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Abstract
Two positively charged pith balls hang from a nail at the end of equal-length
strings in Earth’s surface gravitational field. The problem consists in finding
each of the hanging angles when the balls do not necessarily have the same mass
or charge. The solution is an excellent exercise in developing two skills: wisely
choosing the coordinate axes in a free-body diagram, and correctly interpreting
the roots and limits of a numerical solution. The treatment is accessible to
undergraduate physics majors in their first or second year of physics courses.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A standard demonstration illustrating Coulomb’s law consists of a pair of identically charged
pith balls hung by lightweight strings from a common point of attachment [1, 2]. As an
exercise in working with free-body diagrams, many textbooks [3, 4] discuss the problem
of finding the charge on the balls, given the angle the strings make with the vertical. This
paper considers the inverse problem of predicting the hanging angles for known charges. This
apparently simple variation leads to a considerably more complicated solution. If the two balls
have the same mass, an analytic solution can be obtained using the cubic equation. However,
numerical calculations are necessary if their masses are different.

For generality, assume one ball has mass M1 and positive charge Q1, and the other mass
M2 and positive charge Q2. (The spheres are small enough that they can be treated as point
charges.) Both strings have the same length L. These five values are assumed to be given. The
problem consists in finding the angles θ1 and θ2 at which the two strings hang relative to the
vertical, as illustrated in figure 1.
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Figure 1. Two charged pith balls hanging on massless strings from a nail. The tensions in the two
strings are T1 and T2.

2. Equations determining the general solution

Denoting the distance between the two balls as r, the triangle in figure 1 bounded by that
distance and the two strings is isosceles, and hence the two angles labelled θ3 are equal.
Consequently

r = 2L cos θ3 (1)

so that the electrostatic force of repulsion between the two balls has magnitude

F = kQ1Q2

r2
= kQ1Q2

4L2 cos2 θ3
, (2)

where k is the Coulomb constant. The two charges appear in the problem only in this
combination, and thus it is not their individual values that affect the angles but only their
product. Accordingly, it makes sense to replace their product by the square of their geometric
mean, Q2 ≡ Q1Q2.

Noting that the balls are in static equilibrium, the three forces on each must sum to zero.
Therefore the components of the forces on a ball perpendicular to its suspending string must
balance. For ball 1, that balancing relation is

M1g sin θ1 = F sin θ3, (3)

and likewise for ball 2,

M2g sin θ2 = F sin θ3, (4)

where g is the gravitational field strength. Because the right-hand sides of equations (3) and
(4) are equal, their left-hand sides must also be equal, so that

M1g sin θ1 = M2g sin θ2 ⇒ sin θ2 = m sin θ1, (5)

where m ≡ M1/M2 is the (dimensionless) ratio of the masses of the two balls. Consequently if
one of the two hanging angles θ1 or θ2 is known, then the other can be immediately calculated.1

The problem thus reduces to finding one of the two angles, say θ1. For definiteness, assume
that if one ball is heavier than the other, it is labelled as ball 1, i.e. m � 1. Then that ball can
never reach the horizontal position (i.e. 0 � θ1 < π/2), but the second ball can rotate around
as far as the vertical for appropriate charges and masses (i.e. 0 � θ2 � π ).

Returning to the isosceles triangle in figure 1, the sum of its interior angles must be π :

θ1 + θ2 + 2θ3 = π ⇒ θ3 = π

2
−

(
θ1 + θ2

2

)
. (6)

1 It is difficult to derive equation (5) if one adopts standard horizontal–vertical axes or if one insists on using the
same set of coordinate axes for both spheres. This feature makes it a good example problem to use in class!
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Substitute equation (2) into (3) and then use equation (6), noting that cosine of an angle equals
sine of its complementary angle and vice versa, to obtain

sin θ1 = f

4
cos

(
θ1 + θ2

2

)
sin−2

(
θ1 + θ2

2

)
, (7)

where f ≡ kQ2/M1gL2 is a (dimensionless) ratio of forces. Next the half-angle and double-
angle formulae for sine and cosine can be employed to rewrite equation (7) as

sin θ1 = f

2
√

2

√
1 + cos θ1 cos θ2 − sin θ1 sin θ2

1 − cos θ1 cos θ2 + sin θ1 sin θ2
. (8)

Finally equation (5) can be used, together with the Pythagorean identity cos2 θ = 1 − sin2 θ ,
to re-express equation (8) as

s = f

2
√

2

√
1 + C

√
1 − s2

√
1 − m2s2 − ms2

1 − C
√

1 − s2
√

1 − m2s2 + ms2
, (9)

where s is a shorthand for sin θ1 and C is the sign of cos θ2, i.e. C = +1 if 0 < θ2 < π/2, and
C = −1 if π/2 < θ2 < π . Assuming that sign can be figured out, equation (9) in principle
completely determines the value of θ1, since m and f are dimensionless constants that can be
calculated from the givens. Finally equation (5) can then be used to compute the value of θ2,
where C determines whether the solution of the inverse sine function, sin−1(ms), should be in
the first or second quadrant.

3. Analytic solution for the special case of equal-mass pith balls

If the two balls have equal mass M, then m = 1 and θ1 = θ2 ≡ θ (even if the balls do not have
equal charges). In that case, C = +1. As the mean charge Q increases, the balls increasingly
repel and the angles rise from 0 towards π/2. But the strings can never reach (or surpass)
the horizontal position because there would then be no upward component of the tension to
balance each ball’s weight (noting that the electrostatic force F is purely horizontal for equal
masses). Squaring equation (9) and rearranging it leads to the cubic equation

16x3 + f 2x − f 2 = 0, (10)

where x ≡ sin2 θ . Cardano’s formula then gives the unique real solution:

sin2 θ = f 2/3

25/3
(1 +

√
1 + f 2/108)1/3 − f 4/3

12 · 21/3
(1 +

√
1 + f 2/108)−1/3. (11)

This result for θ is plotted versus f ≡ kQ2/MgL2 in figure 2. As expected, the angle increases
as the charge on either sphere increases or as the mass decreases. When f = 2 the angle is
exactly θ = π/4, as can be verified easily from equation (7).

4. Numerical solution for unequal-mass balls

For any value of m > 1, there exists a value of the mean charge (and hence of f ) for which
θ2 = π/2. At that angle, cos θ2 = 0 and sin θ2 = 1, and hence equation (5) implies that
sin θ1 = 1/m. Inserting these values into equation (8) leads to a critical value of f of

fc = (2
√

2/m)(1 + 1/m)√
1 − 1/m

. (12)

(In agreement with figure 2, this equation implies that for m = 1 the hanging angle can only
attain π/2 when f → ∞.) If f < fc then C = +1 in equation (9), whereas if f > fc then
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Figure 2. Half-angle between the strings for the equal-mass case. The abscissa quantifies a
dimensionless ratio of the product of the charges to the mass of either ball.

C = −1, for any given value of the mass ratio m. Consider what happens if Q were to increase
in value starting from zero for fixed masses of the two balls. Initially both θ1 and θ2 would
increase from zero, but only until f = fc. At that point, string 2 will be horizontal and so
sin θ2 will have attained its maximum value of 1. As f further increases, sin θ2 must decrease.
But then equation (5) implies that sin θ1 must decrease, although θ1 < π/2. That necessarily
means θ1 must decrease. However, an increase in f must cause the separation distance
between the two balls to increase, owing to the stronger electrostatic repulsion. Consequently,
θ2 must increase (beyond π/2) by more than θ1 decreases.

As a specific example, suppose that ball 1 is twice as heavy as ball 2, so that m = 2. Then
equation (12) becomes fc = 3. Equation (9) was numerically solved2 to obtain θ1 for values
of f starting from zero and increasing in steps of 0.02, using C = +1 for f < 3 and C = −1
for f > 3. The result is plotted as the lower curve in figure 3. Then θ2 was computed using
equation (5) to give the upper curve in that figure. Angle θ1 increases from 0 to π/6, and θ2

increases from 0 to π/2, as f increases from 0 to 3. Beyond f = 3, θ1 decreases back to
0, while θ2 rises to π . In contrast to figure 2, however, these limiting angles are not reached
asymptotically, but at a definite value f max. In particular, when C = −1 the right-hand side
of equation (9) expanded to lowest nonzero order in s is equal to f s (m − 1)/8, and thus3

fmax = 8/(m − 1). When m = 2, this result implies that θ1 → 0 as f → 8, in agreement
with figure 3. If f is increased beyond f max, then ball 1 becomes more firmly pinned at θ1 = 0
and ball 2 at θ2 = π as the tensions in the two strings rise.

When θ1 = 0 and θ2 = π (so that r = 2L), the tension in string 2 will just fall to zero
when

F = M2g ⇒ fslack = 4

m
. (13)

2 The command ‘Solve’ was used in MathematicaTM for this purpose, but any root finder or equation solver on a
programmable calculator or in a mathematical software package should be able to do the job.
3 Note that fmax > fc for any m > 1.
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Figure 3. Hanging angles when the first ball is twice as massive as the second ball.

Since that value is smaller than f max for any m > 1, there is no danger of the string going
slack. However, that is only true if the two balls both begin at zero angle when uncharged
and move along circular arcs as they are increasingly charged up and repel one another. One
might instead permit ball 1 to remain at θ1 = 0 and ball 2 to be repelled vertically straight
upwards. In particular, note that equation (9) has a solution of θ1 = 0 when C = −1 for any
value of f ! For example, in the case of m = 2, there is a stable configuration (i.e. the upper
string is taut) with θ1 = 0, θ2 = π , and 2 < f < 8 that is inaccessible unless ball 2 is allowed
to suddenly jump up to the top of the circle, rather than having to circle halfway around the
perimeter. When working with equation (9), one therefore needs to be careful in selecting the
solution corresponding to the desired physical situation and not just accept any output from a
numerical root finder. That is a useful lesson for students to learn.

The solutions for the positions of the pith balls computed here (as plotted for particular
cases in figures 2 and 3) are stable against small perturbations of the hanging angles within
the plane of figure 14. A straightforward way to demonstrate this fact is to show that the
potential energy of the system is a minimum. The total potential energy U is the sum of the
gravitational potential energy of each ball and the electrostatic potential energy of interaction
between them,

U = M1gL(1 − cos θ1) + M2gL(1 − cos θ2) + kQ2/2L sin

(
θ1 + θ2

2

)
, (14)

using equations (1) and (6), where the gravitational reference level is taken to be at the
lowest point that either ball can hang (so that the system has U = 0 when the balls are
uncharged). Equation (14) can be differentiated with respect to θ1 using the fact that
dθ2/dθ1 = M1 cos θ1/M2 cos θ2 from equation (5). If equation (7) is substituted into the
resulting first derivative, one finds dU/dθ1 = 0 consistent with the fact that the forces
balance at the angles described by equation (7). With a bit more work, one can compute
the second derivative of equation (14) and again insert equation (7) into the result to verify

4 Rotations about a vertical axis of the plane of the balls and strings can be avoided if the nail in figure 1 is banged
into a wall rather than into the ceiling.
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Figure 4. Normalized potential energy of the system plotted as a function of the hanging angle of
the heavier pith ball for the example of f ≡ kQ2/M1gL2 = 1.1 and m ≡ M1/M2 = 1.3. The
black dot is at the angle obtained from a numerical solution of equation (9) for these values of f

and m, noting that C = +1 according to equation (12), thereby demonstrating that the potential
energy is a true minimum and thus that this numerical solution is stable.

that d2U/dθ2
1 > 0 for any allowed values of the masses and angles, thereby proving that

the solutions are stable. Rather than slogging through all that differentiation and algebra, a
simpler approach is to simply plot equation (14), normalized by M1gL so that it depends only
on the two parameters f and m, as a function of θ1 where θ2 = sin−1(m sin θ1) according
to equation (5). An example is shown in figure 4 for the case of f = 1.1 and m = 1.3. A
minimum is observed at the black dot in the figure, in agreement with the numerical value of
θ1 = 32.89◦ obtained by finding the root of equation (9). This graphical method of solution is
thus an alternative to deriving and solving that latter equation.

Readers interested in extending the work presented here are invited to have their students
plot the hanging angles as a function of the mass ratio for fixed mean charge. Another
possible project would be to experimentally confirm figure 3 by delivering known charges to
foil-wrapped pith balls.
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