Acceleration of a Pulled Spool
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well-known lecture demonstration!

consists of pulling a spool by the free

end of a string wrapped around its in-
ner diameter. By pulling at different angles rela-
tive to the floor, the spool can be made to roll
either toward or away from you. This is ex-
plained by considering the torque about the
point of contact O between the spool and the
floor. A number of authors? have noted that for
a cylinder rolling under the action of a horizon-
tal pulling force, the frictional force can be in the
direction of motion of its center of mass C. This
often puzzles introductory students. It is there-
fore helpful to explore the kinematics for the
more general case of pulling at an arbitrary angle
with respect to the floor.

Pulling the Spool

For a spool whose mass distribution is suffi-
ciently far away from the axis of symmetry, it
turns out that there are two special pulling an-
gles. In addition to the familiar angle 6, in the
forward direction at which the spool cannot roll
without slipping, there is a second characteristic
angle 0, in the backward direction at which the
spool always rolls without slipping. (Through-
out this article, “forward” refers to the direction
in which the string would unwind off the bot-
tom of the spool.) In standard homework prob-
lems and class demos involving pulled cylinders,
0., is not investigated.

The critical pulling angle 6, at which the
spool slips in place without rolling occurs when
the line of action of the pulling force 7'is direct-
ed through O, as illustrated in Fig. 1. All other
forces (the normal force IV, the spool’s weight
mg, and the frictional force f) also have lines of
action through O; thus, there is no net torque 7
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about O and the spool does not rotate about this
point. Let the inner radius of the spool (about
which the string is wrapped) be R; and its outer
radius (with which it contacts the floor) be R,.
From the geometry it follows that 6, = COs™R,/R,.
For example, if R, = 0.75 R, then 6. = 41°.

Now consider pulling at a steeper angle,3
0> 6.. A free-body diagram for the case in
which the spool rolls without slipping (so that

/line of
i action

Fig. 1. Free-body diagram of a spool of mass m and moment
of inertia I about its center C. A constant tension force T has a
line of action making an angle 0 with respect to the forward
horizontal direction (which is to the right in this sketch). The
directions of the static frictional force f; and of the linear
acceleration of the center of mass a follow from the equations
of motion and depend on 0, as discussed in the text.
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Fig. 2. Maximum linear acceleration of a spool if it is to roll
without slipping when s = 0.2, Ry/R, = 0.75, and Y = 1. With
these parameters, 0, = 41°, at which angle g, = 0 because it
is impossible for the spool to roll without slipping.
Furthermore Eq. (10) does not have a real solution, implying
that there is no angle at which the frictional force falls to
zero. The sign of a,,, is that of Eq. (7), i.e., the graph is posi-
tive if the acceleration is in the backward direction (just as is
sketched in Fig. 1) and negative if it is forward.
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Fig. 3. Maximum linear acceleration of a spool if it is to roll
without slipping when U, = 0.1, Ry/R, = 0.75, and 7y = 1.5. For
these values, 0. = 41°, as in Fig. 2, while 0,, = 153°. At this lat-
ter angle, the frictional force is zero and the spool lifts off the
ground when pulled with greater than the maximum tension
given by Eq. (6). Again, the acceleration is plotted with a posi-
tive sign if it is in the backward direction, and negative if for-
ward.
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the friction is static, f;) is sketched in Fig. 1. The
directions of the friction and acceleration vectors
are correct as drawn provided that 6, < 0< 6,,,
where 6, is some maximum angle whose value
will be calculated below. Applying Newton’s sec-
ond law horizontally gives

fi— T cosO = ma, (1)
from which we see indeed that the frictional
force must point in the same direction as the
horizontal linear acceleration . The rotational
analog of Newton’s second law counterclockwise
about point C s

T= TRI —ﬁRz = ]a = ]ﬂ/Rz, (2)
where a is the angular acceleration of the spool

and /is its moment of inertia about C. Substi-
tuting f; from Eq. (1) into (2) gives the linear ac-

celeration
T /R
a= ,[5’—(—— cos 0) , (3)
m R2
where I have defined
B=I[1+1ImR3])"=[1+y(R/R)} ' (4

with /= ymR¢ Putting y = 1, assuming the
spool’s mass is effectively concentrated at its in-
ner radius,4 and continuing to use the preceding
value of 6, implies that 8= 0.64. Note that z is
necessarily positive because > 6. = cosf <
R,/R,. However there is an upper limit to how
hard one can pull on the string, beyond which
the spool will begin to slip. This occurs when
the static friction attains its maximum value,

fomax = MV = i (mg — Tsiné), )
from the vertical force balance, where u is the
coefficient of static friction. Therefore, the max-
imum allowed tension (assuming the string does
not break) is

N
T Mg

- ,(6
T cosB + usind + B(R,/R, — cosb) (©)
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where use was made of Egs. (1) and (3). Substi-
tuting this into Eq. (3) gives an expression for
the maximum acceleration if the spool is to not
slip,
s g
Aoy = cosf + u sinf - 7)

+

B(R,/R, — cosb)

This is plotted in Fig. 2 for the case of u,=0.2
and, as above, y=1and R,;/R, = 0.75. As ex-
pected from the preceding discussion, a,,,, = 0 at
0 = 0. Thus, if the tension is smaller than the
value given by Eq. (6), the spool will not move at
this angle.

Repeating the analysis for a shallow pulling
angle, 6 < 0, we get the same free-body diagram
as in Fig. 1, except that now the acceleration
points to the right rather than to the left. The
friction must be the source of the clockwise
torque about C, and must therefore continue to
point to the left in the diagram. Hence the ac-
celeration and its maximum value are given by
the negatives of Egs. (3) and (7), respectively.
Once again 2 must be positive, because 6 < 6, =
cos 0> R,/R,. Nevertheless I have plotted it as
being negative on the graph in Fig. 2 to show
that the maximum acceleration varies smoothly
as 6 crosses through 6.

We see from Fig. 2 that in the forward direc-
tion, the magnitude of the maximum accelera-
tion peaks at 6 = 0° with the value

°) R/R -1 ®)
Amax =M

H g 1+ ')’RI/RZ
(after properly correcting the sign). This is well
behaved for any meaningful values of the para-
meters. In the backward direction, the accelera-
tion monotonically rises to a peak at 6 = 180°,

RZ/RI +1

—_ 9
1— YRR, ©)

ﬂmax(lgoo) = Mg
However, this expression is not always well be-
haved: it diverges if the denominator is zero,
when y = R,/R,. This can happen — an upper
limit on 7y is (R,/R;)?, whereby all of the mass of
the system is concentrated at the outer radius of
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the spool. Note that y = R,/R; implies that the
radius of gyration of the spool, R = \1Im,
equals the geometric mean of R, and R,, namely
R ="V RR,. In this case the frictional force is
zero if you pull at 180°. For larger values of 1,
the frictional force reverses and points in the for-
ward direction at sufficiently large pulling an-
gles.6

Specifically, let us suppose that y > R,/R; and
find the angle 6, at which the frictional force
falls to zero. From Egs. (1) and (2), this is given
by

Ry
0., = c05'1<— —>, (10)
YRy
which accordingly equals 180° when 7y = Ry/R).
At 0, the spool rolls frictionlessly without slip-

ping regardless of how hard you pull on the
string, up to the limiting value 77 ... But what
happens when this value of the tension is at-
tained? By definition, f, = £ .., at that point.
Butf=0at 0= 6,,. Hencef ..=n,N=0.
That is, the spool jumps off the ground. In fact,
it is straightforward to show from Egs. (7) and
(10) that

£
Aoy (0) = .
ma.X( ﬂl) tangm
This does not diverge, provided 6,, < 180°. (On-
ly for the special case of 6, = 180° is it impossi-
ble to jerk the spool off of the ground.) Conse-
quently there is no discontinuity in the graph of

(11)

the maximum acceleration at 0 = 0, (except for
the unrealistic case of exactly zero coefficient of
static friction, as discussed on the following
page).

Continuing, we can consider what happens
at larger angles, 6> 6,,. The direction of the fric-
tional force can be reversed by replacing u, with
- in Egs. (6), (7), and (9). The results are plot-
ted in Fig. 3 for u, = 0.1, Rj/R, = 0.75,and y =
1.5 (in which case 6, = 153°). There is a cusp at
6., with a change in slope of

ddmax( 0;1) dﬂmax( enﬁ) 2 ( 1- :8) ﬂmax( em)
o Ao

(12)

S
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inm - s2 - rad-!, which is always positive since 8
< land 4,,,,(6,,) > 0. Note that Eq. (12) blows
up as u, > 0. On a frictionless surface, it is im-
possible for the spool to roll without slipping ex-
ceptat 0= 6,,. Thatis, 2., =0 everywhere ex-
cept at 6, where it takes on the positive value
given by Eq. (11).

To summarize, a pulled spool has a linear ac-
celeration given by Eq. (3). This is in the direc-
tion of the pull for shallow angles, crosses zero at
angle 6, with the horizontal, and is in the back-
ward direction for larger angles up to 180°. The
spool will roll without slipping provided the
pulling force is less than that given by Eq. (6) or,
equivalently, provided the magnitude of the ac-
celeration does not exceed the absolute value of
Eq. (7). If the radius of gyration of the spool is

larger than the geometric mean of its inner and

max

outer radii, then there is a second special pulling
angle 6, in the backward direction for which the
spool rolls frictionlessly, provided the tension is
less than mg cscf,,. Larger pulling forces cause
the spool to hop into the air at this angle. The
maximum acceleration for rolling without slip-
ping is given by Eq. (7) at all angles (to within
the sign of u,) and is continuous (assuming a
nonzero coefficient of static friction) as the angle
increases through 6, albeit with a cusp there,
the discontinuity in the first derivative being de-
scribed by Eq. (12). If the spool is sequentially
placed on smoother and smoother surfaces so
that the frictional coefficient systematically de-
creases, the maximum acceleration for rolling
without slipping will be found to decrease at all
angles except 6. and 6,,. These two angles are
defined for an appropriate spool (i.e., one for
which /> mR,R,) to be:

(i) .= cos[(R/R,)?] with 0° < 6, < 90° at
which the spool rotationally slips in place
without rolling regardless of how large the
coefficient of static friction is; and

(ii) 6, = cos! [-(R/R)?] with 90° < 6,, < 180° at
which the spool rolls without slipping re-
gardless of how small the coefficient of static
friction is.

484

In the Classroom

These results can be applied to an introduc-
tory physics course in two ways. On the one
hand, a three-part homework problem can be
constructed. The students are given the free-
body diagram in Fig. 1. In the first step, the stu-
dents are asked to write down the horizontal
component and rotational analog of Newton’s
second law using only the symbols in the free-
body diagram. In the second part, the students
are to solve these two equations to find the spe-
cial angle 6, at which the frictional force falls to
zero. Finally, they should be told to observe
from their result that this angle is unphysical un-
less 7 is larger than some minimum value and
then asked what this limiting value is in terms of
the mass and radii of the spool.

Secondly, a simple demonstration of the an-
gle 0, brings the concept home. A track is at-
tached to the top of a pair of low-friction rolling
carts (one supporting each end) traveling togeth-
er on a level rail. The spool is placed near the
middle of the track so that it can roll either way
along it. By Newton’s third law, the frictional
force of the track on the spool is equal and oppo-
site to the horizontal reaction force of the spool
on the track. Hence the direction of the fric-
tional force on the spool can be determined by
observing the recoil of the carts. A wide ribbon
is used to pull the spool, to help it travel in a
straight line. In order to ensure that y> Ry)/R;, a
spool with a small ratio of inner to outer radii is
necessary. Weights can be added near the outer
rim of the spool to further increase y — these
should be added symmetrically about the axis
and to both rims to maintain the balance of the
spool. By measuring the masses and dimensions
of the weights and component parts of the spool,
6., can be calculated from Eq. (10). By trial and
error, I found that a value of 6,, of about 120°
works well: pulling the ribbon at 90° then causes
the carts to recoil forward, while pulling (more
sharply) at 180° produces a recoil in the other
direction. (It helps to increase u, by adding a bit
of a tacky substance to the portions of the spool
that contact the track.) With some care, one can

THE PHYSICS TEACHER  Vol. 39, November 2001



obtain recoil-less motion of the spool to within

10° of the predicted angle. This is particularly
effective as a follow-up illustration to the above
homework problem.
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