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Abstract

An expression is developed for the energy dissipated when a constant external
force is suddenly applied to the end of a particle moving in 1D subject to
a conservative restoring force and a general damping force. Assuming the
particle was initially at rest and ends up in static equilibrium, the fraction of
the mechanical energy lost depends only on the conservative force and on the
net displacement of the particle. Mechanical models are suggested to illustrate
the ideas and their capacitor circuit analogies. The treatment is appropriate for
an intermediate-level undergraduate mechanics course.

(Some figures in this article are in colour only in the electronic version)

In a recent paper, Lee discusses a constant force suddenly applied to the end of a Hookean
spring in the presence of a damping force that can depend on both velocity and acceleration as
a mechanical analogue to a battery suddenly connected to a capacitor and returning to static
equilibrium dissipatively [1]. The present comment extends Lee’s results in three ways:

(1) The form of the damping force is broadened so that it can depend on any variables, not
just on velocity and acceleration.

(2) The interaction between the two mechanical systems is generalized to be any conservative
force instead of merely Hookean springs.

(3) Mechanical models are developed for the problem that motivated Lee’s study, namely that
of suddenly connecting together a charged and an uncharged capacitor.

Consider a particle moving in one dimension (call it x) under the action of three forces
in general: a conservative restoring force F.(x), a damping force F, and a step-wise constant
force Fy > 0 which is suddenly turned on for all ¢+ > 0. The damping force can be of any
form whatsoever provided that it has two properties: its direction is always opposite to the
direction of motion of the particle, and its magnitude falls to zero when and only when the
velocity of the particle is zero. This resistive force need not be viscous drag or radiation
damping (proportional to velocity and to acceleration, respectively). It could for example
be velocity-independent kinetic friction (allowing a slight vertical agitation of the particle to
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Figure 1. Graphs of the potential energy (a) before and (b) after turning on the force Fy. The
equilibrium positions of the particle are indicated by the black dots.

prevent a nonzero static frictional force from arising).! Now suppose that at r = 0 the particle
is at rest at position x = 0. That is, Fy has not yet been switched on, F; = 0 because the particle
is at rest, and F.(0) = O because the particle is in stable equilibrium. Then the particle must
lie at the bottom of a minimum in the potential energy U.(x) associated with the conservative
force F,, as sketched in figure 1(a). Without loss of generality, the reference position for this
potential energy can be located at x = 0 so that

Ue(x) = — /X Fe(x)dx = =W, (x), )
0

where W(x) denotes work done as the particle moves from the origin to position x, with a
subscript (¢, d or 0) on W indicating which force is doing the work.

Now turn on the force Fy. It will push the particle towards positive x. Under the combined
action of the restoring force and this constant push, the particle will oscillate about some
new equilibrium position xy > 0, but the amplitude of these oscillations will decay due to the
damping force and eventually the particle will come to rest at xy. It is instructive to consider
the situation from an energy point of view. The potential energy associated with the constant
force (adopting the same reference position as for U,) is linear in position,

U()(x) = —/x F() dx = —F())C = —Wo(x). (2)
0

The total potential energy of the system is now Ui = U, (x)+Uy(x) as sketched in figure 1(b).
Initially the particle was at x = 0 with kinetic energy K; = 0O; in its final equilibrium position

! The standard introductory model for friction is that it has magnitude F; < uN where 1 is the coefficient of friction
(taken to be the same constant for static and kinetic friction, for simplicity) and N is the normal force between the
particle and the surface with which it is in contact. The inequality becomes an equality whenever the particle is in
motion. On the other hand, Fy falls to zero when the particle is at rest, assuming that all other forces acting on the
particle sum to zero.
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Figure 2. The solid (blue) curve graphs a typical conservative force against position, in which the
upper shaded area is proportional to the mechanical energy lost. The dashed (red) curve plots a
force for which the energy dissipation is minimal.

at xo it is again at rest so that Ky = 0. Consequently the system has lost the mechanical energy

X0
Eio = Ui — Uy = 0 — Useu(x0) = Foxo + / F.(x) dx, 3)
0

which is equal to — W, (xq), in agreement with the work-kinetic-energy theorem for the particle
Wa(x0) + We(xo) + Wo(xo) = Ky — K; = 0. 4)

The energy loss Ejog equals the vertical distance from the x-axis down to the minimum in
the total potential energy in figure 1(b). Note that Fy does net positive work on the particle
as it moves from its initial to its final position; viewed as an external force, one can say it
transfers energy Ey = Fyxo to the system. However, the conservative force field only gained
an energy of U.(xp) which in general is less than E. The fractional loss in mechanical energy
is flost = Elost/EO-

This fractional energy loss can be rewritten in terms of F, only. When the particle is at

rest in its new equilibrium position, F; = 0 and therefore F.(xq) = —Fy. Equation (3) thus
implies
(Fe) L[>
Soss =1 — where (F,) = — F.(x)dx. 5)
Fe(xo0) xo0 Jo

For example, if the conservative force is due to a Hookean spring of stiffness constant &,
then F.(x) = —kx and equation (5) reproduces Lee’s result that fi,c = 50%. The electrical
analogue is that if a battery of emf £ is suddenly connected to a discharged capacitor of
capacitance C, then when it is fully charged up to Q = C§ the electrical energy %QS gained
by the capacitor is only half of the electrical energy Q& lost by the battery. The rest was
dissipated as Joule heating and radiation. But the important point is that no knowledge of the
exact dissipation mechanism is necessary to reach this conclusion; equation (5) predicts a 50%
loss for the spring system regardless of the form of the damping force (provided only that its
direction is always opposite to the direction of motion of the particle, and that its magnitude
falls to zero when and only when the velocity of the particle is zero).

Equation (5) is general and also applies to non-Hookean forces, as long as they ar
restoring and conservative. As an example, for the anharmonic spring F.(x) = —kx?, it
predicts that 75% of the mechanical energy will be lost. Equation (5) has a simple graphical
interpretation: fi,g is the ratio of the shaded area (ACD) in figure 2 to the area of the entire
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Figure 3. A ball of mass m slowly pulled up a frictionless incline 8 by a constant force Fy starting
from an equilibrium position at the bottom.

©
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Figure 4. A ball attached to an initially relaxed spring inside a box. At ¢ = 0 the box is suddenly
rotated clockwise by 90° about its hinge, so that the ball’s weight stretches the spring.

rectangle (ABCD). With this in mind, a force F, needs to have the following functional form
to result in minimal energy loss. Given that it has to start at point A, end at point C, and be
monotonically increasing in between so that it restores everywhere (not just for some special
choice of xp), it has to hug sides AD and DC like the dashed curve in figure 2. Noting that
the force is then essentially constant over most of the particle’s trajectory, a simple way to
realize such a system in practice is sketched in figure 3. A ball lies at the bottom (defining
the initial equilibrium position) of a V-shaped groove with smooth walls inclined at angle 6 to
the horizontal. A string is tied to the ball. Starting the instant after = 0, a constant tension
of Fy = mg sin# is applied to quasistatically drag the ball any desired final distance x; along
the incline. The conservative restoring force is gravity and its component? along the direction
of motion is the constant F.(x) = —mg sinf. The work done by the tension all goes into
increasing the gravitational potential energy of the ball without loss because it is pulled up the
frictionless incline so slowly that air resistance is negligible.

Note that gravity can be ‘turned off” in figure 3 by making the angle of incline 6 equal to
zero. This idea suggests a simple method (sketched in figure 4) for constructing the mechanical
system discussed by Lee (i.e., a particle on the end of a Hookean spring to which a constant
force is suddenly applied). A mass rests on the smooth bottom of a box at the free end of a
spring whose other end is fixed to the side of the box. The box is initially horizontal but is
hinged at its corner. At ¢= 0 the box is suddenly tipped vertically. The mass will subsequently
oscillate until air drag brings it to rest at a new equilibrium position with the spring stretched
by xo = mg/k.

So far these mechanical models have treated one particle experiencing a step-wise
constant external force. Similar mechanical analogues can be constructed for the circuit
problem in which a charged capacitor is suddenly connected to an uncharged capacitor. Panel

2 The introduction of a component is justified either by properly defining the work in equation (5) as the integrated
dot product of force and displacement, or by computing the work done by the sum of the gravitational and normal
forces.
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Figure 5. Interacting mechanical systems: (a) two springs of identical stiffness constant connected
to a ball that experiences air drag when moving and (b) a pair of equal-mass balls on smooth
inclines of equal tilt connected by a light string around a frictionless pulley. In both cases, the left
system starts out with positive potential energy and the right system with none.

(a) of figure 5 shows a Hookean example, while panel (b) presents a two-particle version of
figure 3. In case (a), the left spring starts out compressed by x (so that it has potential energy
Uy = %kxg), while the right one is initially relaxed (and thus Ug; = 0). After the pin is pulled
out and damping has brought the system back to rest, both springs have equal compressions

. . 2
of 1xo. Therefore the final elastic energies are Uy s = Uy = 1k (3x0)” so that

o = (Ui + Uri) — (Urs + Ury) — 50% ©
(Uri + Uri)
just as for the single-spring example in figure 4. On the other hand, for the system in
figure 5(b), where the left particle begins with positive gravitational potential energy and the
right particle with none, the system can be quasistatically brought to a final state in which both
particles are at equal height with no overall change in mechanical energy.

In conclusion, a more general treatment of energy principles, illustrated with several
concrete mechanical models, has been presented here to expand upon concepts introduced in
Lee’s paper [1]. In particular, connecting a compressed and an uncompressed spring together
is an effective analogy to the well-studied problem of wiring a charged and an uncharged
capacitor together. This two-spring system can be more readily visualized by students, helping
them to make sense of the energy loss in such problems. In addition, it underscores the critical
role of the damping mechanism in attaining a final state of equilibrium.

© US Government.
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