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T here has been and continues to be consider-
able discussion in the educational commu-
nity about different ways of relating the con-

cepts of work and energy in introductory physics.1 The 
present article reviews a consistent and streamlined 
treatment of the subject, drawing particular attention 
to aspects seldom covered in textbooks. The paper is 
intended to clarify the central equations for introduc-
tory courses and to put the wider literature in context.  
It is specifically designed to tie closely in terminology 
and order of presentation to standard texts, so that it 
complements rather than supplants them. In brief, 
the key point is that there are two major categories of 
work, center-of-mass work and particle work.2 After 
an overview of these two approaches, I illustrate them 
with a couple of instructive examples that can be used 
in group problem-solving sessions in class.

Center-of-Mass Work
In what is usually called the work-energy theo-

rem, one is concerned with center-of-mass work and 
mechanical energy. This relation is most useful in 
mechanics, and it is a theorem in that it can be derived 
starting from Newton’s laws.3 Suppose an object4 i has 
mass mi and that net force Fi acts on it while its center 
of mass (c.m.) undergoes a differential displacement 
dri , so that its c.m. velocity is υi  dri /dt. If we take 
our system to be composed of a set of objects, which 
will be referred to from now on as parts, it is easy to 
prove that

Wc.m. = K   (1)
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in an inertial reference frame, where the center-of-
mass work done on the system is

(2)W di ic.m.
parts

≡ ⋅∫∑ F r ,
 

and the translational kinetic energy of the system is

       (3)K mi i≡ ∑ 1
2

parts

υ2 .

Note that Eq. (1) is perfectly general. In particular, 
it is applicable to deformable objects such as a verti-
cal chain falling into a pile on a surface and to open 
systems undergoing irreversible processes such as a 
block sliding on a rough table.5

Several other comments on these equations help 
clarify them further:

(i) The work on individual part i is due both to 
external forces (i.e., exerted by agents not included 
in the system) and to internal forces (e.g., the force 
part j exerts on part i where i  j). That is, the con-
cept of internal work is well defined and useful in 
mechanics, unlike in thermodynamics. For example, 
consider a system of two parts, a book and a rough 
table. After being given an initial push, the book 
comes to rest because of the internal force of friction. 
To the extent that the table is heavy enough that 
we can neglect its recoil, (negative) center-of-mass 
work is done only on the book and the system loses 
kinetic energy.

(ii) The kinetic energy of a system depends on how 
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you partition it and thus one must clearly specify 
not only the system but also its parts. For example, 
consider a Frisbee® of mass m and moment of iner-
tia I at temperature T thrown in the conventional 
way so that it spins with rotational speed ω as it 
sails through the air with translational speed υ. If 
we take our system to be a single part, the Frisbee 
as a whole, then K m= 1

2
2υ ; one might call this 

the macroscopic view. On the other hand, if we 
take this system to be composed of a large number 
of bits of plastic that are small compared to the 
size of the Frisbee, but large compared to molecu-
lar dimensions, then K m I= +1

2
2 1

2
2υ ω , which 

one might call the mesoscopic view. Finally, if one 
resolves the Frisbee into its N individual atoms, then 
K m I Nk T= + +1

2
2 1

2
2 3

2υ ω B
(at high temperatures, 

typically valid at room temperature6), where kB is 
the Boltzmann constant; this is the microscopic view. 
While this is often confusing initially to students, 
an appreciation of the fact that kinetic energy can 
be “hidden” inside an object in this way is crucial to 
the development of the concept of internal energy. 
To emphasize this, Eq. (2) has sometimes been 
called pseudowork in the literature,7 although I rec-
ommend against use of this name because it is not 
used in standard textbooks, and this form of work 
is no more a “false” construct than is particle work, 
described in the next section.

(iii) The proof of Eq. (1) from a spatial integration 
of Newton’s second law exactly parallels the deri-
vation of the impulse-momentum theorem start-
ing from a temporal integration. However, linear 
momentum of a system is always equal to the vector 
sum of the momenta of the particles composing it. 
Consequently one does not need to qualify impulse 
with adjectives such as “center-of-mass.”

The rotational analog of Eq. (1) for any individual 
part rotating about a principal axis is

Wrot = Krot,   (4)

where

Wrot   • dθ  (5)
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is the integral of the net torque on the part over its 
macroscopic angular displacement, and

K Irot ≡ 1
2

2ω    (6)

is the rotational kinetic energy of the part. The 
torque , differential angular displacement dθ, 
angular speed ω, and the moment of inertia I must 
all be evaluated about the same axis, which must 
either pass through the c.m. or be the instantaneous 
axis of rotation, to avoid noninertial corrections.  
Furthermore, Eq. (4) applies only to an object whose 
moment of inertia is constant. As a counterexample, 
in the familiar demo where a point mass is swung in 
a circle at the end of a string of decreasing length, 
the rotational kinetic energy of the mass (about the 
center of the circle) increases even though the torque 
on it is always zero. Equation (4) does not apply in 
this case because I decreases as the string is short-
ened.

Equation (1) can be recast into another common 
form by introducing potential energy. Split the net 
center-of-mass work into the sum of the work done 
by all conservative forces, Wc , and the work done by 
all nonconservative forces, Wnc. Assuming that the 
system is chosen to be encompassing enough that all 
conservative forces are internal, Wc can be moved to 
the right-hand side to obtain

Wnc = Emech. (7)

Here Emech is the sum of the kinetic energies K of 
every part and the potential energies U associated 
with every conservative force acting between all pairs 
of parts in the system.

Particle Work
At the particle8 level, the energy of a system chang-

es only if work is done by external forces,9

Wparticle = E,  (8)

as measured by an inertial observer. Here Wparticle  
(sometimes called the external1 or real7 work) is the 
sum of the work done on every particle in the system 
by all external forces,

Wparticle  
particles 

Fexti •  dri ,  (9)
11



where Fexti is the net external force (i.e., exerted by 
agents external to the system) on particle i during its 
displacement dri. (I assume that all relevant objects 
that do work on each other via “action at a distance” 
forces are included in the system to avoid the issue of 
the work done on and by fields. Also, for notational 
consistency I continue to assume that all objects that 
do work via conservative forces are included in the 
system. Both of these assumptions can be relaxed in 
subsequent, more advanced treatments.) The sum 
of the mechanical Emech and internal Eint energies is 
the total energy E of the system. Internal energy10 
of a system is a sum over that of its parts. In turn, 
internal energy of a part is an inertial-frame-invari-
ant state property and includes all stored energy11 
except bulk translational kinetic energy of the part’s 
c.m. (which depends on the frame of reference of the 
external observer and thus is not a property of a part 
alone) and bulk potential energy between the parts 
(which depends on the interactions between them 
and hence is not “owned” by either part).

Equivalently one can think of particle work as a 
sum of the line integral of each external force over the 
displacement of the point of application of that force,

Wparticle
 
 =  forces 

Fexti •  dri .  (10)

For the special case where the system is isolated, so 
that no external work is done on it, then

Emech = –Eint ,   (11)

which is a general statement of conservation of 
energy. By way of examples, the mechanical energy 
lost by a block sliding on a rough table reappears 
mainly as vibrational energy of the molecules on the 
contacting surfaces of the table and block, and the 
mechanical energy gained by an accelerating figure 
skater comes from the chemical energy of previously 
eaten food.

In thermodynamics, the particle work is often 
categorized according to whether the energy transfer 
is adiabatic or thermal (i.e., driven by a temperature 
difference),

Wparticle = Wthermo + Q.   (12)

This distinction12 is unambiguous for reversible 
12 
processes, as illustrated by myriad examples involv-
ing ideal gases in introductory texts. But there exist 
differences of opinion among educators about the 
magnitude of the heat transfer Q in many irrevers-
ible processes.13 For example, during the sliding of 
a block on a rough table, the particles on the con-
tacting surfaces of the block and table are neither in 
thermal nor mechanical equilibrium.14 It is probably 
best in such situations to discuss the energy trans-
fer between them in terms of particle work using 
a model such as that of Sherwood and Bernard,15 
without attempting to distinguish thermodynamic 
work from heat. Since the process is irreversible, Q 
is not directly related to the entropy change of the 
system in any case.

Problem 1: A pulled spool that rolls 
without slipping

A free-body diagram for the horizontal forces on a 
cylindrically symmetric spool of mass m, outer radius 
R, and moment of inertia I is sketched in Fig. 1.   

The spool starts from rest and the string (wrapped 
around inner radius r) is pulled horizontally with a 
constant tension T, causing the spool to roll without 

Fig. 1. Free-body diagram of a spool (with c.m. at B) being 
pulled by a constant tension T applied to its string unwrap-
ping from the top point C of the inner cylinder of radius r. The 
spool makes contact with a rough, horizontal table at point A 
on its outer cylinder of radius R. Since the spool rolls with-
out slipping, the friction f is static and is initially assumed to 
point opposite to the direction of pulling.
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slipping a distance L along a level, rough table. Find 
its final translational speed υ.

First consider the solution using the concept of par-
ticle work. Taking the system to be the spool (viewed 
macroscopically), its change in mechanical energy is 
1
2 mυ2, while the only form of internal energy that 
changes is the spool’s rotational kinetic energy 1

2 Iω2, 
where its angular speed is ω. There are two external 
forces, the tension T and the static friction f. The 
displacements of their points of application are L(1 
+ r /R) and zero, respectively.16   Therefore, Eq. (8) 
becomes

                   (13)TL
r
R

m I1 1
2

2 1
2

2+



 = +υ ω .

  
Introducing the mass distribution factor,  
  I/(mR2), and the no-slip condition, ω = υ/R, 
now leads to the solution,

                   (14)υ
γ

= +
+

2 1

1

TL r R
m

( / )

( )
.

 
This solution becomes that of an object that rolls 
without slipping down an incline whose vertical drop 
is h, when we replace the external force T by mg and 
its distance of application L(1 + r /R) by h. (Another 
interesting variation with the latter solution is to sus-
pend the spool vertically by its string and allow it to 
fall a distance h as it freely unwinds like a yo-yo.)

Instructors need to be cognizant of a number of 
potential stumbling blocks for students attempting to 
internalize this approach:

(i) The displacements of the points of application 
of the external forces are not intuitively obvious. (In 
contrast, calculation of the center-of-mass work only 
involves the overall translational and angular dis-
placements, which are familiar to students from their 
study of kinematics and dynamics.)

(ii) I have implicitly assumed that the spool and 
table are rigid, so that rolling friction can be 
neglected. This issue may arise after the next point is 
brought to the attention of students.

(iii) Static friction does not change the thermal por-
tion of the internal energy of the spool,17 in striking 
THE PHYSICS TEACHER ◆ Vol. 43, January 2005 
contrast to kinetic friction on a sliding object. This is 
not a consequence of the fact that static friction does 
zero particle work! For example, the tension also 
does not change the thermal energy, nor does the 
static friction on, say, a box that is not slipping in 
the flat bed of an accelerating truck.

(iv) Nevertheless, static friction does in general alter 
the nonthermal internal energy of the spool, namely 
its rotational kinetic energy, and this in turn changes 
the energy available for translation!

We gain additional insights into the physical situ-
ation by using the concept of center-of-mass work.  
Let the system again consist of a single part, the spool. 
Equation (1) becomes

(T – f )L = 1
2 mυ2, (15)

while Eq. (4) evaluated about the c.m. of the spool is

                   (16)( ) .Tr fR
L
R

I+ = 1
2

2ω
   

Adding these two equations together reproduces  
Eq. (13) and hence the solution Eq. (14). But we 
now also learn some things about friction. If the 
frictional force is directed backward (as in Fig. 1), 
the negative sign on the left-hand side of Eq. (15) 
implies that friction slows the spool down trans-
lationally (compared to what would occur if the 
coefficient of friction were zero), while the positive 
sign on the left-hand side of Eq. (16) indicates that 
it simultaneously speeds the object up rotationally.  
Furthermore, by multiplying Eq. (15) by  and 
equating it to Eq. (16), the frictional force is found 
to be

                   (17)f
r R

T= −
+

γ
γ

/
.

1  
(Dividing the absolute value of this result by mg 
gives the minimum value of the coefficient of static 
friction if the spool is not to slip for a given pulling 
force.) Note that the mass distribution factor can be 
altered within the range 0 <  < 1. In particular, if 
the center of the spool is made heavy enough, the 
frictional force becomes negative, indicating that it 
is in the direction of motion.18 In that case, friction 
13



speeds the object up translationally (at the expense 
of its rotations) so that this spool would outpace an 
identical one being pulled with the same tension on 
an air table!

Problem 2: Pushing on a deformable 
system

Suppose two rigid blocks of mass m are at rest on 
a level, frictionless surface and are connected by a 
massless spring of stiffness constant k that is initially 
relaxed with length L. A constant inward force F is 
suddenly applied to block 1, displacing it a distance x1 
in the direction of the second block. During this time, 
the spring coupling causes block 2 to move a distance 
x2 in the same direction, as sketched in Fig. 2.  
(a) Find the resulting velocity of the center of mass, 
υc.m., of the pair of blocks. (b) Find the total vibra-
tional energy (kinetic plus potential) of the system, 
Evib. (c) Find the instantaneous velocity of each 
block, υ1 and υ2. (d) If the force F is now removed, 
describe the subsequent motion of the system.

The entire system viewed as one part has mass 2m. 
The net force acting on it is F while the c.m. moves a 
distance of (x1 + x2)/2, beginning from rest and end-
ing with speed υc.m.. Hence Eq. (1) implies

 F x x m1
2 1 2

1
2 2( ) ( ) ,+ = υc.m.

2

 (18)

which immediately gives the solution to (a). On the 
other hand, Eq. (8) becomes

Fx m E1
1
2 2= +( ) ,υc.m.

2
vib  (19)

thereby solving (b). The nonthermal internal energy 
of the system is Evib = 2( 1

2
mυ2

rel) + 1
2

k(x2 – x1)2 

mmF

k

x2x1

Fig. 2. Free-body diagram of a pair of equal masses m con-
nected by an ideal spring k and resting on a level, frictionless 
table. A constant force F is applied to the left-hand mass, 
causing it to translate a distance x1 rightward while the right-
hand mass moves x2 rightward.
14 
since by symmetry the two blocks have equal and 
opposite velocities υrel relative to the c.m. This can 
be solved for υrel and thus the velocities of each 
block can be calculated from υ1 = υc.m. + υrel and  
υ2 = υc.m. – υrel, which is (c). As a check, one can 
apply Eq. (7) or (8) with the system treated meso-
scopically as having two parts, namely the two 
blocks, to obtain

Fx1 = 1
2

mυ1
2 + 1

2
mυ2

2 + 
 

1
2

k(x2 – x1)2.  (20)

Substitution of the above forms for υ1 and υ2 repro-
duces Eq. (19). Finally, with respect to (d), note that 
the c.m. moves with constant velocity υc.m. after the 
force F is removed. So jump into the center-of-mass 
frame. Here one sees that the length of the spring 
oscillates sinusoidally about L with an angular fre-
quency of 2k /m and an amplitude of 2E kvib / .

This setup is analogous to two massive pistons that 
can slide frictionlessly along a horizontal pipe with 
an ideal gas between them. If the far piston is instead 
clamped in place and the near piston is pushed to-
ward it, this becomes a traditional thermodynamics 
problem. The compression can be either reversible or 
irreversible depending on whether the pushing force 
per unit area of the movable piston is infinitesimally 
or arbitrarily larger than the gas pressure (and hence 
than the clamping force per unit area of the fixed pis-
ton), respectively. This in turn will determine via Eq. 
(1) whether the gas will acquire bulk kinetic energy in 
addition to the change in its internal energy.19

Conclusions
Work is always defined as a force integrated over a 

displacement. However, students must be brought to 
consciously consider which forces and displacements 
are involved. Depending on the context, they might 
be asked whether they are including (i) internal or ex-
ternal, (ii) conservative or nonconservative, (iii) field 
or contact, and (iv) random (thermal) or organized 
forces in their calculations. In the case of the displace-
ments, the relevant options are (i) center of mass ver-
sus point of application, and (ii) translational versus 
angular.

It helps to explicitly point out that for a particle, 
Wc.m. = Wparticle. It is only for objects that can rotate, 
deform, or undergo irreversible changes that center-
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of-mass and particle work provide distinct and com-
plementary information about the behavior of a sys-
tem.20 Broadly speaking, center-of-mass work relates 
to the bulk kinetic and potential energies of a system.  
This is primarily of interest in mechanics problems 
(particularly when direct solution of Newton’s laws 
would prove difficult). For example, center-of-mass 
work tells us that a net external force (usually static 
friction) is needed if a car is to accelerate along a level 
road. On the other hand, particle work is useful when 
we are seeking to account for the sources and sinks of 
energy. Returning to the same example, it is the inter-
nal energy of the gasoline that powers the car along 
the road. Together then, Wc.m. and Wparticle give us a 
balanced view of the mechanical universe, and both 
should be presented in an introductory course.
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