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C onsider a clock aboard a satellite orbiting the 
Earth, such as a Global Positioning System 
(GPS) transmitter. There are two major 

relativistic influences upon its rate of timekeeping: a 
special relativistic correction for its orbital speed and 
a general relativistic correction for its orbital altitude. 
Both of these effects can be treated at an introductory 
level, making for an appealing application of relativ-
ity to everyday life.

First, as observed by an earthbound receiver, the 
transmitting clock is subject to time dilation due to its 
orbital speed. A clock aboard a spaceship traveling at 
speed υ runs slow (compared to a stationary clock) by 
a factor of1 
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provided υ << c, as would be the case for a satellite. 
Thus when one second of proper time elapses, the 
moving clock loses υ2 / 2c2 = K /E0 seconds, where K 
and E0 are the kinetic and rest energies of the clock, 
respectively.

Second, a clock at the higher gravitational po-
tential of orbit runs faster than a surface clock. The 
gravitational potential energy of a body of mass m in 
Earth’s gravity is U = mV, where V =  –GmE/r is Earth’s 
gravitational potential (at distance r from the center 
of the Earth of mass mE). In the case of a photon, we 
replace m by E/c2, where E = hf is the photon’s energy. 
If the photon travels downward in Earth’s gravitational 
field, it therefore loses potential energy of (hf /c2)∆V 
and gains an equal amount of kinetic2 energy h∆f. We 

thereby deduce that the falling photon is gravitation-
ally blue-shifted by
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(This expression can also be straightforwardly de- 
duced3 using the equivalence principle to treat Earth’s 
downward gravitational field as an upward accelerat-
ing frame, and then calculating the Doppler shift in 
the light1 between emission high up and observation 
low down in this moving frame.) If the clock’s tick-
ing is synchronized to a light wave, the orbiting clock 
will be observed at Earth’s surface to be ticking faster 
due to this gravitational frequency shift. Therefore, 
when one second of Earth time elapses, the clock at 
high altitude gains ∆V /c2 = ∆U /E0 seconds, where 
U is the gravitational potential energy of the clock.

The sum of the two relativistic effects can be com-
pactly expressed as
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where ∆t is the time lost by the orbiting clock when 
a time interval τ elapses on the surface-bound clock. 
Here K – U is the Lagrangian4 of the orbiting clock 
where the reference level for the gravitational poten-
tial energy is chosen to lie at Earth’s surface.

As a concrete example, let’s calculate the size of 
these two effects for a GPS satellite, located at an alti-
tude of r = 26,580 km, about four times Earth’s radius 
of rE = 6380 km. From Newton’s second law, we have
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 of deriving Eq. (2) agree with an exact general relativis-
tic treatment, presented in an accessible manner in E.F. 
Taylor and J.A. Wheeler, “Project A: Global Positioning 
System,” in Exploring Black Holes: Introduction to Gen-
eral Relativity (Addison-Wesley, San Francisco, 2000), 
pp. A-1–A-9. 

4.  E. Huggins, “GPS satellites and Lagrangians,” present-
ed at the AAPT Summer Meeting, Madison, WI, 2003. 
Equation (3) implies that the action per unit mass for 
an orbiting clock is equal to the time lost multiplied by 
the speed of light squared.

5.  N. Ashby, “Relativity and the Global Positioning Sys-
tem,” Phys. Today 55, 41–47 (May 2002). Also see N. 
Ashby, “Relativity in the Global Positioning System,” 
Living Reviews in Relativity 6 (Jan. 2003), online at 
http://www.livingreviews.org/lrr-2003-1.

6.  A. Harvey and E. Schucking, “A small puzzle from 
1905,” Phys. Today 58, 34–36 (March 2005). Also see 
S.P. Drake, “The equivalence principle as a stepping 
stone from special to general relativity: A Socratic dia-
log,” Am. J. Phys. 74, 22–25 (Jan. 2006).

7.  Specifically, in Earth’s rotating frame of reference the 
total surface potential is computed as follows. The 
gravitational potential difference in Eq. (5) is gy for 
small altitudes y above polar sea level. The centrip-
etal acceleration of an object revolving with angular 
speed ω at a distance r from the axis is ω2r. (For the 
Earth, ω = 2π/24 h.) In a rotating frame, this can 
be treated as an outward centrifugal acceleration. 
Its integral corresponds to a centrifugal potential of 
− =−1
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2ω υr .  If we now require that the total 

potential gy – υ2/2 = 0 everywhere on Earth’s surface, 
then Eqs. (1) and (5) cancel each other’s effects. [Note, 
however, that ω2rE

2/2g = 11 km is half the height of 
Earth’s actual equatorial bulge, as discussed in standard 
texts such as D.L. Turcotte and G. Schubert, Geody-
namics, 2nd ed. (Cambridge Univ. Press, Cambridge, 
2002), Chap. 5. In fact, an equatorial clock needs to 
be raised beyond 11 km to compensate for the gravita-
tional field from the mass of the bulge.]
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where Earth’s surface gravitational field is g   
GmE/rE

2  = 9.8 m/s2. Hence the fractional time 
loss due to the satellite’s orbital speed is –gr2

E/2rc 2 
per second, or –7.2 µs/day. Meanwhile, the general 
relativistic fractional time gain due to the satellite’s 
altitude is
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which works out to be +45.6  µs/day. Notice that the 
gravitational effect is more than six times larger than 
the speed effect: the dominant GPS correction is gen-
eral, not special, relativistic!

If we instead consider satellites in progressively 
lower altitude orbits, their speeds will increase accord-
ing to Eq. (4), while the gravitational potential differ-
ence in Eq. (5) will decrease. Eventually we will reach 
an altitude at which the two corrections exactly can-
cel, so that the satellite’s clock will run synchronously 
with an earthbound clock.5 This occurs when
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i.e., at an altitude of half an Earth radius.

An interesting postscript: One might assume, as 
Einstein did6 in 1905, that if we set the altitude 
equal to zero (i.e., sea level), a clock fixed to Earth’s 
surface would run slower at the equator than at the 
poles, owing to Earth’s rotational speed. But in fact 
that is incorrect because sea level is an equipotential 
surface.7 To put it another way, the Earth bulges at 
the equator, thereby gravitationally raising a clock 
located there by exactly the amount required to can-
cel the time dilation due to Earth’s spin.
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