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I. Introduction 

It initially seems surprising that one can optically cool bulk material, be it a condensed 
sample or a gas of more than the comparatively low number of atoms used in Doppler cooling 
experiments (Wineland and Itano 1987). Part of the surprise arises from the novelty and is 
dispelled when one understands that the thermal energy withdrawn from the material is carried 
away by the radiation emitted by it (and presumably absorbed at some external heat sink that is 
not in thermal contact with the sample). But this explanation in terms of the first law of 
thermodynamics (that is, of the balance between the cooling rate and the net optical power output 
from the refrigerating sample) is not fully satisfying. Further thought still leaves one perplexed, 
as it appears that “heat” is being converted into light whose spectrum is clearly narrower than 
that of Planckian thermal radiation, suggesting that entropy is being reduced in violation of the 
second law of thermodynamics. What is missing from the analysis is an accounting of the 
entropy of the pump source. The reason one uses a laser to pump the refrigerator (in the case of a 
photoluminescent cooler) or a current source (for an electroluminescent cooler) is that it is a 
low-entropy input of energy; ideally a laser beam or electric current is analogous to the “work” 
used to drive a refrigerator. One can therefore summarize the input and output sources of energy 
to and from an optical refrigerator by the schematic diagram in Fig. 1. The principal goal of the 
present chapter is to quantify these energy and entropy fluxes in order to characterize the 
refrigeration potential. 

The overall organization is as follows. By way of background, Sec. II presents a selected 
review of the history and literature of the thermodynamics of fluorescent cooling of bulk matter. 
Next, Sec. III describes how one relates the entropy to the energy carried by an optical beam and 
defines various radiation temperatures; specific examples are included to make the formulae 
concrete. Then Sec. IV uses those results to calculate the Carnot coefficient of performance of 
typical solid-state coolers for which actual operating efficiencies have been measured 
experimentally; various corrections for real-world inefficiencies are also quantified. In Sec. V, 
some key ideas are summarized and the thermodynamics of a few topics related to optical 
refrigeration are briefly discussed, notably radiation-balanced lasing and the recycling of output 
optical energy back to the input. 
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II. Historical Review of Optical Cooling Thermodynamics 

In a German paper written over three quarters of a century ago, Peter Pringsheim (1929) 
argued that net cooling of a sodium vapor by resonant anti-Stokes emission would not violate the 
second law of thermodynamics, in contrast to a blanket assertion to the contrary made by Lenard, 
Schmidt, and Tomaschek. Pringsheim proposed that Na vapor in a glass cell will emit on both 
yellow D lines when only the lower frequency D1 transition is pumped, as sketched in Fig. 2. 
Define the fluorescence quantum efficiency η to be the ratio of the number of emitted to 
absorbed photons (averaged over a long interval compared to the relaxation time τ) and assume it 
is equal to unity for a sodium vapor at low enough pressure that collisional de-excitations from 
the upper P to the lower S levels can be neglected. Noting that the average output photon energy 
is larger than that of the input, one then concludes that the vapor will cool down (until a balance 
with the heat leak from the surroundings is achieved). 

Pringsheim suggested that this optical cooling process can be reconciled with the second law 
by noting that the sodium vapor is not a closed system—energy is being input in the form of 
pump light to drive the cooling cycle. But sixteen years later, Vavilov (1945) at the Academy of 
Sciences in Moscow objected that the system is also outputting light, and more radiative energy 
is leaving it than is entering. Suppose, he argued, that we were to convert the emitted light into 
electrical energy (using an optical piston for example) and use that to drive the pump lamp. In 
that case, it would appear that one could build a self-contained system (lamp, vapor sample, and 
photovoltaic converter) that transforms thermal energy into useful work in the form of the small 
excess electrical energy converted. He further pointed out that available experimental data for the 
fluorescence spectra of organic dyes indicated that the quantum yield ρ (defined as the ratio of 
the average fluorescence frequency νF to the pump frequency νP) was always less than unity. 

Pringsheim (1946) replied by noting that the entropy of the emitted radiation is larger than 
that of the absorbed radiation because the pump light is monochromatic and unidirectional while 
the fluorescence is broadband and isotropic. One might colloquially say that the latter light 
waves are more “disordered” (both spectrally and spatially) than the former. (Nowadays, using 
laser sources, one might add phase coherence to the list of differences between the pump and 
fluorescence radiation.) Spontaneous luminescence is an intrinsically irreversible process, and so 
a reversible cooling cycle whose sole effect is the “conversion of heat into work” is not possible. 
Pringsheim also argued that anti-Stokes fluorescence from dye solutions due to emission 
between different vibrational levels of two electronic bands can in principle occur with a 
quantum yield greater than one. If this is not seen in actual experiments, that could be because 
the fluorescence quantum efficiency is less than one and it might even be frequency dependent, if 
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molecules in the spectral wings are subject to greater perturbations by the solvent than those near 
the line center. 

On the journal pages immediately following Pringsheim’s reply are two papers by Vavilov 
(1946) and Landau (1946). In the former, Vavilov makes two new arguments. First, he asserts 
that the loss of directionality of the fluorescence cannot be associated with an increase in entropy 
because one can surround the sample with a set of collimating lenses and plane mirrors to steer 
every emitted ray into essentially the same direction. While true, this argument is nevertheless 
irrelevant because the entropy of radiation (introduced quantitatively in Landau’s paper) is 
actually an integral over the product of a beam’s cross-sectional area and solid-angle divergence 
(and not over the latter alone) and by Liouville’s theorem that brightness product cannot be 
decreased by a passive collection of lenses and mirrors (Arakengy 1957). Second, Vavilov noted 
the conflicting requirements of making the pressure of the sodium gas low enough to obviate 
nonradiative relaxation from the P down to the S levels, while keeping the pressure high enough 
to ensure thermal equilibration between the two excited P levels. Since both processes are 
mediated by atomic collisions, it is clear that one cannot simultaneously satisfy these two 
requirements perfectly. While admitting Vavilov’s point, it nonetheless cannot be concluded that 
fluorescent cooling of a gas is infeasible—as a counter-example, modern experiments have 
demonstrated anti-Stokes cooling of carbon dioxide (Djeu and Whitney 1981; Liakhou et al. 
2004). In retrospect, one can argue that the energy exchanged between two colliding atoms can 
at most be of order kT = 25 meV  at room temperature (where k is Boltzmann’s constant). This 
estimate implies that a single collision can readily transfer atoms from either excited P level to 
the other. In contrast, the energy gap between these excited levels and the ground S state is about 
80 kT , which means that de-excitation by collisions between sodium atoms is strongly 
suppressed. (On the other hand, collisional relaxation at the walls of the gas cell is much more 
likely because of the large effective spring constant of the matrix-bonded glass atoms. In fact, in 
the carbon dioxide experiments mentioned above, cooling only occurs along the central axis of 
the long cylindrical cell, well away from its curved surface.) The point is that there is a definite 
crossover region in the gas density: high enough that the rate of collisions between pairs of atoms 
is large compared to the radiative relaxation rate 1 / !R  but low enough that simultaneous 
collisions between many atoms seldom occur. 

Interestingly enough, if we assume that the cooling coefficient of performance κ is roughly 
equal to the standard Carnot value for a refrigerator, 

 !C =
TL

TH " TL

 (1) 
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where the low-temperature reservoir is taken to be the optical cooler operating near room 
temperature, TL = 300 K , and the hot reservoir is taken to be the “effective temperature” (whose 
meaning is clarified below) of the waste fluorescence, with TH estimated by Landau (1946) to be 
say 10 000 K, then one finds ! " 3% . This is remarkably close to the measured values of the 
best currently known optical coolers, as recently reviewed by Mungan et al. (2007). Therefore 
despite Vavilov’s objections, one can reasonably assert that the basic theoretical validity of the 
concept of optical cooling of bulk matter was already established in his era. However, practical 
implementations of the idea, pioneered by the experiments of Kushida and Geusic (1968) using 
Nd3+:YAG, had to await the invention of the laser. 

A more accurate expression for the Carnot coefficient of performance (COP) than Eq. (1) 
follows from the work of Geusic, Schulz-DuBois, and Scovil (1967). They point out that there 
are actually three temperatures (not just two) to be considered: the temperature of the cooling 
sample T, the effective temperature of the fluorescence TF, and the effective temperature of the 
pump TP. As above, we assume that TF is substantially larger than T. In addition, since the pump 
radiation must have much lower entropy flux than the fluorescence (in order to satisfy the second 
law of thermodynamics) with approximately the same power, it follows that T

P
>> T

F
. One can 

therefore schematize the situation with three thermal reservoirs arranged in vertically decreasing 
order of temperature as in Fig. 3. A refrigerator operates between the lower two reservoirs, with 
a Carnot COP of 

 ! fridge,C =
T

TF " T
 (2) 

by substituting the appropriate high and low temperatures into Eq. (1). The work W required to 
drive the operation of this fridge comes from a heat engine operating between the upper two 
reservoirs. The usual expression for its Carnot efficiency is 

 !engine,C =
TP " TF

TP

. (3) 

By multiplying together Eqs. (2) and (3), we obtain the overall Carnot coefficient of performance 
of the optical cooler, 

 !C =
T " #T

TF " T
 (4) 

where !T " T TF /TP  represents a correction to the temperature in the numerator, slightly 
decreasing the COP than what it otherwise would have been. An analogous expression can be 
deduced for the Carnot efficiency of an optically pumped laser, which is essentially an optical 
cooler running in reverse (Landsberg and Evans 1968; Kafri and Levine 1974; Mungan 2005). 
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Note that T
P
!"  for an ideal laser or electric-current pump source, in which case Eq. (4) 

reduces to 

 !C =
T

TF " T
, (5) 

in agreement with the preceding discussion of Eq. (1). This Carnot COP falls approximately 
linearly to zero as T ! 0  starting from a sample temperature substantially below TF. 

Now consider coupling these temperature baths to a nondegenerate three-level system like 
that of Fig. 2, resulting in the arrangement sketched in Fig. 4. Let the population densities in the 
three levels be N1, N2, and N3. Since levels 2 and 3 thermalize with the sample, their population 
ratio follows a Boltzmann distribution, 

 N3

N2

= e
!h"23 /kT  (6) 

where h is Planck’s constant and where the transition frequency between levels 2 and 3 is the 
difference between the emission and excitation frequencies, !23 = !F "!P . Let us similarly 
assume that the pump source consists of a spectrally filtered arc discharge lamp that is coupled to 
the system in such a fashion that we get a Boltzmann population ratio between levels 1 and 2 
determined by the thousands of degrees temperature TP of the arc, 

 N2

N1

= e
!h"P /kTP . (7) 

Multiplying Eqs. (6) and (7) together and setting the result equal to 

 N3

N1

= e
!h"F /kTF  (8) 

defines an effective temperature of the fluorescence, TF = T TP!F / (TP!F " TP!P + T!P ) . 
Substituting this result into Eq. (4) in the form !C = (1" TF /TP ) (TF /T "1)  gives rise to 

 !C =
"F #"P

"P

=
$P # $F

$F

 (9) 

where in the second equality the pump and mean fluorescence vacuum wavelengths are the speed 
of light c divided by the corresponding frequencies. Note that the first equality accords with the 
definition of the COP as Q / Ein , the ratio of the net cooling energy to the (absorbed) pump 
energy per cycle, so that Figs. 3 and 4 are consistent with each other. (One can also express this 
equality as !C = " #1  in terms of the quantum yield discussed above.) This result assumes that 
the heat engine and refrigerator in Fig. 3 are ideal devices, so that entropy is conserved. In 
practice, however, fluorescence is a spontaneous (irreversible) process and the energy transfers 
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to and from the thermal reservoirs do not proceed quasistatically, which means the actual 
coefficient of performance cannot attain the Carnot value given by Eq. (4). 

To numerically estimate this ideal cooling efficiency, we can approximate the difference 
between the emission and excitation photon energies in Fig. 4 by a thermally absorbed energy of 
kT . In that case, Eq. (9) becomes !C " kT#P / hc  which at room temperature is equal to 2% for 
1-µm excitation. This value is in good agreement with experimental measurements on the laser 
cooling of ytterbium doped in a heavy-metal-fluoride glass (Epstein et al. 1995). 

Landau (1946) defined the effective temperature TF of the fluorescence by what is nowadays 
called its “brightness temperature,” which is the temperature of a blackbody whose spectral 
radiance is equal to that of the fluorescence averaged over its bandwidth (assumed to be narrow). 
This is also the radiation temperature used by Ross (1966), but he distinguished it in general 
from temperature TH owing to energy losses. Weinstein (1960) appears to have been the first 
person to define the effective temperature instead in terms of a second, distinct quantity that has 
been dubbed the “flux temperature” by Landsberg and Tonge (1980). The flux temperature is the 
ratio of the energy and entropy carried by a beam of light. (Careful mathematical definitions of 
the brightness and flux temperatures appear in Sec. III below.) Weinstein used Eq. (5) to 
compute the maximum visible emission efficiency, 1+!C , of an electrically pumped lamp or 
phosphor. 

A more logical choice of electroluminescent cooler than a lamp or phosphor is a 
semiconductor diode. It was noted in the early 1950s that the threshold voltage for recombination 
emission across a p–n junction in silicon carbide is slightly smaller than its bandgap, which could 
therefore lead to a cooling effect (Lehovec et al. 1953). In brief follow-up papers, Tauc (1957) 
and Gerthsen and Kauer (1965) argued that the idealized cooling COP is 

 ! =
Eg " eV

eV
 (10) 

where Eg is the bandgap energy, e is the electron charge, and V is the forward bias voltage. This 
expression assumes unit external fluorescence quantum efficiency and zero Joule heating. If we 
identify the mean emission frequency as !F = Eg / h  and the pump energy as h!

P
= eV  per 

electron, then Eq. (10) is seen to be the direct analog of Eq. (9). But it is more accurate to obtain 
νF from an actual measurement of the emission spectrum (rather than assuming it is equal to the 
bandgap frequency), in which case we can rewrite Eq. (10) as 

 ! =
h"F

eV
#1 . (11) 
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For example, if one estimates νF to be the near-infrared peak emission frequency of a GaAs 
diode operating at 78 K (Dousmanis et al. 1964), one finds that κ is 3% for a 1.335-V bias. A 
detailed thermodynamic analysis of this example was conducted by Nakwaski (1982). 

III. Quantitative Radiation Thermodynamics 

The directional density of states (number of modes per unit volume in a frequency interval dν 
and element of solid angle d! = sin"d"d# ) for a beam of photons in vacuum is (Landau 1946) 

 G! ," = 2
!
2

c
3

 (12) 

where the factor of 2 arises from the two independent transverse polarizations of light. If the 
radiation propagates isotropically in all directions, then one can integrate Eq. (12) over all solid 
angles to obtain G! = 8"!

2
/ c
3 , which is the familiar formula for the electromagnetic mode 

density used in the derivation of the Planck distribution (Fowles 1989) and obtained by counting 
the number of standing waves in a cavity. Consequently the number of modes per unit time is 
cG! ,"dA#d!d"  where dA! = cos" dA  is the element of surface area dA projected into the 
direction of photon propagation (specified by polar and azimuthal angles θ and φ, respectively, in 
spherical coordinates) in Fig. 5. The radiation is distributed over these modes with an occupation 
number n (not to be confused with refractive index) that depends on ν, θ, φ, and the two position 
coordinates x and y on the surface A (which for example can be taken to span the faces of the 
optical cooling sample as it emits fluorescence). Multiplying the number of occupied modes per 
unit time by the energy hν per photon and integrating gives the optical power, 

 
 

!E = 2hc
!2

n" 3d" cos# d$dA
"%$%A%  (13) 

where the overdot denotes a time derivative of the energy E carried by the beam, assumed to be 
unpolarized and continuous wave. The frequency and angular integrations are respectively over 
the spectral peaks and range of solid angles (for example, 2π in Fig. 5) relevant to the absorption 
or emission process of interest. A related quantity is the spectral radiance 

 
L! " d !E / dA#d!d$ , 

sometimes called the brightness (Van Baak 1995), 

 L! =
2nh!

3

c
2

. (14) 

The radiance is L ! L" d"# ; in general one defines the derivative of a quantity with respect to 
frequency or wavelength as the corresponding “spectral” quantity, subscripted with ν or λ. The 
occupancy n determines key parameters of the radiation, including its energy and entropy fluxes 
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and effective temperatures. In turn, n can be obtained experimentally from Eq. (14) by measuring 
the spectral radiance. 

The brightness temperature Tb of radiation from some source is formally defined as the 
temperature of a blackbody such that the spectral radiances of the Planck spectrum and of the 
source are equal to each other when they are averaged over some narrow range of frequencies 
δν, solid angle !" , and area δΑ. Since blackbody photons follow the Bose-Einstein distribution 
(Fowles 1989), Eq. (14) therefore implies that 

 n! 3d! cos" d#dA
$!%$#%$A% =

! 3

exp(h! / kTb ) &1
d! cos" d#dA

$!%$#%$A% . (15) 

For narrowband radiation with a central frequency !
0
= c / "

0
 such as might be emitted by an 

LED or laser whose average spectral radiance is L! " L / #!  where Δν is the bandwidth of the 
radiation, Eq. (14) implies that the average photon occupation number is n ! c

2
L" / 2h"0

3 . 
Substituting this result into Eq. (15) leads to a mean brightness temperature of 

 Tb !
h"0

k ln(1+1 / n )
, (16) 

which is therefore determined by the peak frequency and mean occupation number. For a very 
bright source, Eq. (16) reduces to the particularly simple form kTb ! nhv0 ! "

0

2
L# / 2 . If the 

radiation is emitted from an area A into a circular cone of divergence half-angle δ then the 
spectral radiance averaged over area, frequency, and angles is 

 

 

L! =

!E

cos"dAd! sin"d"d#
A

$
%!
$

0

&

$
0

2'

$
=

!E

A%!' sin2 &

. (17) 

For example, an unpolarized 1 mW red helium-neon laser with a beam area of 1 mm2, a 
divergence of 0.5 mrad corresponding to a solid angle of approximately !" 2

= 0.8 µsr , and a 
bandwidth of 1 GHz has a mean brightness temperature of 2 !10

10
 K . Assuming Gaussian 

spectral and angular profiles with cylindrical symmetry, the detailed variation of Tb with θ and ν 
has been plotted in Fig. 2 of Essex et al. (2003). For uniform emission over a hemisphere 
(! = " / 2 ), note that Eq. (17) becomes 

 
!E A!"#  and not 

 
!E A!" 2#  as one might have naively 

assumed by dividing the optical power  !E  by the emitting surface area A, the frequency 
bandwidth Δν, and the solid angle 2π of half of a sphere. This factor of 2 difference is a result of 
Lambert’s cosine law (Nicodemus 1965). 
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Before continuing, it is appropriate to consider in more detail how to characterize a spectral 
quantity Fλ such as radiance or flux, illustrated in Fig. 6. The dominant wavelength λ0 is defined 
to be the centroid of the spectrum, 

 !0 =
!F!d!"
F!d!"

. (18) 

Noting that F!d! = F" d" , then in the case of the spectral energy flux density 
 
IE! " d !E / dAd!  

(loosely called the “intensity” when a single-beam scan is recorded by a spectrometer), the mean 
fluorescence photon frequency is 

 !F "
! IE! / h!( )d!#
IE! / h!( )d!#

$ !F
%1

=
!%1

IE! d!#
IE! d!#

 (19) 

because IE! / h!  is the photon spectral flux density in SI units of s!1m!2
Hz

!1  (Mungan 2003). 
By inspection, the second equality is seen to agree with Eq. (18) when F! = I

E!  and 
!0 " !F = c /#F . For a narrowband fluorescence spectrum, however, only a small error is made 
if one instead writes Eq. (18) with λ replaced by ν, which is equivalent to “canceling” the two 
factors of hν in the first equality or the reciprocals in the second equality of Eq. (19). Next, if we 
define F0 to be the maximum value of Fλ (after suitable smoothing or averaging) then Δλ can be 
defined so that the peak–bandwidth product is 

 F0!" = F"d"# . (20) 

Let’s apply these ideas to the fluorescence emitted by an Yb3+:ZBLAN optical cooler 
pumped with 

 
!EP = 40 W  (Mungan 2005). The fluorescence power is 

 
!EF = (1+! ) !EP " !EP  since 

the coefficient of performance κ that has been experimentally observed is at most 3%. We take 
the cooling sample to be cylindrical with a length of 3 cm and a radius of 1.5 cm, so that its 
surface area is Asample = 13.5!  cm2 . The fluorescence spectrum at room temperature is similar in 
appearance to Fig. 6(c) and is experimentally observed to have a mean wavelength of 
!F = 995 nm  and a bandwidth of !"F = 35 nm  computed from Eq. (20) as the integral of the 
normalized spectral irradiance (also called the lineshape profile g), 

 !" =
IE"

IE0
d"# $ g(")d"# . (21) 

Noting that frequency is related to vacuum wavelength by ! = c / " , it follows that 
d! = cd" / "

2  in magnitude and hence for narrowband light that 



10 

 !"

"0

=
!#

#0

 (22) 

from which one concludes that !"F = c!#F / #F
2 . Substituting this result and Eq. (17) into the 

average of Eq. (14) then implies that 

 
 

nF =
!F
5 !EF

2"hc2#!FAsample
 (23) 

assuming the fluorescence is emitted homogeneously and hemispherically from the sample 
surface, although the detailed distribution of the light is actually nonuniform as analyzed by 
Chen et al. (2003) using ray tracing. Inserting the numbers given above, one then finds the 
moderately small value nF = 7 !10

"4  and when this is substituted into Eq. (16) a fluorescence 
brightness temperature of 2000 K is calculated. The physical significance of this result can be 
understood from Fig. 7 which compares the spectral radiance of a blackbody (BB), 

 L!
BB

=
2hc2 / !5

exp(hc / kTb!) "1
 (24) 

at a temperature of Tb = 2000 K , with that of the fluorescence idealized as a single Gaussian, 

 L! = L0 exp "
1

2

! " !0
w

#
$%

&
'(
2)

*
+
+

,

-
.
.

. (25) 

The peak value L0 and the spectral width w corresponding to one standard deviation can be 
obtained by rewriting Eq. (21) in two different ways after substituting I

E! I
E0 = L! L0  into it. 

On the one hand, we have 

 
 

!" =
L"!"

L0

# L0 =

!EF

$!"FAsample

 (26) 

using Eq. (17) to get the second equality. [The fact that the peak and mean values are equal is 
simply a consequence of the operational definition of the average of a spectral quantity given 
above, L! " L!d!# $! . Theoretically it is preferable to integrate the numerator over the entire 
spectrum, rather than just over the bandwidth as in Ruan et al (2007), because the result can then 
be related to the oscillator strength.] On the other hand, we can integrate Eq. (25) over all 
wavelengths to conclude that 

 !" = w 2# $ 2w 2 ln2  (27) 

where the last expression defines the full-width-at-half-maximum (FWHM) of the Gaussian, in 
agreement with an inspection of Fig. 6(a). Therefore w = !"F 2# . As illustrated in Fig. 7, the 
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upshot is that one can find the brightness temperature of a narrowband source by plotting its 
spectral radiance and determining the blackbody curve that passes through its peak. 

In contrast to the brightness temperature, computation of the flux temperature requires that 
one first calculate the rate  !S  at which entropy is carried by the radiation. Start by defining a 
(macro) state of a system of photons as consisting of N1 photons in optical mode 1, N2 photons in 
optical mode 2, and so on, not to be confused with the population densities elsewhere in this 
chapter. (For the moment, we are treating the modes as though they were discrete. At the end of 
the calculation, we will generalize the result to a continuous distribution.) Here an optical mode 
is defined by a particular set of values of ν, θ, φ, x, and y as discussed prior to Eq. (13). Now 
consider some ensemble of a large number M of systems (Essex et al. 2003). The entropy of the 
entire ensemble is MS. The probability that we find the system in some particular state is 

 
Pstate ! P(N1,N2,…) . Therefore the number of systems we will find in that state is 
mstate = MPstate . If we label the states of the system by A, B, … then the number of ways that the 
systems can be arranged to form the given ensemble is 

 
 

W =
M !

mA !mB !!
. (28) 

Hence the entropy of this ensemble of systems is 

 MS = k lnW ! k M lnM " mstate lnmstate

states

#
$

%
&
&

'

(
)
)

 (29) 

using Stirling’s approximation in the second step. (The sum need only run over accessible states. 
Stirling’s approximation for mstate! is then always valid by choosing M large enough.) 
Substituting mstate = MPstate  and noting that the summation of Pstate over all possible states of the 
system must be unity, we conclude that 

 
 

S = !k Pstate lnPstate
states

" = !k ! P(N1,N2,…)lnP(N1,N2,…)

N2 =0

#

"
N1=0

#

"  (30) 

which is called the Shannon entropy (Carter 2001) of the system of photons. Next assume that 
the probability pi (Ni )  of finding Ni photons in mode i is independent of the probability pj (N j )  
of finding Nj photons in mode j if i ! j  (Landsberg and Tonge 1980). In that case the probability 
of finding the system in a particular state is given by the product 

 
 

P(N1,N2,…) = pi (Ni )

i=1

!

"  (31) 

so that 
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!S / k = ! p1p2 p3!( ) ln p1 + ln p2 + ln p3 +!( )
N3=0

"

#
N2 =0

"

#
N1=0

"

#

= p1 ln p1# p2# p3# !+ p1# p2# ln p2 p3# !+ p1# p2# p3 ln p3# !+!
.

 (32) 

But each summation over pi alone is equal to unity by the normalization condition, 

 pi (Ni )

Ni =0

!

" = 1 . (33) 

Therefore Eq. (32) can be tidily expressed as 

 S = Si

i=1

!

"  (34) 

where the partial entropy (Ruan et al. 2007) of mode i is 

 Si ! "k pi (Ni )ln pi (Ni )

Ni =0

#

$ . (35) 

This result states that the entropy of electromagnetic radiation is a sum of the Shannon entropy of 
each optical mode. To continue, let’s further assume that the probability of finding one additional 
photon in a mode is independent of the number of photons already occupying that particular 
mode. This assumption implies that 

 pi (Ni )! qi
Ni  (36) 

where qi is the relative probability of finding one more photon in mode i. The normalization of 
Eq. (36) according to Eq. (33) becomes a geometric series, resulting in 

 pi (Ni ) = (1! qi )qi
Ni . (37) 

But the (mean) occupation number of mode i is 

 ni = Ni pi (Ni )

Ni =0

!

" = (1# qi )qi
d

dqi
qi
Ni" =

qi

1# qi
. (38) 

For example, qi is equal to exp(!h"i / kT )  for radiation in thermal equilibrium at temperature T 
(owing to the equal spacing of the energy levels of the blackbody oscillators with which the 
radiation interacts), so that the (average) number of photons in mode i becomes 

 ni =
1

exp(h!i / kT ) "1
. (39) 
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Dropping the subscript i, this result is the familiar Planck occupation number (Loudon 1990) 
used in Eq. (15) above. 

Returning to the general case of nonequilibrium radiation, Eq. (38) can be inverted to give 

 qi =
ni

1+ ni
. (40) 

Substituting this result into Eq. (37) and then that into Eqs. (34)–(35), one obtains 

 

S = !k
n
i

Ni

(1+ ni )
Ni +1

ln
n
i

Ni

(1+ ni )
Ni +1

Ni =0

"

#
i=1

"

#

= k
(Ni +1)ni

Ni

(1+ ni )
Ni +2

(1+ ni )ln(1+ ni )

Ni =0

"

#
i=1

"

# ! k
Nini

Ni !1

(1+ ni )
Ni +1

ni lnni
Ni =1

"

#
i=1

"

# .

 (41) 

Let N = Ni  in the first summation and N = Ni !1  in the second one to get 

 S = k (1+ ni )ln(1+ ni ) ! ni lnni[ ]
1

(1+ ni )
2

d

dqi
qi
N+1

N=0

"

#
$
%
&

'&

(
)
&

*&i=1

"

#  (42) 

where the quantity in the curly brackets equals unity. Therefore the partial entropy for one mode 
of occupation number n is k[(1+ n)ln(1+ n) ! n lnn]  Finally, as in the computation of Eq. (13), 
we multiply this result by cG! ,"dA#d!d"  and integrate to find 

 
 

!S = 2kc
!2

(1+ n)ln(1+ n) ! n lnn[ ]"2d" cos# d$dA
"%$%A%  (43) 

which is called the entropy flux. 
For narrowband radiation that is independent of the angular directions of propagation θ and φ 

within a circular cone of half-angle δ, then its energy flux density 
 
IE ! d !E / dA  is 

 IE ! 2"hc
#2
n$0

3
%$ sin

2
&  (44) 

from Eq. (13), while its entropy flux density 
 
IS ! d

!S / dA  using Eq. (43) is 

 IS ! 2"kc
#2
(1+ n )ln(1+ n ) # n lnn[ ]$0

2
%$ sin

2
& . (45) 

Because the thermodynamic definition of temperature is 1 /T ! "S / "E  at constant volume 
which we can take to be that of the sample considered as an “optical converter” of radiation from 
one form into another (Landsberg and Tonge 1980), it follows that 

 T =
dIE

dIS

=
h!0dn

k ln(1+1 / n )dn
= Tb  (46) 
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using Eq. (16) in the last step. Thus the brightness temperature is an absolute thermodynamic 
temperature even for nonequilibrium radiation. 

If either the bandwidth Δν or the divergence δ of the light approaches zero in a manner such 
that its energy flux density remains finite, then Eq. (44) requires that the mean occupation 
number n !" . In these limits, Eq. (45) becomes 

 IS !
k

h"
0

IE

lnn

n
# 0 . (47) 

That is, if the radiation crossing a differential area dA is either monochromatic or unidirectional 
as illustrated in Fig. 8, then the beam carries zero entropy. In this sense, one can characterize an 
ideal laser beam as purely doing work to drive an optical cooler, in striking contrast to blackbody 
radiation which only delivers heat (Mungan 2005). Note however from Eq. (46) that T dIS!  is 
always equal to the irradiance and does not define a heat flux density for nonequilibrium 
radiation. 

The flux temperature of radiation is now defined as 

 Tf !
IE

IS

 (48) 

which should be carefully contrasted with Eq. (46). For narrowband light this definition becomes 

 Tf !
h"0n

k (1+ n )ln(1+ n ) # n lnn[ ]
 (49) 

using Eqs. (44) and (45). In accord with the discussion of Eq. (47) this flux temperature becomes 
infinite as n !" , consistent with the fact that an ideal laser beam carries zero entropy at a finite 
irradiance. Equations (49) and (16) are plotted in Fig. 9 for 1-µm radiation, using Eq. (14) to 
relate the mean photon occupation number and spectral radiance. When n << 1  these two 
temperatures become 

 Tb !
h"0 / k

ln(1 / n )
and Tf !

h"0 / k

1+ ln(1 / n )
 (50) 

which leads to the simple formula 

 kTf( )
!1

" kTb( )
!1

+ h#0( )
!1 . (51) 

Using the values !F = 995 nm  and Tb = 2000 K  for Yb3+:ZBLAN given in connection with 
Eq. (23), this formula results in a fluorescence flux temperature of Tf = 1750 K . Note that 
Eq. (50) implies that Tf ! Tb  as n ! 0 , i.e., the flux and brightness temperatures become equal 
for sufficiently dim, narrowband radiation as one can see in Fig. 9. In contrast I

E

BB
= !Tb

4  and 
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IS
BB

=
4

3
!Tb

3 for blackbody radiation (where ! = 2"
5
k
4
/15c

2
h
3  is the Stefan-Boltzmann 

constant), so that Tf = 0.75Tb  according to Eq. (48). This result states that if an isothermal body 
of unit emissivity radiates away heat Q into free space, then while the object loses entropy Q /T , 
the thermal radiation carries away entropy 4Q / 3T . The net entropy change for this irreversible 
emission process in a zero-kelvin environment is positive; entropy is only conserved if the 
surroundings are instead infinitesimally smaller in temperature than the body (Mungan 2005). 

IV. Ideal and Actual Performance of Optical Refrigerators 

Consider the fluxes of energy and entropy into and out of the cooler sketched in Fig. 10 
operating at steady state. The first law of thermodynamics for this system becomes 

 
 
!E
F
= !E

P
+ !Q , (52) 

where 
 
!E
P

 is here taken to be the absorbed pump power, after correcting for reflection, 
scattering, and transmission losses of the incident beam. Meanwhile the second law states that 

 
 

!SF = !SP +
!Q

T
+ !SG  (53) 

where 
 
!SG  is the rate at which entropy is internally generated during a cooling cycle due to 

irreversible processes such as nonradiative relaxation, phonon equilibration, and spontaneous 
emission (Mungan and Gosnell 1999). Substituting Eq. (48) into (53) leads to 

 
 

!EF

TF
=

!EP

TP
+

!Q

T
+ !SG =

!EP +
!Q

TF
 (54) 

using Eq. (52) to get the second equality, where TF and TP are the flux temperatures of the 
fluorescence and pump radiation, respectively. This result can be rearranged to compute the 
coefficient of performance (COP) 

 
! " !Q / !EP , sometimes called the cooling efficiency relative to 

the absorbed pump power, 

 
 

! =
T " # !T
TF " T

where # !T $
TTF

TP

1+

"SG

"SP

%

&'
(

)*
= #T + T

TF
"SG

"EP

. (55) 

Notice that the maximum value for the COP is achieved for reversible operation of the cooler 
when 

 
!SG = 0  so that  ! !T = !T , thereby reproducing the Carnot value κC of Eq. (4). 

At the next level of approximation, assume that entropy is generated solely by nonradiative 
processes, such as direct multiphonon de-excitation of the active ions or energy transfer to 
nonfluorescent impurities. Define energy EF to be the fluorescent photon energy h!

F
 multiplied 

by the number of excited ions in the sample 
 
N2 = N2dV! , where N2 is the population density of 

the upper manifold, as in Eq. (67) below. The radiative and nonradiative lifetimes of the excited 
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state are τR and τNR, respectively. Then the average fluorescent power is 
 
!EF = EF / !R  which 

escapes from the sample resulting in cooling. If that same amount of energy were to decay 
nonradiatively, then it would on average generate heating of 

 
!EH = EF / !NR  which is deposited 

in the sample as thermal energy. (This is almost but not exactly equal to the actual nonradiative 
power which is 

  
!ENR = N2 h!P / "NR . By energy conservation, each nonradiative relaxation must 

on average distribute a pump photon energy among the internal phonon modes and thus the 
nonradiative energy per decay is h!

P
, which only equals h!

F
 if one pumps at the mean 

fluorescence wavelength.) The fluorescence quantum efficiency (QE) can now be written as 

 
 

! "
1 / #R

1 / #R +1 / #NR
=

!EF

!EF +
!EH

$ !EH =
1%!

!
!EF . (56) 

(Technically the first equality defines the internal QE !int = " / "R  where τ is the overall 
lifetime; ηint is only equal to the external QE ηext if the escape probability fesc is 100%. The 
correction for non-unit escape probability is discussed later.) Excess entropy results from the 
difference between dumping this thermal energy into the sample at temperature T compared to 
carrying that energy away on the fluorescence beam at temperature TF (Ruan et al. 2007), 

 
 

!SG =
!EH

T
!
!EH

TF
= !EP +

!Q( )
1!"
"

#
$%

&
'(
1

T
!
1

TF

#

$%
&

'(
 (57) 

using Eqs. (52) and (56) in the second step. Substituting this result into Eq. (55) now gives 

 ! = TF " T( )
"1

T " #T " TTF 1+!( )
1"$
$

%
&'

(
)*
1

T
"
1

TF

%

&'
(

)*
+

,
-

.

/
0 . (58) 

Equation (58) neatly simplifies to 

 ! = "
T # $T

TF # T
#1+" . (59) 

As a check, note that κ reduces to κC given by Eq. (4) when ! = 1  because in this limit there is 
no nonradiative relaxation and hence no excess entropy generation. That Carnot expression for 
the COP can be used to rewrite Eq. (59) more compactly as 

 ! = " (1+!C) #1 , (60) 

which is zero when ! " 1# T /TF = 83%  if T = 300 K  and TF = 1750 K >> !T  (as for 
Yb3+:ZBLAN). Letting the fluorescence QE η approach zero causes ! = "1  because 100% of 
the pump energy would then be converted into heat. More generally, solving Eq. (60) for κC and 
substituting into it 

 
! = !Q / !EP  and 

 
! = ( !EP +

!Q) / ( !EP +
!Q + !EH)  from Eq. (56) using (52), one 

finds 
 
!C = ( !Q + !EH) /

!EP . This result makes sense because the numerator is the cooling power 
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one would obtain if the nonradiative decays were radiative instead. Alternatively, one could start 
from this result and work backward to obtain Eq. (57), thereby proving that nonradiative 
relaxation is an irreversible source of entropy. 

Another interpretation of Eq. (60) comes from substituting Eq. (9) into it in the form 
1+!C = "P / "F . One then finds 

 ! =
"P # "F

*

"F
*

 (61) 

where !F
* " !F /#  is the zero-heating wavelength corrected for nonradiative de-excitations. As 

expected intuitively, the effect of a non-unit fluorescence QE is to redshift further into the tail of 
the absorption band the minimum pump wavelength at which net cooling occurs. 

Returning to the experimental cooling results for Yb3+:ZBLAN, a titanium-sapphire pump 
laser is often used, which is continuous wave, narrowband, and bright so that n >> 1  in Eq. (49) 
and hence the pump flux temperature can be approximated as 

 
 

TP !
hcnP

k"P (1+ lnnP )
with nP !

"P
3 !EP

2hc#RP
2
$%P#&P

2
 (62) 

where the second equality comes from Eqs. (14) and (17). Supposing the source has a power of 

 
!EP = 40 W , a beam radius of RP = 0.5 mm , a bandwidth of !"P = 40 GHz , a divergence of 
!P = 1 mrad , and a wavelength of !P = 1030 nm  (Mungan 2005) then nP ! 10

9  so that 
TP ! 7 "10

11
 K . In comparison, the fluorescence flux temperature TF was computed above to be 

1750 K using Eq. (51). Consequently !T /T "TF /TP << 1  and Eq. (5) becomes an excellent 
estimate for the Carnot COP of a laser-driven optical cooler. Then !C = (TF /T "1)

"1  only 
depends on the ratio of the fluorescence flux and refrigerating sample temperatures. This result 
would also hold for an electroluminescent cooler, since an electric current delivers energy EP at 
near zero entropy SP (ignoring inefficiencies such as Joule heating, Auger processes, and surface 
recombination) so that TP = EP / SP  is again much larger than TF. 

So far we have only considered the interactions between the sample, pump, and fluorescence. 
However the surroundings at ambient temperature TA (say the inner walls of the cryostat in 
which the sample is suspended by low-thermal-conductivity mounts) also couple radiatively to 
the refrigerator (Weinstein 1960). This coupling can be reduced for a practical cryocooler by 
inserting a set of heat shields between the sample and the walls, as in Fig. 11. For example, for 
an ytterbium-based cooler mounted in a room-temperature vacuum chamber, the heat shield 
would be designed to transmit the 1-µm fluorescence out to the heat-sunk walls while reflecting 
their 10-µm thermal radiation (with corresponding blackbody photon occupation number nA) 
back away from the sample. The heat shield is thus a short-wavelength-pass filter (sometimes 
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called a “hot mirror”). Since the cooler is presumably operating at a temperature T less than TA, 
thermal radiation from the sample (with occupation number nT) will peak at wavelengths even 
longer than 10 µm and will consequently be reflected back to the sample. Ignoring the pump, it 
therefore follows that the light incident on the cooling sample will have occupation number nT 
while that leaving it will have occupation n

F
+ n

T
. The net energy and entropy fluxes from the 

sample result from the difference between the outgoing and incoming radiation, 

 
 

!Enet = 2hc
!2

(nF + nT)"
3
d" cos# d$dA

"% ! 2hc!2 nT"
3
d" cos# d$dA

"%$%A%$%A%  (63) 

which simplifies back to Eq. (13) with n identified as nF, while 

 

 

!Snet = 2kc
!2

(1+ nF + nT)ln(1+ nF + nT) ! (nF + nT)ln(nF + nT)[ ]"2d" cos# d$dA
"%$%A%

! 2kc!2 (1+ nT)ln(1+ nT) ! nT lnnT[ ]"2d" cos# d$dA
"%$%A%

 (64) 

does not reduce to Eq. (43) when n is similarly identified. Unlike energy, the entropy of a beam 
of light is not additive over photons that share the same mode (in particular, the same frequency). 
This fact means that the entropy of the sample’s emission depends on the temperature of the 
thermal surroundings. In particular, in the limit of very weak fluorescence n

F
<< n

T
, we can 

neglect nF in the arguments of the first two logarithms in Eq. (64) to get 

 
 

!Snet ! 2kc
"2

nF ln(1+1 / nT)#
2
d# cos$ d%dA

#&%&A& . (65) 

But ln(1+1 / nT) = h! / kT  from Eq. (39) and thus 
 
!Snet =

!Enet /T ! TF " T . This result keeps 
the Carnot coefficient of performance in Eq. (5) positive regardless of how weak the 
fluorescence gets. In fact, as the pump power (and hence the resulting fluorescence) is reduced, 
κC increases as graphed by the left-hand curve in Fig. 12, diverging as 

 
!EP ! 0 . The reason the 

COP becomes infinite in this limit is that the sample will still cool back to the ambient 
temperature if it is impulsively heated, so that there is a nonzero cooling power even though the 
pump power is zero, owing to the sample’s radiative coupling to the surroundings (arising from a 
small leakage of thermal radiation through the heat shield in Fig. 11 at short wavelengths). One 
can equivalently think of this as thermally stimulated fluorescence. Needless to say, the fact that 
κC increases with decreasing 

 
!E
P

 does not imply that there is some maximum in the cooling 
power of an ideal optical refrigerator at low or intermediate pump powers. On the contrary, for a 
cooler operating at the Carnot limit, Eq. (53) implies that 

 
!Q /T = !SF  (assuming the entropy of 

the pump is negligible), which is plotted as the right-hand curve in Fig. 12 for narrowband 
ytterbium fluorescence and rises monotonically with pump power. 

Equation (65) is only valid if the fluorescence is extremely weak. Specifically, when 
T = 300 K  and c /! = 995 nm , Eq. (39) gives nT = 10

!21 . Using the previous values of the 
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material constants, Eq. (23) implies that n
F
= n

T
 only when the fluorescence power has the tiny 

value 
 
!EF = 10

!16
 W . Clearly we can assume that n

F
>> n

T
 within the ytterbium spectral range 

whenever the optical fridge is operating. In this limit of small nT, the quantity in square brackets 
in the second integral of Eq. (64) becomes approximately (! lnnT) / (1 / nT) " 0  using l’Hôpital’s 
rule. Therefore Eq. (64) now does simplify to Eq. (43) with n identified as nF. 

With that conclusion in mind, the graphs in Fig. 12 were computed as follows. A value of 
the fluorescence occupation number n

F
 was picked and 

 
!E
F

 was computed from it using 
Eq. (23). Similarly the fluorescence entropy flux was calculated as 

 
 

!SF = 2!kcAsample (1+ nF )ln(1+ nF ) " nF lnnF[ ]#F
"4
$#F  (66) 

from Eq. (45). Then the fluorescence flux temperature was found from their ratio, 
 
TF ! !EF /

!SF , 
and it was substituted into Eq. (5) to determine κC. Finally the pump power could be determined 
as 

 
!EP = !EF / (1+!C)  using Eq. (52), so that κC and 

 
!S
F

 could be plotted one point at a time 
against 

 
!E
P

. Unlike κC whose value depends critically on the sample temperature T, assumed to 
be room temperature in Fig. 12, 

 
!Q /T  as given by Eq. (66) only depends weakly on T, via the 

temperature dependences of λF and !"
F

 measured by Lei et al. (1998), noting from the two 
graphs in Fig. 12 that 

 
!E
P
! !E

F
 when the pump is strong enough to give significant cooling. Also 

note that the right-hand plot of 
 
!Q /T  versus 

 
log !EP  becomes linear at high powers because then 

 
!SF ! lnnF  from Eq. (66) while 

 
!E
P
! !E

F
" n

F
. 

The current lowest temperature experimentally attained by optical cooling is T = 208 K  for 
a 2 wt% Yb3+:ZBLAN cylindrical sample starting from room temperature (Thiede et al. 2005). 
The mean fluorescence wavelength at this temperature is !F = 999 nm  and the bandwidth is 
approximately the same as its room temperature value of !"F = 35 nm . Since the end faces of 
the sample were coated with high reflectors that substantially reduce fluorescence escape from 
them, it is reasonable to estimate the sample area only by that of the curved surface, specifically 
of the outer cladding (since ! = " / 2  for it) so that Asample = 88!  mm2 . The sample was 
pumped using an Yb3+:YAG laser with an absorbed power of 

 
!EP = 5.9 W ! !EF  (assuming 61% 

absorptance) at a wavelength of !P = 1026 nm  for 3 hours (to reach steady state). Consequently 
Eq. (23) implies that the mean fluorescence occupation number is nF = 1.6 !10

"3 , corresponding 
to a flux temperature of TF = 1900 K  from Eq. (50). The sample and flux temperatures then lead 
to a Carnot COP of !C = 12%  according to Eq. (5). For comparison, the coefficient of 
performance predicted spectroscopically is !C = 2.7%  from Eq. (9). However the heat load at 
the minimum temperature was found to be 

 
!Q = 29 mW  and thus the actual COP is just 

 
! = !Q / !EP = 0.5% . 

Another sample for which more than 10˚C of cooling has been observed is Tm3+:ZBLAN 
(Hoyt et al. 2003a–b). A Brewster-cut 1 wt% sample was cooled by 24 K below room 
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temperature (i.e., to about T = 275 K ) by exciting it at !P = 1.9 µm  for half an hour with an 
average absorbed power of 

 
!EP = 2.2 W ! !EF  using an optical parametric oscillator pumped by a 

25-W mode-locked Nd3+:YAG laser. The surface area of the sample was about 
Asample = 150 mm2 . The fluorescence spectrum consists of a single symmetric peak centered at 
!F = 1.803 µm  with a FWHM of !"F = 0.22 µm . Using these values, one finds that 
nF = 3.4 !10

"3  from Eq. (23), so that TF = 1200 K  according to Eq. (50). Therefore Eq. (5) 
gives rise to !C = 30% , whereas the ideal spectroscopic prediction is !C = 5.4%  according to 
Eq. (9). Note that the latter value is double that calculated for Yb3+:ZBLAN above because, as 
discussed following Eq. (9), κC is approximately proportional to λP and for thulium we double 
this wavelength from about 1 to 2 µm. With an estimated cooling power of 

 
!Q = 73 mW , the 

actual COP may be as high as 
 
! = !Q / !EP = 3.3% , which is promising for practical refrigeration. 

To explain the differences between the thermodynamic, spectroscopic, and actual cooling 
coefficients of performance, we need to consider various sources of inefficiencies. Equation (61) 
for example indicates that κ strongly depends on the internal fluorescence quantum efficiency 
ηint. In addition, the COP is expected to depend on the probability fesc that the spontaneously 
emitted photons escape from the sample, the background absorption coefficient αback of the 
pump light by nonfluorescent impurities or sample surface coatings, and the saturation intensity 
(irradiance) Isat when one pumps near an absorption peak. The following model, which extends 
that of Hoyt et al. (2003a), incorporates all four of these effects (ηint, fesc, αback, and Isat). 

Consider a small volume element of the sample dV at spatial position r that is being optically 
pumped with incident intensity I(r)  in W/cm2 at wavelength !P = c /"P . The population 
densities (ions/cm3) in the ground and excited manifolds are N1 and N2, respectively, where 
N = N1 + N2  is the concentration of active ions doped into the host crystal or glass and is 
assumed to be spatially uniform. Denote the effective absorption and emission cross sections (in 
cm2) at the pump wavelength as σAP and σEP, respectively, and define (Bowman and Mungan 
2000) the dimensionless ratio ! " #AP / (#AP +#EP ) . (Note that ! = 0.5  for a true two-level 
system.) The radiative and nonradiative rates are the inverses of the lifetimes, WR = 1 / !R  and 
WNR = 1 / !NR , respectively. 

In steady state, a rate-equation approach leads to two key relations. First, the time 
dependence of the excited-state population is described by 

 dN2

dt
= 0 =

I

h!P
N1"AP # N2"EP( ) # fescN2WR # N2WNR , (67) 

assuming the pump bandwidth ΔλP is narrow enough that the wavelength dependence of the 
cross sections can be ignored; otherwise one needs to replace each product I!  by I!" (!)  and 
integrate Eqs. (67) and (71) over wavelength. The first expression on the right-hand side of 



21 

Eq. (67) is the difference between absorption and stimulated emission, the second term describes 
spontaneous emission, and the last one accounts for nonradiative decay (including both direct 
multiphonon de-excitation and energy transfer from the excited ions to nonfluorescent 
impurities). The spontaneous radiation term includes the fractional probability fesc that the 
fluorescence photons ultimately escape from the sample. Photons which do not escape are 
assumed to get reabsorbed by active ions (i.e., perfect photon recycling), resulting in no net 
change in the excited-state population; Wang et al. (2006) have considered the case of nonideal 
recycling and its effect is to further reduce the external quantum efficiency. For simplicity fesc is 
here taken to be an average value over the entire sample; in actuality it depends on r both 
because of the proximity of the pumped volume element to the sample surfaces and because the 
photons emitted in one volume element are in general absorbed in a different volume element 
(Heeg et al. 2005). In contrast, the stimulated emission photons are assumed to be added to the 
pump beam and so no escape fraction is needed inside the first term. Define the external 
fluorescence quantum efficiency (QE) as 

 !ext "
fescWR

fescWR +WNR
, (68) 

which can be related to the internal QE ηint defined by the first equality in Eq. (56), 

 !ext
"1

"1 =
!int
"1

"1

fesc
. (69) 

This expression can be used to directly compute the external QE in terms of the internal value (or 
vice versa) if the escape probability is known. (Note that if fesc ! 1, the internal and exernal 
efficiencies are only equal to each other in the limits that η approaches zero or unity.) Using 
Eq. (68) to eliminate WNR in Eq. (67), one obtains 

 N2

N
=

!

1+ Isat / I
 (70) 

where the pump saturation intensity is Isat ! h"P fescWR /#ext ($AP +$EP ) . 
The second key relation is the rate of thermal energy accumulation in the volume element, 

 
 
!u = (N1!AP " N2!EP )I +#back I " fescN2h$FWR  (71) 

in W/cm3, where αback is an average background nonsaturable absorption coefficient (in cm–1) 
which is assumed to be approximately wavelength independent due to nonfluorescent impurities 
and surface coatings, and !F = c / "F  is the mean fluorescence frequency including the 
redshifting due to reabsorption. The redshift can be calculated from the overlap between the 
absorption and emission spectra; for example, Lamouche et al. (1998) estimate a +9 nm shift for 
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a 2% Yb3+:ZBLAN sample measuring 3 cm on a side. Noting that the resonant absorption 
coefficient by the active ions is !res = N"AP  and defining the total absorption coefficient as 
! tot = !res +!back , we can use Eq. (70) to rewrite Eq. (71) in dimensionless form as 

 
 

!u

! totI
= 1 "

#ext$P / $F + I / Isat
1+ I / Isat

!res
! tot

. (72) 

The numerator of the left-hand side is the net heating power density while the denominator is the 
total absorbed power density. Therefore the negative of this expression defines the cooling COP 
which can be rewritten in the form 

 ! =
"P # "F

*

"F
**

. (73) 

Here the zero-heating wavelengths are 

 !F
*
=

!F
"ext

# tot +#back I / Isat
#res

$

%&
'

()
 (74) 

while the slope of a graph of κ versus λP (as in Fig. 14 introduced below) is normalized by 

 !F
**

=
!F
"ext

1+
I

Isat

#

$%
&

'(
) tot
)res

. (75) 

As a check, Eq. (73) reduces to Eq. (61) when fesc = 1 (so that the internal and external quantum 
efficiencies are equal), !back = 0  (so that the pump light is only absorbed by the active ions), 
and Isat !"  (so that the absorption by the active ions cannot be saturated). More realistically 
Isat = 15 kW/cm

2  if Yb3+:ZBLAN is pumped at !P = 1 µm  so that !AP +!EP " 5 #10
$21

 cm
2  

at room temperature, assuming values of fesc = 75% , !R = 2 ms , and !ext = 99% . This 
irradiance would be attained by a 1-W pump beam having a diameter of about 0.1 mm, and 
therefore it is not surprising that one sees saturation effects when performing focused 
photothermal deflection spectroscopic measurements or when the cooling sample is a piece of an 
optical fiber (Mungan and Gosnell 1999). In either case, the result is to reduce the amount of 
laser heating or cooling observed, since both !F

*  and !F
**  increase with increasing pump 

intensity I in Eqs. (74) and (75). As an example, the ratio of the COP to its unsaturated value has 
been plotted in Fig. 13 as a function of the pump intensity for the case of !back = 0 . 

Owing to such saturation effects, the right-hand curve of the cooling power in Fig. 12 must 
roll over at high pump powers, rather than continuing to increase without limit, although a “top 
hat” spatial profile of the laser beam can help delay that onset. In any event, the cooling rate is 
ultimately limited to 1 / !R = 500 Hz  per ytterbium ion. 
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On the other hand, in the limit of weak pumping ( I << Isat ) which will always occur at 
sufficiently long wavelengths, Eqs. (74) and (75) become !F

*
= !F

**
= !F / (" #ext )  where the 

absorption efficiency (Sheik-Bahae and Epstein 2007) is ! " #res /# tot . The resulting expression 
for κ from Eq. (73) has been plotted in Fig. 14 using values of the numerical constants 
representative of purified Yb3+:ZBLAN material, assuming a sample geometry such that 
fluorescence reabsorption is negligible and estimating the ytterbium absorption coefficient as 

 !res("P ) = (0.36 cm#1) exp #
"P # 975 nm

33 nm

$
%&

'
()

2*

+
,
,

-

.
/
/
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which was fit to the 300 K reciprocity-derived spectrum of a 1% doped sample over the range 
990–1060 nm (Lei et al. 1998). We see from this graph that the cooling range is bracketed by 
two zero-heating wavelengths. At short pump wavelengths, αback is negligible compared to αres 
and Eq. (73) becomes 

 
 

! =
"P # "F /$ext

"F /$ext
=

!EF

!EF"F / "P + !ENR
#1. (77) 

The first equality is identical to Eq. (61) with the internal fluorescence QE replaced by the 
external QE, and thus κ rises linearly with λP and crosses zero near !F /"ext = 1005 nm . The 
second equality follows by substituting Eq. (68) and defining the external fluorescence power by 

  
!EF = fescN2h!F / "R  and the nonradiative heating by 

  
!ENR = N2h!P / "NR  as discussed before 

Eq. (56). Some quick checks on any purported expression for the cooling coefficient κ (of which 
there have been many in the literature) are that ! = "1  if !

R
"#  or if fesc = 0  (in which case 

the best you can do is locally cool one region of the sample and distribute the heat elsewhere, 
assuming the material’s thermal conductivity is low enough to support such a gradient), and that 
! =!C  from Eq. (9) in the absence of saturation and all nonradiative heating (such as from 
background or excited-state absorption, multiphonon relaxation, and energy transfer). Equation 
(77) satisfies these checks when one sets 

 
!E
F

 or 
 
!ENR  to zero, respectively. Note that the 

denominator of the second equality can be written as 

 
fescN2h!P / "R + N2h!P / "NR = N2h!P / "ext , where τext is the external lifetime of the active 

ions, which is longer than the the internal value owing to radiative trapping of the fluorescence. 
But 

 
N2h!P / "ext  equals the absorbed pump power 

 
!E
P

 in steady state. Equation (77) can then be 
immediately recognized as the expected ratio of the cooling to the absorbed power. 

On the other hand as one tunes to long wavelengths, !res("P )  declines in value while αback is 
assumed constant, so that the cooling COP does not continue to increase but instead bends over, 
returning to zero when !res("P ) = !back / (#ext"P / "F $1) . Substituting Eq. (76), this second 
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zero-heating pump wavelength is found at 1049 nm. The peak cooling in Fig. 14 occurs near 
!P = 1036 nm , in reasonable agreement with experimental results (Edwards et al. 1999). 

V. Closing Remarks 

This chapter has focused on calculating the coefficient of performance (COP) κ. Many 
workers in the field of optical cooling prefer to report quantities other than the COP, which are 
related to it. The cooling power Pcool equals the product of κ and the absorbed pump power 

 
Pabs =

!EP . In the unsaturated limit, the absorbed power in turn is the product of the incident 
power Pinc and the absorptance 1! exp(!"resL)  where L is the sample length (multiplied by the 
number of passes if it is in a cavity). For a short sample in single-pass pumping, one can 
therefore approximate Pabs ! "resLPinc . Once the steady-state refrigeration temperature T has 
been attained, the cooling power is equal to the heat load, 

 
Pcool =

!Q . If the load is thermal 
radiation from a surrounding chamber (possibly coated with a heat-shielding material) of internal 
surface area Ac at temperature Tc with an emissivity of 

#
Å
c
 then (Clark et al. 1998) 

 
 #

!Q =
! (Tc

4
" T

4
)

(AÅ)
"1

+ (1" Åc )(AcÅc )
"1

 (78) 

where the cooling sample has surface area A and emissivity #Å . An upper limit on the heat load is 
obtained by putting 

#
Åc = 1 = Å . If furthermore the cooler is operating at a temperature 

T = Tc ! "T  where !T  is small, then 
 
!Q ! 4A"Tc

3
#T . Suppose the sample is in the form of an 

optical fiber of small diameter D, so that A ! "DL . Then the COP becomes 

 
 

! "
!Q

Pabs
#
4$%DTc

3
&T

'resPinc
 (79) 

so that, ideally using Eq. (9), the temperature drop normalized to the incident laser power is 

 !T

Pinc

=
N

4"#DTc
3
Fcool  (80) 

where N is the concentration of active ions and the cooling figure of merit (Bowman and 
Mungan 2000) is Fcool ! "AP (#P $ #F ) / #F  at the optimal pump wavelength λP, which is useful 
for comparing the cooling potential of different materials. Equation (80) suggests possible 
strategies for maximizing the temperature drop, such as increasing the Yb3+ doping (until energy 
transfer becomes limiting) and decreasing the sample diameter (so that its entire cross section is 
pumped). 

From a spectroscopic point of view, the ratio of the external radiative relaxation rate to the 
total decay rate of the upper state defines the fluorescence quantum efficiency (QE), 
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 !ext "
fesc / #R

1 / #ext
 (81) 

where 1 / !ext " fesc / !R +1 / !NR . But the ratio of the external fluorescent power 
 
!E
F

 to the 
absorbed pump power defines the cooling coefficient of performance (COP) plus unity, 

 
 

! +1 "
fescN2h#F / $R

N2h#P / $ext
 (82) 

in the absence of both saturation and background absorption. (Note that photon recycling will be 
perfect in this case because nothing other than active ions can reabsorb the fluorescent light.) 
Thus ! +1 = "ext#F /#P  which is Eq. (60), noting that !F /!P ="C +1 from Eq. (9). 

On the other hand, from a thermodynamic viewpoint, the Carnot COP is !C = T / (TF " T )  
provided that T

P
>> T

F
. Here the flux temperature for narrowband fluorescence is 

 TF =
h!F nF

k (1+ nF )ln(1+ nF ) " nF lnnF[ ]
 (83) 

from Eq. (49), where the mean photon occupation number is given by Eq. (23) as 

 
 

nF =
c
2 !EF

2!h"F
3
#"FAsample

 (84) 

and 
 
!EF = (1+! )Pabs " Pabs  according to Eq. (82). Consequently the parameters needed to 

calculate the ideal COP are the absorbed pump power Pabs, the sample’s cooled temperature T 
and uncoated surface area Asample, and the center frequency νF and bandwidth ΔνF of the 
fluorescence spectrum (at temperature T). It would therefore be useful if experimentalists made it 
a standard practice to cite values for these five parameters in their papers. 

How practical would it be to optically pump the cooler with a nonlasing source of light? 
Equation (83) gives the flux temperature TP of a narrowband pump if we replace νF by νP and 
n
F

 by n
P

 where 

 
 

nP =
c
2 !EP

2h!P
3
"!PApump# sin

2
$P

 (85) 

for a pump beam of bandwidth ΔνP, divergence δP, and cross-sectional area Apump. Noting from 
Eq. (4) that 

 !C =

1 "
TF

TP

TF

T
" 1  

, (86) 
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little reduction in the Carnot COP will result as long as one maintains T
P
>> T

F
. But 

 
!E
F
! !E

P
 

and !
F
" !

P
 so that this temperature requirement becomes 

 !"PApump sin
2
#P << !"FAsample . (87) 

Since the fluorescence and absorption bandwidths of a sample are comparable, satisfying this 
inequality guarantees that the pump is strongly absorbed. However, strong absorption is a 
necessary but not sufficient condition to obtain cooling. For example, if we simply reflected the 
fluorescence back to the sample (either accidentally from the walls of the sample chamber or 
intentionally in a misguided attempt to “recycle” the fluorescence energy) and called it “pump” 
light, then the left-hand side of Eq. (87) would be roughly equal to rather than much smaller than 
the right-hand side; that is, T

P
! T

F
 for that portion of the input radiation. Under ideal 

conditions, that would leave the COP unchanged, as we see from Eq. (86); but in reality it would 
decrease the COP according to Eq. (55), owing to background absorption, energy transfer to 
nonfluorescent impurities, and other heating inefficiencies. 

Frey et al. (2000) suggest downshifting (and, implicitly, frequency narrowing and spatially 
collimating) the fluorescence before recycling it. More practically, one could use photovoltaics 
to convert some of the fluorescence into electrical energy and use that to help run the pump 
source. The highest possible efficiency results when the set of (uncooled) photovoltaic 
converters constitute a Carnot heat engine operating between the fluorescence flux temperature 
TF and room temperature TR so that 

 !C =
TF " TR

TF

 (88) 

as in Eq. (3). This efficiency is the ratio of the converted electrical power 
 
!E
R

 (to be recycled 
back perfectly to the pump power 

 
!E
P

 input to the optical cooler) and the collected fraction χ of 
the cooler’s fluorescence power 

 
!E
F

, 
 
!C " !ER / #

!EF . The Carnot COP of the coupled 
refrigerator-photovoltaic system now becomes the ratio of the cooling to the net electrical work 
supplied, 

 
 

!PV "
!Q

!EP #
!ER

=
T

T * # T
where T * " $TR + (1# $)TF , (89) 

since 
 
!E
F
= !E

P
+ !Q  and 

 
!Q = !EPT / (TF ! T ) . As a check, Eq. (89) reduces to Eq. (5) if ! = 0  so 

that there is no fluorescent recycling. On the other hand, for perfect collection ( ! = 1) of the 
fluorescence, TF is replaced by TR in Eq. (5) which amounts to a significant improvement in 
efficiency because T

F
> T

R
. In effect, we are then exhausting waste heat out of the refrigerator 
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system at room temperature TR rather than at the fluorescence temperature TF. More generally 
the ratio of the COP with the photovoltaic recycler to that of Eq. (5) in its absence is 

 !PV
!NPV

= 1" #
TF " TR
TF " T

$

%
&

'

(
)

"1

. (90) 

For example, if we use the values calculated after Eq. (66) for the current best Yb3+:ZBLAN 
cooler (T = 208 K  and TF = 1900 K ) assuming TR = 300 K  and say ! = 50% , then Eq. (90) 
predicts that one can almost double the ideal cooling performance. 

In another vein, an intriguing application of fluorescent cooling is to reduce the thermal load 
on the medium in an optically pumped laser (Bowman 1999). Such heating results in deleterious 
effects such as beam defocusing by thermal lensing, depolarization due to temperature-dependent 
birefringence, coating delamination, and stress fractures. To reduce these effects, high-power 
solid-state lasers are typically water cooled. Not only does this add bulk to the entire system, it 
does not fully eliminate the problems, because only the surface of the laser rod or slab is being 
directly cooled while it is the interior that is pumped and thus there is a thermal gradient which 
ultimately limits the extent to which one can scale up the power. In contrast, optical cooling 
occurs inside the medium itself. One could start by imagining two separate systems: one pump 
source and set of active ions to drive the laser, and a second pump source and set of ions to run 
the optical cooler. Essentially this idea has been proposed by Petrushkin and Samartsev (2003) in 
which a KY3F10 crystal is double-doped with Nd3+ and Yb3+. Suppose the neodymium ions lase 
at wavelength λL following optical pumping at wavelength λP. The Stokes energy shift 
hc(!P

"1
" !L

"1
)  is called the quantum defect and heats the crystal. However some fraction 

(determined by the doping concentrations) of the laser photons are absorbed in the long-
wavelength tail of the ytterbium spectrum and consequently promote anti-Stokes fluorescent 
cooling of hc(!F

"1
" !L

"1
)  per cycle. In principle, one could balance the cooling against the 

heating, resulting in what has been termed athermal laser operation. But this particular scheme 
for high-power scaling is limited because laser photons are being consumed by the cooling 
process and the laser wavelength has to be chosen to overlap the absorption band of the cooling 
ions and not just according to the optimal emission of the lasing ions. 

A clever alternative dispenses with the need for a separate optical cooling system and uses a 
single pumped set of active ions which both lase by Stokes-shifted stimulated emission and 
fluoresce by anti-Stokes-shifted spontaneous emission. This is done by choosing a pump photon 
frequency which is intermediate between the mean fluorescence frequency and the laser output 
frequency (selected by appropriate design of the feedback cavity mirrors), !

L
< !

P
< !

F
. Using a 

biaxial host such as KGd(WO4)2, one can choose the pump wavelength and polarization to 
coincide with an absorption peak and independently choose the laser wavelength and 
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polarization to match an emission peak. Athermal operation occurs when two balance conditions 
are met in each volume element of the laser medium: both the rates and the powers for 
absorption and (spontaneous plus stimulated) emission must be equal, using equations similar to 
those of Eqs. (67) and (71). Such a laser is said to be radiation balanced. A combined optical 
and thermodynamic analysis of a single-pass radiation-balanced Yb3+: KGd(WO4)2 amplifier has 
been undertaken by Mungan (2003) and its Carnot efficiency for the ratio of the output laser 
power to the input pump power is 

 
!C " !EL /

!EP = 1# TF /TP , since ideally the laser is a heat 
engine operating between the pump and fluorescence flux temperatures. An oscillator model has 
been discussed by Li et al. (2004). 

Consider the thermal load on a continuous-wave (CW) laser medium in the ideal case where 
there is no reabsorption, nonradiative relaxation, or background absorption. At steady state, the 
rate of optical pumping (transitions per second) up to the excited state must balance the 
relaxation rate back down to the ground state by lasing and fluorescence, 

 
  

!N
P
= !N

L
+ !N

F
!

!E
F

h"
F

=

!E
P

h"
P

#

!E
L

h"
L

. (91) 

Cooling of the medium results from the difference between the radiative fluxes out of and into it, 

 
 
!Q = !E

L
+ !E

F
! !E

P
. (92) 

Defining the cooling COP to be 
 
! cool "

!Q / !EP  and the optical-to-optical lasing efficiency as 

 
!lase "

!EL /
!EP , then one can substitute Eq. (91) into (92) to obtain 

 ! cool =!F (1" #lase ) "!L#lase$L / $F  (93) 

where the the cooling COP in the absence of lasing (!lase = 0 ) is !F " (#P $ #F ) / #F  as in 
Eq. (9), and the lasing fractional quantum defect is !L " (h#P $ h#L ) / h#P = (%L $ %P ) / %L . The 
first expression on the right-hand side of Eq. (93) thus represents the relative cooling due to the 
fluorescence, while the second term is the relative heating due to the lasing. (Note in particular 
that ! cool = "!L  if 

 
!EF = 0 .) For radiation balancing, ! cool = 0  and Eq. (93) then implies that the 

optical efficiency is 

 !lase =
"P # "F

"L # "F

. (94) 

The choice of wavelengths consistent with the frequencies discussed above, !
L
> !

P
> !

F
, 

implies that 0 < !lase < 1. Also note for this athermal case that the fraction of the pump power 
that is converted into fluorescence is 

 
!EF /
!EP = 1! "lase . 

Even if perfect radiation balancing is not attained, one can reduce the heat load on the 
medium. For example Bowman et al. (2005) have constructed a quasi-CW thin-disk KGd(WO4)2 
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laser doped with 3 at% Yb3+ and edge-pumped with 90 diode laser bars (corresponding to an 
incident power of 2.25 kW) at !P = 993 nm . The highest output power 

 
!EL = 0.49 kW  at 

!L = 1047 nm  resulted when 
 
!EP = 1.10 kW  of the pump power was absorbed, corresponding to 

an optical efficiency of !lase = 45% . Using a powdered sample to minimize radiation trapping, 
the mean fluorescence wavelength was measured to be !F = 997 nm . (Therefore the pump 
wavelength, although a good match to an ytterbium absorption peak, was not long enough to 
produce athermal operation. It was limited by the available InGaAs laser diodes.) Consequently 
one computes the nonlasing cooling COP to be !F = "0.4%  and the lasing quantum defect to be 
!L = +5.2% . Equation (93) thus predicts !" cool = 2.7% , whereas the measured thermal loading 
was found to be 3.2%. The discrepancy results from the fact that the fluorescence wavelength is 
redshifted by reabsorption to !F

*
= !F /"ext  from Eq. (61) where the external fluorescence 

quantum efficiency is given by Eq. (81). Estimating the fluorescence lineshape function g(!)  to 
be divided by 1+!res(")L  due to reabsorption, where αres is the ytterbium absorption 
coefficient and L is the effective length of the laser crystal (approximately double its 8-mm 
diameter) treated as an optical cavity, the trapped fluorescence wavelength is calculated to be 
!F

*
= 1011 nm , which accounts for the extra thermal loading. 
In principle, average athermal operation is possible not just for CW but also for pulsed lasers 

such as kilohertz Q-switched ytterbium-doped systems (Wang et al. 2007). The idea is that net 
fluorescent cooling during the time that the Q switch is off can compensate for a large transient 
thermal load when it is open, assuming that the pump source consists of continuous diode lasers. 
Another new concept (Vermeulen et al. 2007) for mitigating the quantum-defect heating of a 
laser by optical cooling takes advantage of coherent anti-Stokes Raman scattering (CARS), in 
which a pump and a Stokes-shifted photon are converted into a pump and an anti-Stokes photon, 
with the associated annihilation of two phonons. As an example, a phase-matched CW silicon 
waveguide laser has been modeled that emits 0.69 W at a Stokes wavelength of 3.14 µm and 
0.43 W at an anti-Stokes wavelength of 2.37 µm when pumped by a 5 W fiber laser at 2.7 µm. 
By having increased the ratio of anti-Stokes to Stokes photons, the simulations indicate that the 
thermal load is reduced by 35% compared to the heating in the absence of CARS. An alternative 
to CARS in a single medium such as silicon is coherent four-wave mixing in a doped material 
such as Yb3+:YAG (Muys 2008). Lasing occurs by Stokes shifting one pump photon at a dopant 
site, while cooling occurs by anti-Stokes shifting a second pump photon at a host site. 

It will be interesting to see whether the first practical application of solid-state optical cooling 
outside of the laboratory will be to a refrigerator or to a laser. Time will tell. 
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Figure 1.  Simplified characterization of the energy input to and output from an optical cooler. 
Thermal energy is withdrawn from the cooling medium itself, as well as from any external load 
attached to it. The refrigerator is driven by a low-entropy source, such as a laser resonant with 
the low-energy wing of an absorption band of the cooling material. Finally, the medium relaxes 
radiatively and the output fluorescence carries energy away to some external heat sink. 
 
Figure 2.  Relevant energy levels of a gas of neutral sodium atoms. First the D1 transition is 
pumped at 589.6 nm using a spectrally filtered sodium lamp. Then the two upper P levels 
thermalize with each other, so that they end up with nearly equal population densities (according 
to the Boltzmann distribution at room temperature). Finally one gets emission on both the D1 and 
D2 lines, with the latter having a slightly shorter photon wavelength of 589.0 nm and thus a 
slightly larger photon energy. 
 
Figure 3.  A heat engine and a refrigerator coupled in tandem between three thermal baths as a 
model for an optical cooler. In one excitation-relaxation cycle, energy Ein is absorbed from the 
pump source, heat Q is withdrawn from the cooling sample (and its load), and net energy 
Eout ! Eout,engine + Eout,fridge  is exhausted in the form of fluorescence. All of the work W output 
from the engine is used to drive the fridge. 
 
Figure 4.  Coupling of a three-level system to a set of thermal reservoirs that maintain 
Boltzmann population ratios at the appropriate temperatures and transition frequencies. In order 
to maximize the cooling efficiency, spontaneous emission between levels 2 and 1 has been 
neglected. 
 
Figure 5.  Portion of the radiation emitted from surface area dA of the sample into solid angle 
dΩ. The polar angle θ is measured relative to the surface normal direction defining the z axis, 
while the azimuthal angle φ is measured counter-clockwise from the x axis aligned along any 
convenient direction tangential to the sample surface. 
 
Figure 6.  Three examples of plots of some spectral quantity Fλ versus wavelength λ. Each is 
characterized by three values: λ0 denoted by the solid vertical line and equal to the centroid of 
the spectrum, F0 indicated by the height of the dashed rectangle and equal to the peak value of 
Fλ, and Δλ represented by the width of the dashed rectangle and chosen so that the areas under 
the spectrum and under the dashed rectangle are equal. (a) A single Gaussian peak. (b) A series 
of three spikes that might represent emission from a multimode diode laser. (c) Sum of a pair of 
Lorentzians composing a peak with a long-wavelength shoulder. 



 
Figure 7.  Comparison of the spectral radiance of a 2000 K blackbody and of the ytterbium-
doped heavy-metal-fluoride fluorescence (approximated as a Gaussian peaking at 995 nm with a 
35 nm bandwidth) corresponding to a hemispherical emittance of 

 

!EF / Asample = 0.94 W/cm2 . 
 
Figure 8.  Distinction between unidirectional light emanating from differential surface area dA1 
and divergent light from area dA2. Although the radiation in region 1 is overall not a plane wave, 
it could represent a portion of a single spherical optical mode emitted by a point source located at 
the center of curvature, whereas the light issuing from a fixed (x, y)  location in region 2 is 
distributed over a range of angles θ and φ (and hence over many modes). The curve representing 
the overall surface A could be the actual boundary of a sample emitting radiation or it could 
simply be an arbitrary surface in space that the radiation happens to be crossing. 
 
Figure 9.  Average brightness Tb  and flux Tf temperatures for narrowband infrared light peaking 
at !0 = 1 µm  as a function of its mean spectral radiance L! . The abscissa spans values ranging 
from low-power lamps up to high-brightness lasers. A radiation temperature is thus a useful, 
intensive figure of merit for evaluating the quality of an optical source at a given center 
wavelength; it characterizes the width of the distribution of energy among the optical modes. 
 
Figure 10.  Flow diagram analogous to Fig. 1 for the rate at which energy and entropy are 
transported into and out of a fluorescent refrigerator or, in the case of entropy SG, is 
spontaneously generated during the cooling process. (Note that this latter entropy does not 
accumulate in the system in steady state because the entropy of the cooling sample, which is a 
function of state, must return to its initial value at the completion of each cycle. More entropy 
leaves than enters the system, as many of the processes occurring within the sample are 
irreversible.) To correspond to Fig. 3, identify EP with Ein and EF with Eout. 
 
Figure 11.  Cylindrical cross-section of an optical cooler operating at temperature T. The 
blackened walls of the vacuum chamber are maintained at ambient temperature TA using an 
external coolant. The pump radiation is reflected between mirrors (not shown) parallel to the flat 
faces of the sample; one of these high reflectors could have a small input hole to admit fiber-
coupled pump light (Edwards 1999). The heat shield is assumed to have negligible emissivity 
(and thus absorptivity), reflecting all thermal radiation at long wavelengths and transmitting all 
fluorescence at short wavelengths. The sample reflects or transmits some of the incident thermal 
flux with occupation number nT; it absorbs and then re-emits the remaining portion. 
 



Figure 12.  Plots of κC and of 
 
!Q /T  (in the Carnot limit) for pump powers 

 
!E
P

 ranging from 
1 W to 1 MW. As in Sec. III, the cooling sample is assumed to have a surface area of 
Asample = 13.5!  cm2  and the fluorescence spectrum is that of Yb3+:ZBLAN at room 
temperature, peaking at !F = 995 nm  with a bandwidth of !"F = 35 nm . The Carnot COP is 
computed at T = 300 K  assuming T

P
>> T

F
. 

 
Figure 13.  Ratio of the cooling coefficient of performance κ to its unsaturated value 
!unsat " #ext$P / $F %1  plotted against pump intensity I varying over a range from a thousandth 
to a thousand times the saturation intensity Isat. Note in particular that the COP is halved when 
one drives the cooler at Isat, because at saturation half of the emissions are stimulated rather than 
spontaneous and so do not contribute to cooling. 
 
Figure 14.  Plot of the COP κ versus the pump wavelength λP for 1 wt% Yb3+:ZBLAN at room 
temperature assuming a mean fluorescence wavelength of !F = 995 nm , an external 
fluorescence quantum efficiency of !ext = 99% , and a background absorption coefficient of 
!back = 10

"4
 cm

"1 . The pump intensity is presumed to be much weaker than the saturation 
intensity, I << Isat , at all wavelengths longer than 990 nm. 
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