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Abstract 
Expressions for the force and torque on a moving electric dipole in a magnetostatic field are combined with those due 
to an electrostatic field. By sending oriented molecular dipoles into a region of crossed magnetic and electric fields, 
the molecules are selectively rotated based on the direction and magnitude of their velocities. In principle this field 
configuration could be used to create a molecular isolator that only lets molecules through in one direction. 
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Resumen 
Combinamos expresiones para la fuerza y la torca en un dipolo eléctrico en movimiento en un campo magnetostático 
con las ocasionadas por un campo electrostático. Enviando dipolos moleculares orientados en la región de cruce de los 
campos magnético y eléctrico, las moléculas son rotadas selectivamente en la dirección y magnitud de sus velocidades. 
En principio esta configuración de campo podría ser usada para crear un aislador molecular que sólo permite 
moléculas en una dirección. 
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I. INTRODUCTION 
 
A classical electric dipole q≡p L  consists of a positive 
charge distribution +q whose centroid is displaced by 

3 
L  

relative to the centroid of a negative charge distribution –q. 
(Quantum effects such as Stark mixing can induce dipole 
moments in molecules which alter this simple picture [1].) 
For example, in a gaseous NaCl molecule, the much greater 
electronegativity of the chlorine atom as compared to that of 
the sodium atom causes Cl to steal an electron away from 
Na, resulting in an ionic bond between Cl– and Na+. One 
can thereby estimate [2] the magnitude of its dipole moment 
to be the elementary charge e multiplied by the bondlength 
L, giving . Introductory physics 
textbooks show that the torque on an electric dipole p
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294 10  C m 12 Dp −≈ × ⋅ =
 in an 

electric field E  is . In addition, the motion of 
point charges in electric and magnetic fields is discussed. 
Similar ideas are used in the present article to discuss the 
motion of an electric dipole in static magnetic and electric 
fields. 
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pE = ×p Eτ

 
 

II. FORCES AND TORQUES 
 
Label the point midway between the centers of positive and 
negative charge of the dipole p  as O. (This point may or 
may not coincide with the center of mass of the object.) 
Decompose the motion of the dipole at any instant into a 
translation of point O with linear velocity υ  and a rotation 
of the dipole about point O with angular velocity 

29 
ω . Now 

suppose the dipole enters a region of uniform magnetic field 
30 
31 

B . The magnetic forces on the two charge centers will be 32 

.
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Consequently the net force on the dipole becomes the triple 
vector product 

 ( )pB = × ×F p Bω , (2) 36 

37 

)

while the torque about O is 

 (pB = × ×p Bτ υ . (3) 38 
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i i1 In the frame of reference of point O, the magnet c field s 
relativistically transformed into an electric field ′ = ×E Bυ  
and thus  which seeks to rotate  into the 
direction of . 
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pB pE′=τ τ p
′E

Suppose the dipole starts out with zero angular velocity 
but its translational velocity is perpendicular to the applied 
magnetic field so that the torque in Eq. (3) is maximized. To 
be specific, choose  to define the +x direction and Bυ  the 
+y direction. Now the torque is largest if p  lies in the xy 
plane. In that case  will also lie in the xy plane and will 
be perpendicular to p . As a result, the dipole will begin to 
librate (rock back and forth) end over end; that is, it will 
oscillate (indefinitely in the absence of drag) like a pendulum 
with the apex of its circular arc in the +z direction. 
Associated with these rotational oscillations will be a 
periodically varying force 
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pBF , alternately decelerating and 
accelerating the translations of the dipole because 

16 
pBF  is 

parallel to . In turn that force affects the torque by varying 
 in Eq. (3), although the feedback will be weak if the mass 

of the dipole and/or its moment of inertia about O is large. 
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Incidentally, note that we can use a vector identity to 
rewrite Eq. (3) as 

 . (4) ( (pB = × × + × ×p B B pτ υ) )

If the dipole moment is initially parallel to the magnetic 
field, then even after it be ins to tumble, p  will always lie in 
the yz plane. Therefore ×B p  will be parallel to the x axis, 
and the last term in Eq. (4) will be zero. We can then 
interpret  as a magnetic dipole moment 
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×p υ μ  in the –z 
direction. Charge +q initially located at  and 
traveling in the +x direction is equivalent to a current I 
circulating clockwise as seen looking down along the z axis. 
Likewise charge –q initially located at  and 
traveling in the +x direction corresponds to the same 
clockwise current I. We thus have a current loop, 
corresponding to a magnetic dipole. Equation (4) can now be 
interpreted as 
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/ 2y L=

/ 2y L= −

pB Bμ=τ τ  where  is the torque 
on a magnetic dipole. 

Bμ = ×Bτ μ36 
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Next suppose that the region also contains a uniform 
electric field E . The electric forces on the two charges 
constitute a couple, so that pEF  is zero and pE = ×p Eτ . As 
a result, the overall electromagnetic force and torque on the 
electric dipole are 
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 ( )p = × ×F p Bω  (5) 43 
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)

and 

 (p = × + ×p E Bτ υ , (6) 45 
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respectively. Equation (6) can be interpreted as the cross-
product of L  with the Lorentz force. Now suppose we 
choose to cross the electric field with both the magnetic field 

and translational velocity,  (so that it is equal to = ×E B υ
′−E  and points in the –z direction). In that case, pτ  is zero 

and the dipole will no longer begin to librate. This situation 
is the rotational analog of a “translational velocity selector” 
whereby a point charge entering a region of crossed electric 
and magnetic fields experiences zero net force. 
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III. MOLECULAR APPLICATION 
 
As an application, one can imagine a device analogous to a 
Faraday optical isolator, as sketched in Fig. 1. Consider long, 
cigar-shaped molecules with one end negatively charged and 
the other end positively charged so that there is an electric 
dipole moment directed along their length (such as linear 
HCN trimers with p = 11 D [3, 4]). Suppose that a beam of 
them is incident on a horizontal molecular polarizer P1 that 
only transmits molecules oriented parallel to the y direction. 
(It might be possible to construct such a polarizer by milling 
nano-sized slits through an impermeable membrane [5].) The 
molecules enter a region with a magnetic field in the +y 
direction and an electric field in the –z direction of 
appropriate magnitudes. The molecules therefore experience 
no torque and pass through a second horizontal molecular 
polarizer P2 and leave the field region. On the other hand, if 
we reverse the direction of  and send molecules backward 
through P2, then there will be a torque on them (specifically 
in the –x direction if 
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υ

p  is initially in the +y direction). By 
suitable choice of the spacing between the two polarizers, we 
can arrange for the dipoles to be rotated by exactly 90˚ when 
they reach P1 and therefore be rejected by it. 
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ring the device with a 87 

lational velocity in the +x direction. 88 
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molecules falling vertically into some collection chamber 92 

 

FIGURE 1. Sketch of a molecular isolator. Two horizontal 
molecular polarizers P1 and P2 sandwich a region of crossed 
magnetic and electric fields directed along the +y and –z axes, 
respectively. A long molecule with an electric dipole moment 
oriented along its axis is shown ente
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Note that the resulting collision of the molecules with P1 
should be designed to be inelastic, with the rejected 
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below the field region.1 If the molecules instead reflected 
elastically off P1, their rotational inertia would cause them to 
continue to rotate as they traveled back toward P2. But since 
they experience no torque on that return trip, they would 
rotate by more than 90˚ and overshoot the acceptance slit in 
P2 (by an angle of o o180 / 2 90 37− ≈ o6 
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). If the molecules 
reflected elastically off P2 also, they would then be returned 
to P1 once again and this time be transmitted by it. In the 
absence of losses, it is impossible to get a net flow of 
molecules from the entrance to the exit side of the isolator. 
Otherwise one would have a Maxwell’s demon which, when 
connected to two chambers of molecules, would maintain a 
steady-state pressure imbalance between them. The optical 
analog would be a nonabsorbing valve that permits the flow 
of radiation in only one direction, creating a permanent 
temperature imbalance between two connected chambers, in 
violation of the second law of thermodynamics [11]. 
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