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Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS 
 

Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going 
pump beam P, a forward-going acoustic wave, and a backward-traveling Stokes beam S. The 
pump field generates the acoustic wave via electrostriction. That is, the electric field of the pump 
wave exerts oppositely directed forces on the positive and negative ions or domains in the silica, 
inducing a strain which generates the sound wave. In turn, that acoustic field modulates the 
refractive index, resulting in a grating that Bragg scatters the pump into the Stokes beam. The 
Stokes scattered light is downshifted in frequency by the Doppler shift, because the grating is 
moving forward at the acoustic (sound) speed, which for fused silica is !A = 5960 m/s . 
(Quantum mechanically, a pump photon is annihilated and a Stokes photon and an acoustic 
phonon are simultaneously generated.) Energy conservation requires that the Brillouin frequency 
shift be (!P "!S) / 2# =!B / 2# $ %B , while momentum conservation says that the acoustic 
wavevector must be kB = kP ! kS " kB = kP + kS  since the Stokes wave travels backward along 
the optical fiber. But !B = "AkB = 2n"A2# / $P  because kS ! kP . Here the refractive index of 
silica is n = 1.45 . Thus for a vacuum pump wavelength of !P = 1.55 µm , the shift is 
!B = 2n"A / #P = 11 GHz . Acoustic waves are assumed to decay as exp(!"Bt)  where the 
acoustic phonon lifetime in silica is TB ! 1 / "B # 10 ns . The SBS gain spectrum is assumed to 
be Lorentzian with angular frequency dependence 
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and thus its FWHM is !"B = #B / 2$ % 15 MHz . Here the peak Brillouin gain coefficient is 
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where the vacuum speed of light is c = 3!10
8

 m/s , the density of silica is ! = 2200 kg / m3 , 
and the measured longitudinal elasto-optic coefficient of silica is p12 = 0.286 . [The Lorentz-
Lorenz relation predicts that p12 = (n

2
!1)(n

2
+ 2) / (3n

4
) = 0.34  in rough agreement.] In bulk 

silica, values of !"
B

 between 10 and 20 MHz have been measured at a pump wavelength of 1.5 
µm; I will the split the difference and use !"B,bulk = 15 MHz  in this review. In a fiber, the width 
depends on the numerical aperture (NA) according to Kovalev & Harrison, Opt. Lett. 27:2022 
(2002) as 
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because large numerical apertures imply that Stokes beams can travel at angles to the exact 
backward direction, thus slightly relaxing the momentum conservation condition stipulated 
above. Equation (2.5) is plotted in Fig. 1. Inhomogeneities in the fiber cross section can similarly 
relax the wavevector condition and thereby increase the Brillouin bandwidth. 
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Fig. 1. Variation in the Brillouin gain FWHM with the numerical 
aperture of a silica fiber at 1.5 µm. 

 
Substituting the preceding values for bulk silica at 1.5 µm into Eq. (2) gives 

gB ! 2 "10
#11

 m/W . Theory predicts that !"B #"B
2
# $P

%2 , which implies that gB should be 
independent of the pump wavelength. Note that if the polarization angle between the pump and 
Stokes beams varies randomly (as in a non-polarization-maintaining fiber), then the value of gB 
needs to be reduced by a factor of 1.5. 
 
Steady-state conditions 

Suppose that the pump is at least quasi-CW. Then the coupled intensity equations are 

 dIP

dz
= !gBIP IS !" IP  (3) 

for the pump as a function of length z along the fiber ranging from 0 to L, and 

 dIS

dz
= !gBIP IS +" IS  (4) 

for the Stokes beam. If the absorption coefficient (assumed to be the same at the pump and 
Stokes wavelengths) is negligible, then ! " 0  and it immediately follows from Eqs. (3) and (4) 
that IP ! IS = C , some constant intensity difference. 
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Brillouin threshold in the absence of losses 
If we neglect both pump depletion and losses (the latter implying ! " 0 ), then IP can be 

taken to be constant along the length L of the fiber, and Eq. (4) can be separated and integrated to 
get 

 
dIS

ISIS (L)

IS (0)

! = "gBIP dz

L

0

! # IS(0) = IS(L)exp(gBPL / A)  (5) 

where P = I
P
A  is the (input) pump power and A is the (effective) core area of the fiber. 

Equation (5) applies to Brillouin amplification whereby a Stokes signal is input at z = L . If 
instead the Stokes beam grows from noise, we model it by injecting one (fictitious) photon per 
mode at a distance where the gain and loss balance; the method of steepest descent can then be 
used to show that the critical pump power Pc defining the Brillouin threshold is 

 gBPcL / A ! 21 . (6) 

Assuming telecom fiber values of A = 25 µm
2 , L = 25 km , and gB = 2 !10

"11
 m/W  then 

Eq. (6) implies Pc = 1 mW . It is precisely because this threshold is so low that SBS is significant 
in fibers. 
 
Gain saturation in the absence of losses 

Now turn on pump depletion but continue to neglect losses, so that IP = IS + C . Then Eq. (4) 
becomes 
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Replacing IS(0)  by IP (0) ! C , Eq. (7) rearranges into 

 IS(z) =
b0(1! b0 )

G(z) ! b0
IP (0)  (8) 

where G(z) = exp[(1! b0 )g0z]  with 

 b0 !
IS(0)

IP (0)
 and g0 ! gBIP (0) . (9) 

Here b0 measures the SBS efficiency (fraction of the input pump power converted to output 
Stokes power) and g0 is the small-signal SBS gain (in units of inverse distance). 

Defining the ratio of input signals as bin ! IS(L) / IP (0) , the pump and Stokes powers 
(normalized to the input pump power) are plotted in Fig. 2 for bin = 0.5%  and g0 = 10 / L . For 
this purpose, one needs to compute the value of b0. Evaluating Eq. (8) at z = L  and solving for 
b0 in the exponential gives 
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1

g0L
ln
b0(1+ bin ) ! b0

2

bin
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or b0 = 1! 0.1ln(201b0 ! 200b0
2
)  for our values of bin and g0. Iterating this formula starting from 

b0 = 0.5 , it quickly settles down to b0 = 0.61273 , i.e., 61% of the input pump is transformed 
into output Stokes power, and thus C / IP (0) = 1! b0 = 0.38727 . Notice from the graph that most 
of the power transfer occurs in the first quarter of the fiber’s length. 

Fig. 2. Lossless intensities of the Stokes and pump beams as a 
function of distance along the fiber’s length in dimensionless form. 

 
The value g0L = 10  used here corresponds to an unsaturated gain of Gu = exp(g0L) = 22000  or 
10 log(22000) = 43 dB , although the actual saturated gain is only 
Gs ! IS(0) / IS(L) = b0 / bin = 120  due to pump depletion. Equation (8) evaluated at z = L  
implies 

 bin =
b0(1! b0 )

exp[(1! b0 )g0L]! b0
. (11) 

If b0 is small then bin ! b0 exp("g0L)  is also small and Gs ! Gu . But for larger values of bin the 
gain rolls off, falling to about half at a saturation input Stokes power comparable to the threshold 
pump power of about 1 mW. 

To find the threshold exactly, suppose the Stokes input (seed) intensity is fixed, say at a 
normalized value of gBIS(0)L = 10

!5
" k . Then g0L = gBIP (0)L = k / bin  where we now treat 
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IP (0)—and hence bin—as a variable rather than as a constant, and plot the Stokes efficiency b0 
against it. For this purpose, define u ! 1 / bin  and rewrite Eq. (11) as 

 u =
exp[k(1! b0 )u]! b0

b0(1! b0 )
. (12) 

A numerical root-finder in MatLAB was used to solve this equation for b0 as a function of u for 
fixed k = 10!5 . The results are plotted in Fig. 3 where ku is on the horizontal axis, i.e., the 
normalized pump intensity gBIP (0)L , and b0 is on the vertical axis, i.e., the efficiency or 
“Stokes reflectivity” equal to the ratio of the Stokes output intensity to the pump input intensity. 
The efficiency saturates at value 1 in the limit of very strong pumping. If we define the pump 
threshold value to occur at an efficiency of 1 / e = 0.3679 , we see from the graph that it occurs at 
a value of g0L = 21, in exact agreement with Eq. (6). 

Fig. 3. Stokes efficiency as a function of the pump intensity in 
dimensionless form. 

 
Although it is not evident on the scale of the above plot, the curve actually turns around for 

very low pump intensities and the efficiency then grows without bound. The reason for this 
behavior is that for very weak pumping, the (fixed) Stokes input simply propagates straight 
through the fiber and equals the Stokes output. Thus the efficiency becomes a constant divided 
by the pump, which diverges in the limit of vanishing pump! This behavior becomes obvious if 
one starts with a stronger seed, such as k = 0.1 . For that value, in fact, the turn around occurs 
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near threshold, so that the efficiency merely shows a dip rather than a zero plateau at low pump 
intensities. 
 
Experimental results of Cotter in Electronics Letters 18:495 (1982) 

An isolated Nd:YAG cw laser beam at 1.32 µm with a linewidth much smaller than the 
Brillouin bandwidth !"

B
 was sent into a 13.6 km fiber having losses of only 0.41 dB/km [so 

that ! = 0.41ln(10) /10 = 0.094 km
"1 ], corresponding to an effective fiber length of 

 e
!"z

dz

0

L

# =
1! exp(!"L)

"
= 7.66 km . (13) 

(Note that the effective length equals L for a lossless fiber, but it decreases to 1 /!  if 
! >> 1 / L .) The effective fiber area was A = 47 µm

2 . At low input powers, the back-reflected 
signal was 4% due to the air-fiber interface. The Brillouin threshold was reached at about 5 mW, 
manifested as a substantial increase in backward-going power. Simultaneously, the transmitted 
power dropped, saturating at about 2 mW for inputs exceeding 10 mW, corresponding to an SBS 
conversion efficiency of about 65%. The Brillouin frequency shift was measured using a Fabry-
Perot to be 12.7 GHz. 
 
Time-dependent amplitude equations 

Neglecting group velocity dispersion, as well as self and cross phase modulation, the coupled 
equations for the complex pump and Stokes amplitudes AP and As are 
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and 
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where Q is the acoustic power density (in W/m2) resulting from density variations of the silica 
due to the sound wave, described by 

 TB
!Q

!t
+Q = APAS

* . (16) 

For pump pulses of temporal width TP >> TB ! 10 ns , we can neglect !Q / !t . Defining 
IP = AP

2  and IS = AS
2 , substitute Q = APAS

*  into Eq. (14), multiply that equation through by 
AP
* , and add the result to its complex conjugate to get 

 !IP
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+
n

c

!IP

!t
= "gBIP IS "# IP  (17) 

which reduces to Eq. (3) under steady-state conditions. In a similar way, Eq. (15) becomes 
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"t
= gBIP IS !# IS . (18) 

Equations (17) and (18) exhibit relaxation oscillations with a period of twice the fiber transit 
time, Tr = nL / c . (Physically, the Stokes power rapidly grows near the input end of the fiber, 
thereby depleting the pump. That reduces the gain until the depleted portion of the pump exits 
the far end of the fiber. The gain then builds back up and the process repeats, resulting in 
oscillations.) In the presence of external feedback (for example due to back-reflections into the 
fiber), these relaxation oscillations can develop into stable oscillations via self-induced intensity 
modulation. 

The graphs below show an example of relaxation oscillations in the absence of feedback, i.e., 
the pump and Stokes beams pass into and completely out of the fiber starting from opposite ends. 
These were computed numerically using the Method of Lines (MOL) by modifying the MatLAB 
code available online at http://www.scholarpedia.org/article/Method_of_lines. [Another 
technique is to decouple the PDEs by defining u ! z + ct / n  and w ! z " ct / n  so that Eq. (17) 
becomes !IP !u = "2gBIP IS " 2# IP  and (18) becomes !IS !w = "2gBIP IS + 2# IS . This is 
called the Method of Characteristics, but it has the disadvantage of mixing together the initial 
conditions and boundary values.] It is convenient to rewrite Eqs. (17) and (18) in normalized 
form by multiplying every term in them by L / IP (0)  to get 
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!!z
+
1

N

!P

!!t
= "gPS " !#P  (19) 

and 

 
 

!
"S

"!z
+
1

N

"S

"!t
= gPS ! !#S  (20) 

where P ! IP (z) / IP (0) , S ! IS(z) / IP (0) ,  !z ! z / L , 
 
!t ! t / (NTr ) , g ! gBIP (0)L , and  !! " !L . 

Here  !z  and  !t  both numerically evolve on grids running from 0 to 1, and N is the number of 
transit times over which the simulation is permitted to run. In Fig. 4, I used a normalized gain of 
g = 10 , normalized absorption of  !! = 0.15 , N = 10  periods, 800 grid points in the  !z  direction, 
and 20 000 grid points in the  !t  direction. (I found it is important to use finer time than spatial 
discretization, so that the oscillations have time to settle down.) The spatial derivatives are 
computed using five-point, fourth-order finite-difference approximations in subroutine 
“dss004.m” (where some “for” loops were replaced with “parfor” to take advantage of modern 
dual-core computer processing). The time integration is then performed using subroutine 
“ode23” which implements the Bogacki-Shampine four-stage third-order adaptive Runge-Kutta 
method. (Higher order methods were found to be too unstable.) The relative and absolute 
tolerances were both set to 10!8 . The Stokes input relative to the pump input, bin, was chosen to 
be 1%. To increase stability, I used the lossless steady-state profiles (corresponding to 
b0 = 0.69064 ) for the pump and Stokes beams (similar to the curves in Fig. 2) as initial 
conditions. Due to the loss, the normalized Stokes signal (left-hand graph) evolves away from its 
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initial output value (at the front face  !z = 0  of the fiber) of b0 to a final value of 0.62548. 
Meanwhile, the normalized pump signal (at the rear face  !z = 1) evolves from an initial value of 
1! b0 + bin = 0.31936  to a final value of 0.30465. 

Fig. 4. Time evolution of the output Stokes and pump beams, 
showing relaxation oscillations over the course of 10 single-pass 
transits through the fiber. The horizontal axis is in units of t /Tr . 

 

 

If optical communication pulses of “0” and “1” are sent into a fiber at a repetition rate of say 
1 GHz with pulse widths of about 100 ps (much shorter than TB), they can still be treated using 
the quasi-cw analysis presented above because the time interval between successive “1” bits is 
usually short enough that they can pump an acoustic wave coherently. On average, the only 
effect is to increase the Brillouin threshold by a factor of approximately 2. Further increase in the 
threshold can be achieved by phase modulating the carrier wave at 100 MHz (or faster) to 
increase its spectral bandwidth. 
 
Brillouin fiber lasers 

The Brillouin gain can be used to make lasers by placing the fiber in a ring or mirrored 
cavity. For a ring geometry, the boundary condition IS(L) = RIS(0)  implies that Eq. (5) becomes 

 Rexp(gBPL / A) = 1 . (21) 
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Consequently the factor of 21 in Eq. (6) is replaced with a value between 0.1 and 1 (depending 
on R) if L is less than about 100 m. For short fibers, such that the longitudinal mode spacing 
!"L = c / nL  is larger than the Brillouin gain bandwidth !"

B
, the laser operates stably in a 

single longitudinal mode. 


