
THE PHYSICS TEACHER ◆ Vol. 44, February 2006 99

The December 2004 issue of TPT presented a 
problem concerning how a car should acceler-
ate around an unbanked curve of constant 

radius r starting from rest if it is to avoid skidding.1 
Interestingly enough, two solutions were proffered by 
readers.2 The purpose of this note is to compare and 
contrast the two approaches. Further experimental 
investigation of various turning strategies using a re-
mote-controlled car and overhead video analysis could 
make for an interesting student project.

One approach, exemplified by Scott Wiley’s solu-
tion, assumes that the tangential acceleration at of the 
car is constant throughout the turn, while the centrip-
etal acceleration ac = v 2/r continuously increases as 
the car’s speed v builds up. But the magnitude of the 
total acceleration a a a= +t c

2 2 must never exceed 
µsg, where µs  is the coefficient of static friction be-
tween the tires and road. To minimize the travel time 
t, the car’s acceleration just attains this slipping value 
as it completes the turn. Using the kinematic rela-
tions  v a r r a t2

t t= and2 1
2

2φ φ = (where φ is the angle 
through which the car has turned), straightforward 
algebraic manipulations lead to
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where k ≡ +1 4φmax
2  and the variables have 

been normalized by V gr T r g≡ ≡µ µs s, / , and         
A � µsg. Equations (1) are plotted in red in Fig. 1 
for the case of a 45� turn (i.e., φmax = π/4 rad).

The other approach further reduces the driving 
time by making a equal to µsg during the entire turn, 
rather than merely as the car completes it. Follow-
ing the solution of Eugene Mosca, one can equate  

a a a V v rt c= − = −2 2 4 4  to at = dv/dt = (ds/dt) � 

(dv/ds) = vdv/rdφ (where s = rφ is the distance traveled 
around the curve) to obtain
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Inverting this result gives
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(If φmax is greater than 45�, then v remains constant 
with value V, so that ac = A and at = 0, at all angles 
beyond π/4.) The time is found by substituting v = 
rdφ/dt into the first equality in Eq. (3a) to get
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where N is any large integer.3 This summation can 
be easily performed in a spreadsheet program.4 The 
results are plotted (using N = 1000), along with 
Eq. (3a), in blue in Fig. 1.
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The shapes of the at curves in Fig. 1(b) give an indi-
cation of how the driver should depress the gas pedal. 
In the first approach (red dashed curve), he needs to 
maintain a constant but intermediate pressure on the 
pedal. In contrast, in the second scheme (blue dashed 
curve) he begins by “flooring it,” such that the tires are 
on the verge of slipping, to get the maximum possible 
initial increase in speed. As he proceeds around the 

curve, he then eases off the pedal at an increasing rate 
in such a manner that his foot comes fully off it after 
having turned through 45� (assuming air drag and 
rolling friction are negligible).

As a final remark, one can use the preceding equa-
tions to determine how the car travels around the 
curve even if it starts with a nonzero speed v0 < V. 
(If the car’s initial speed is greater than V, it needs to 
first slow down to V and then execute the turn at that 
constant speed, as discussed in Ref. 5.) Simply solve 
Eq. (1) or (2) as appropriate to find the angle, call 
it φ0, that corresponds to the initial speed v0. Now, 
rather than performing the subsequent calculations 
for angles 0 to φmax, instead consider the automobile 
to be traveling from angles φ0 to φ0 + φmax.
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Fig. 1. In each graph, Eq. (1), which assumes constant 
tangential acceleration, is plotted in red, and Eq. (3), 
which assumes constant total acceleration, is in blue. (a) 
The normalized speed v/V of the car. (b) The normalized 
tangential acceleration at/A (dashed curves) and centrip-
etal acceleration ac/A (solid curves). (c) The normalized 
driving time t/T.


