divided by the bead’s instantaneous speed
υ. The differential arclength in polar coordinates is

ds =
√

(dr)2 + (r dθ )2 =
√

1 + r2(dθ/dr)2 dr, (1)
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while the speed of the bead is

υ =
√

2gy =
√

2gr sin θ (2)

from conservation of mechanical energy.
The shapes of these two wires will be described as ‘complementary curves of descent’ if

their sliding times are equal,∫ √
1 + r2(dθ/dr)2

2gr sin θ
dr = T (r, θ ) (3)

for any values of the endpoint coordinates provided only that r > 0 and 0 < θ < π/2.
That is, equation (3) must hold if the endpoint is shifted a distance dr in any direction in the
first quadrant of the plane while maintaining the same shape of wire.3 In that case, one can
differentiate both sides of equation (3) with respect to r and require√

1 + r2(dθ/dr)2

2gr sin θ
= d

dr
T (r, θ ) = ∂T

∂r
+ ∂T

∂θ

dθ

dr
. (4)

Squaring both sides and rearranging leads to a quadratic equation in dθ/dr,

A

(
dθ

dr

)2

+ B
dθ

dr
+ C = 0, (5)

where

A ≡ 2gr sin θ

(
∂T

∂θ

)2

− r2, B ≡ 4gr sin θ
∂T

∂r

∂T

∂θ
, and C ≡ 2gr sin θ

(
∂T

∂r

)2

− 1. (6)

There appear to be three possible cases for the solutions of equation (5), depending on whether
the discriminant B2 − 4AC is positive, negative, or zero, as sketched in figure 2. However, the
discriminant cannot be negative because if it were, there would be no real solution, whereas
the problem began by assuming the beads slide down actual wires. Next, if the discriminant
is zero, there is only one solution, i.e. there is no other analytic curve that has the same time
of descent as the first wire. As figure 2 indicates, that occurs when the descent time is a
minimum. In particular, equation (6) can be used to show that |∇T | = 1/υ when B2 = 4AC
for the optimal curve, which is the well-known cycloidal solution of the brachistochrone
problem [6]. (Appendix A verifies that |∇T | = 1/υ along a cycloid. One could describe this
special curve as being ‘self complementary.’) Along any other smooth curve, the magnitude
of the gradient of the descent time is larger than the reciprocal of the speed at that point on
the wire, as is proven in appendix B. For example, along a straight line, equation (7) below
implies |∇T | = 1/(υ sin θ ) > 1/υ for 0 < θ < π/2. Finally, if the discriminant is positive,
there exists two real solutions. Thus, any smooth real curve other than a cycloid has a unique
complementary curve of descent.4

3 The function describing the wire’s shape has to be sufficiently constrained that it is unique. For example, if the
wire is straight, the requirement that it pass through the two points (0, 0) and (r, θ ) uniquely specifies it. Then a shift
in the endpoint simply means rotating and/or changing the length of the wire appropriately. On the other hand, more
complicated functional shapes need additional constraints. For example, more than one cycloid can be drawn through
a pair of points [3]. The usual additional constraint on the cycloid is that the starting point must be at the cusp in the
curve so that the descent time along it will be a minimum. In that case, shifting the endpoint does not merely involve
rotating and changing the length of the wire, but also altering the value of the rolling radius R to make the cycloid
pass through the new final point.
4 It seems that the curve c(r, θ ) corresponding to A = 0 has no complement because equation (5) is no longer
quadratic. However, if one multiplies equation (5) by (dr/dθ )2—or equivalently if one computes dT/dθ instead of
dT/dr in equation (4)—one discovers that c has a complementary curve for which dr/dθ = 0, whose solution is r =
constant. (That solution would be well behaved if the starting point were not at the origin.)
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Figure 2. Schematic parabola plotting the descent time T (between a fixed pair of endpoints) along
wires of different functional shapes (as controlled by some generalized parameter on the abscissa).
The horizontal lines denote T for three different values of the discriminant of equation (5).

3. Complement of a straight line of descent

This section illustrates how to use equations (5) and (6) to find the complement of a non-
cycloidal curve. The simplest example is a straight line. Along a frictionless wire tilted at angle
θ relative to the horizontal, as sketched in blue in figure 1, a bead has constant acceleration
a = gsin θ and in a time t it descends a distance of s = 1

2 at2. Thus the total time T it takes to
traverse the distance s = r to the endpoint is

T =
√

2r

gsin θ
. (7)

Substituting this expression into equation (6) leads to

A = r2(cos2 θ − sin2 θ )

sin2 θ
, B = −2r cos θ

sin θ
, and C = 0 (8)

so that equation (5) rearranges into

r cos 2θ

sin 2θ

(
dθ

dr

)2

= dθ

dr
. (9)

One solution is dθ/dr = 0 which is the given straight line (along which θ is a constant). The
other solution can be separated and integrated as∫

1

r
dr =

∫
cos 2θ

sin 2θ
dθ ⇒ ln r = 1

2
ln(sin 2θ ) + constant. (10)

Writing the integration constant as ln(
√

2b), equation (10) is equivalent to

r2 = 2b2 sin 2θ ⇒ r = 2b
√

cos θ sin θ, (11)

which is the equation of a lemniscate of Bernoulli [7]. (The symbol b is used here for the
scale factor with dimensions of length instead of the more commonly used symbol a, to avoid
confusion with the acceleration.) The lemniscate crosses the endpoint (x, y) of the straight
wire provided

b = x2 + y2

2
√

xy
, (12)
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as plotted in red in figure 1. (This figure shows only the half of the lemniscate in the first
quadrant and not the symmetric other half of the shape of a number ‘8’ in the third quadrant.)
Malfatti [8] proved that a straight line and a lemniscate beginning and ending at the same
points have the same time of descent, but his book does not appear to have been translated into
English. (The bead must slide along the lower portion of the lemniscate. It cannot descend the
upper portion in figure 1 starting from rest because its initial slope is zero. The lower branch
of the lemniscate and the straight line are on opposite sides of the optimal cycloidal curve of
descent, as expected because their descent times are both larger than the minimum time by the
same amount.)

Lemniscates are commonly presented in mathematical physics textbooks [9] as a classic
example of a plane polar curve. Familiarity with curves in polar form paves the way both for
solving problems in the calculus of variations and for treating the Kepler problem of conic
sections. Given equation (11), productive exercises for students include plotting the curve,
calculating its area, and expressing the length of its perimeter in terms of a beta function.

The remarkable result that a straight line and a lemniscate have the same time of descent
is worth proving in a more direct fashion, to make it more accessible to students. Substituting
equation (11) into (2) gives

υ = 2
√

gb cos1/4 θ sin3/4 θ. (13)

The element of arclength in polar coordinates can be written as

ds =
√

(r dθ )2 + (dr)2 = −
√

r2 + (dr/dθ )2 dθ, (14)

where the minus sign is necessary because θ monotonically decreases in figure 1 as the bead
slides down the lower branch of the lemniscate, i.e. dθ < 0 and ds > 0 as r increases in value.
Substituting equation (11) into (14) results in

ds = −b cos−1/2 θ sin−1/2 θ dθ. (15)

Therefore the descent time along the lemniscate is∫
ds

υ
= −1

2

√
b

g

∫ θ

π/2
cos−3/4 θ sin−5/4 θ dθ. (16)

One can check that
d

dθ

(
cos1/4 θ

sin1/4 θ

)
= −1

4
cos−3/4 θ sin−5/4 θ (17)

and thus equation (16) evaluates to

T = 2

√
b cos1/2 θ

gsin1/2 θ
=

√
2r

gsin θ
(18)

using equation (11) in the second step. This descent time is the same as that found for the
straight wire in equation (7).

4. Closing remarks

Instead of wires, one could consider the two curves to be tracks along which identical,
symmetric, round (cylindrical or spherical) objects can roll. (Provision must be made to
prevent the object from falling off if a track reaches or passes the vertical orientation.) Assume
that the static frictional coefficient is large enough that the objects roll without slipping, so that
their angular speed is ω = υ/ρ where ρ is their radius. Since static friction does not dissipate
mechanical energy, we can write its conservation law as

1
2 mυ2 + 1

2 Iω2 = mgy, (19)
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where m and I are the mass and moment of inertia (about the center of mass) of each rolling
object. Writing I = γ mρ2 where γ is a dimensionless geometric factor (e.g., 0.4 for a uniform
solid sphere or 1 for a hollow cylinder), the speed of descent in equation (2) now becomes
υ = √

2gy/(1 + γ ). Consequently, the two objects still meet at the intersection point (r, θ )

and the descent time given by equation (3) still holds, provided one replaces g by g/(1 + γ ).
As expected, a larger moment of inertia factor γ leads to a longer descent time because some
of the gravitational potential energy gets converted into rotational kinetic energy instead of
into translational kinetic energy.
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Appendix A. Gradient of the descent time along a cycloidal curve

It is conventional to write the equation of a cycloid in terms of parametric coordinates (R, φ)

where [6]

x = R(φ − sin φ) and y = R(1 − cos φ). (A.1)

Here R is the radius of a wheel rolling below the x-axis and φ is the angle through which it
has rolled, starting from φ = 0 at the origin and ending at φ = 2π after one full revolution.
There is a unique pair of values (R, φ) describing a cycloid that starts at the origin and ends
at an arbitrary point (x, y) in the first quadrant. The time of descent along that cycloid is

T =
∫ √

(dx)2 + (dy)2

2gy
. (A.2)

Substituting equation (A.1) into (A.2) and simplifying leads to the compact result

T = φ
√

R/g. (A.3)

As a check, note that the lowest point of a cycloid corresponds to φ = π for which T equals
the descent time of an isochrone [6].

One can now compute the components of the gradient of T from the chain rule. First,

∂T

∂R
= ∂T

∂x

∂x

∂R
+ ∂T

∂y

∂y

∂R
⇒ φ

2
√

gR
= ∂T

∂x
(φ − sin φ) + ∂T

∂y
(1 − cos φ) (A.4)

using equations (A.1) and (A.3) in the second step. Similarly,

∂T

∂φ
= ∂T

∂x

∂x

∂φ
+ ∂T

∂y

∂y

∂φ
⇒

√
R

g
= ∂T

∂x
R(1 − cos φ) + ∂T

∂y
R sin φ. (A.5)

Solving equations (A.4) and (A.5) simultaneously leads to

∂T

∂x
= 1

2
√

gR
and

∂T

∂y
= 1 + cos φ

2
√

gR sin φ
= 1

2
√

gR

√
1 + cos φ

1 − cos φ
. (A.6)

Consequently

|∇T |2 = 1

2gR(1 − cos φ)
= 1

2gy
= 1

υ2
(A.7)

for a brachistochrone.
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Appendix B. Gradient of the descent time along an arbitrary curve

The descent time along any analytic curve is

T =
∫

dT =
∫

∇T · d�s =
∫

|∇T | cos ϕ ds, (B.1)

where ϕ is the angle between the direction of ∇T and the curve at each point along it. Since
T always increases along the wire, |ϕ| < π/2 and thus∫

ds

υ
�

∫
|∇T | ds. (B.2)

Differentiating both sides with respect to the (arbitrary) arclength gives the key result

1

υ
� |∇T | , (B.3)

where equality occurs for a cycloid, as shown in appendix A. In contrast, Lawlor [10]
incorrectly claimed that 1/υ � |∇T |.
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