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Abstract 
Three derivations of the standard formula for the curvature K of a plane curve ( )y x  are reviewed. Curvature is equal 
to 1 / r , where r is the radius of curvature, and is thus needed to compute the centripetal acceleration of a particle 
traversing that path. As an example, the centripetal and tangential accelerations are calculated for a projectile on its 
parabolic trajectory. 
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Resumen 
Se revisan tres derivaciones de la formula estándar para la curvatura K de una curva plana ( )y x . La curvatura es igual 
a 1 / r , en donde r es el radio de curvatura, y así es necesario calcular la aceleración centrípeta de una partícula 
atravesando esa trayectoria. Como un ejemplo, son calculadas las aceleraciones centrípeta y tangencial para un 
proyectil en su trayectoria parabólica. 
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I. INTRODUCTION 
 
Centripetal acceleration is 2 /ca rυ=  [1, 2]. To calculate it, 
one needs to know the radius of curvature r as a particle 
moves along its path. Choose coordinates such that the 
object at some instant has a velocity in the xy-plane with 
nonzero x-component, 0xυ ≠ , as sketched in Fig. 1. 

 

x 

y 

velocity ( , )x yυ υ  

particle position 
( , )x y  

 
FIGURE 1. Coordinates are selected so that the velocity at the 
point of interest is contained in the xy-plane and is not directed 
vertically upward or downward. 
 
The radius r can be defined to have a sign determined by the 
y-coordinate of the center of the osculating circle (as 

sketched in Fig. 2) relative to that of the point of interest as 
follows: 0r >  if cy y>  and 0r <  if cy y< , i.e., the sign 
of r equals that of cy y− . (Since 0xυ ≠ , θ in Fig. 2 cannot 
equal 90˚ or 270˚, and so cy  cannot be equal to y. If 
necessary, the coordinate axes can be rotated to avoid those 
two angles for which tanθ  is undefined.) The curvature of 
the path ( )y x  is then defined as 1/K r≡  and its sign is 
equal to that of the second derivative of y with respect to x, 
written as y′′ , as is proven in this paper by reviewing several 
methods of obtaining the conventional formula for K. While 
no novelty is claimed for these methods, the article is 
intended to help instructors of mechanics (particularly in the 
intermediate course using a textbook such as Ref. 3) refresh 
their understanding of curvature and how it relates to 
concepts such as tangency, arclength, and angular speed. 
Readers are invited to choose the method of development 
that best ties into the particulars of their course. 
 
 
II. FIRST DERIVATION OF THE FORMULA 
FOR CURVATURE 
 
One sees from Fig. 2 that 
 

 csin
x x

r
θ

−
= .                           (1) 
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Differentiating both sides with respect to x gives the 
curvature as1 
 

 1cos K
r

θ θ′ = = .                         (2) 
 

r θ 
θ 

xc 

x 

tangent point 
( , )x y  

osculating circle 
centered at 

c c( , )x y  

( )y x  

 
 
FIGURE 2. Geometry of the circle of curvature (or “osculating 
circle”) at the same point ( , )x y  as in Fig. 1. A tangent to the curve 
at that point makes angle θ with respect to the x-axis. 
 
However, the slope of the curve ( )y x  at the tangent point 
can be written in two different ways, 
 

 tany θ′ = ,                              (3) 
 
and thus 
 

 
2 2

1 1 1cos
sec 1 tan 1 y

θ
θ θ

= = =
′+ +

.            (4) 

 
On the other hand, differentiating Eq. (3) again with respect 
to x leads to 
 

 2 2sec cosy yθ θ θ θ′′ ′ ′ ′′= ⇒ = .           (5) 
 
Finally, substitute both Eqs. (4) and (5) into Eq. (2) to get 
 

 
( )3/221

yK
y

′′
=

′+
,                        (6) 

 
which is the desired formula. 
 
 

                                                 
1Throughout this paper, primes denote x-derivatives. 

III. SECOND DERIVATION 
 
The differential arclength of the curve ( )y x  at the tangent 
point is found from Fig. 3 to be 
 

 ds r dθ= ,                             (7a) 
 
which rearranges as 
 

 dK
ds
θ

= ,                            (7b) 

 
often taken in math courses to be the definition of 
“curvature.” Next, according to the Pythagoras theorem, 
 

 2 2 21ds dx dy y dx′= + = + .            (8) 
 
Substituting Eq. (8) into (7b) gives 
 

 
21

K
y

θ ′
=

′+
.                       (9) 

 
But Eq. (3) implies 
 

 1
2tan

1
yy
y

θ θ− ′′
′ ′= ⇒ =

′+
,         (10) 

 
which when substituted into Eq. (9) leads to Eq. (6) again. 
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FIGURE 3. An infinitesimal element of arclength ds at the point 
( , )x y  in Figs. 1 and 2 is common both to the osculating circle and 
to the particle’s path. 
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IV. THIRD DERIVATION 
 
The differential displacement dr  has magnitude ds 
(indicated in Fig. 3) and has direction defining the unit 
tangent vector t̂  to the curve ( )y x  at that point, so that 
 

 ˆ drt
ds

= . (11) 

 
Using the plane polar coordinates shown in Fig. 3, t̂  can be 
identified with the unit azimuthal vector θ̂ . It then follows 
that the unit inward radial vector is 
 

 
ˆ

ˆ dr
d

θ
θ

− = , (12) 

 
which can alternatively be called the unit normal vector n̂  to 
the curve. 

As an aside, note that Eq. (12) can be proven in at least 
two ways. One method is to write 
 

 ˆ ˆˆ cos sinr i jθ θ= + ,                     (13a) 
 
and 
 

 ˆ ˆ ˆsin cosi jθ θ θ= − + ,                    (13b) 
 
in terms of the rectangular unit vectors î  and ĵ  (relative to 
an origin at the center of the osculating circle with the x-axis 
pointing downward and the y-axis pointing rightward). Then 
the θ-derivative of Eq. (13b) gives the negative of Eq. (13a) 
as desired. A second method is to divide the numerator and 
denominator of Eq. (11) by the time interval dt and rearrange 
to get the velocity t̂υ υ= , which as expected is tangential. 
Now take its time derivative to obtain the acceleration, 
 

 
ˆ

ˆd da t
dt dt
υ θυ= + . (14) 

 
The first term on the right-hand side is the tangential 
acceleration t ˆa t . Therefore the second term must be the 
centripetal acceleration c ˆa n  and thus 
 

 
2 ˆ

ˆ dn
r dt

υ θυ= . (15) 

 
Next divide both sides of this equation by both the linear 
speed υ and the angular speed /d dtω θ≡  to get 
 

 
ˆ

ˆ dn
r d
υ θ
ω θ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, (16) 

 

and finally note that the quantity in parentheses is equal to 1, 
in accord with Eq. (7a) divided through by dt. This 
completes the aside. 

Returning to Eq. (12), 
 

 
2

2
ˆ ˆ

ˆ dt dt d rn r r
d ds dsθ

= = = , (17) 

 
using Eq. (7a) to obtain the second equality, and Eq. (11) to 
get the third one. Taking the magnitudes of both sides of Eq. 
(17) leads to 
 

 
2

2
1 d rK
r ds

= = , (18) 

 
which gives another possible way to define curvature. It is 
easiest to compute this second derivative using the chain 
rule. Equation (17) becomes 
 

 ˆ dx d dx drn r
ds dx ds dx

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (19) 

 
Noting from Eq. (8) that 
 

 
2

1

1

dx
ds y

=
′+

, (20a) 

 
and that 
 

 ( , ) (1, )dr d x y y
dx dx

′= = , (20b) 

 
then Eq. (19) becomes 
 

 
2 2

(1, )ˆ
1 1

r d yn
dxy y

⎡ ⎤′⎢ ⎥=
⎢ ⎥′ ′+ +⎣ ⎦

, (21) 

 
where the quantity in square brackets is just t̂ . Performing 
the remaining x-derivative gives 
 

 
( )3/2 22

1 ( ,1)ˆ
11

y yn
r yy

⎡ ⎤′′ ′−⎢ ⎥=
⎢ ⎥′+′+ ⎣ ⎦

. (22) 

 
One can identify the quantity in this square brackets with n̂  
based on three observations: it has unit magnitude, it is 
perpendicular to t̂  identified in Eq. (21), and it has a 
negative x-component and positive y-component when the 
slope y′  is positive at the point of interest, as it is in Figs. 1 
to 3. Then what is left of Eq. (22) after n̂  is factored out of 
both sides is Eq. (6) once again. 
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V. EXAMPLE PROBLEM 
 
A ball is thrown horizontally off the edge of a cliff with 
initial speed 0υ . Find its tangential and centripetal 
accelerations when it is a horizontal distance x from the cliff, 
neglecting air resistance. 

Let the origin of time and of the axes be at the launch 
point, with x in the forward direction and y vertically 
downward, as sketched in Fig. 4. By energy conservation, at 
point ( , )x y  the ball has speed 
 

 2
0 2gyυ υ= + . (23) 
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FIGURE 4. Centripetal and tangential acceleration components at 
position ( , )x y  along the path of the ball. 
 
 
The path is parabolic, described by 
 

 0 2
21 2

02 2

x t gy x
y gt

υ

υ

=
⇒ =

=
, (24) 

 
and so Eq. (6) becomes 
 

 
( )

4
0

3/24 2 2
0

1 g
r g x

υ

υ
=

+
. (25) 

 
Combining this result with Eqs. (23) and (24) gives 
 

 
22
0

c 4 2 2
0

g
a

r g x

υυ

υ
= =

+
. (26a) 

 
Furthermore 
 

 
2

t 4 2 2
0

d g xa
dt g x

υ

υ
= =

+
, (26b) 

 
by again using Eqs. (23) and (24). As expected intuitively 

ca g→  and t 0a →  as 0x → , while in the opposite limit, 
c 0a →  and ta g→  as x → ∞ . This completes the 

problem. As a further check on these two expressions, note 
that Eqs. (4) and (24) imply 
 

 
2
0

4 2 2
0

cos
g x

υ
θ

υ
=

+
, (27a) 

 
and thus 
 

 2
4 2 2
0

sin 1 cos gx

g x
θ θ

υ
= − =

+
. (27b) 

 
One can then use the geometry of the orthogonal acceleration 
components sketched in Fig. 4 to correctly compute 
 
 t ccos sin 0xa a aθ θ= − = , (28a) 
 
and 
 
 t csin cosya a a gθ θ= + = . (28b) 
 
Similar calculations can be used to find the acceleration 
components of a bead sliding on a wire [3], of a car 
executing a turn on a horizontal road [4], or of a rolling cart 
descending a hill [5]. As a final application of Eq. (6), 
readers are invited to verify that at perihelion (or aphelion), 
the radius of curvature of an elliptical orbit equals the 
semilatus rectum. Setting the centripetal acceleration equal 
to the gravitational field at that point then quickly leads to an 
expression for the perihelion speed and hence for the 
conserved energy and angular momentum of the planet [6]. 
 
 
VI. CONCLUSIONS 
 
The first derivation of the curvature K used trignometry and 
the geometrical slope of the curve ( )y x . The second 
derivation also used the slope but combined it with the 
arclength of the curve. The third derivation, although the 
longest, has the merit of being explicitly vector-based and 
directly connects to plane polar coordinates as typically 
introduced in intermediate mechanics courses [3]. Other 
formulas for K can also be developed, such as one2 that can 
be used when the curve is parameterized by t (which might 

                                                 
2Application of the chain rule in the form 1/ /d dx x d dt−=  transforms  
Eq. (6) into 2 2 3/2( ) / ( )K x y y x x y= − +  where overdots denote  
t-derivatives. 
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denote time) as ˆ ˆ( ) ( )r x t i y t j= + , but are seldom as useful 
in physics as Eq. (6). A rich variety of illustrative 
calculations of centripetal and tangential accelerations, 
beyond the parabolic case presented here, can be found in 
Refs. 2–6. Many of these examples are worth taking some 
class time to treat in a mechanics course. 
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