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Abstract 

 
Simultaneous conservation of linear momentum and of 
mechanical energy can be used to calculate the relative 
speed of an isolated pair of astronomical bodies as a 
function of the distance separating them. An exact 
treatment is straightforward and has application to such 
contemporary topics as the launch velocities of rockets, and 
collisions between an asteroid and the Earth. In contrast, 
when these topics are discussed in introductory physics 
courses, an infinite-Earth-mass approximation is typically 
invoked. In addition to being unphysical, this denies 
students an opportunity for a richer exploration of the 
conservation laws of mechanics. 
 

 

Introduction 

 

Consider two spherically symmetric bodies 1 and 2 moving through 

space and interacting with each other gravitationally but not subject to any 

other forces (such as gravitational forces from other bodies or thrusts from 

propulsion systems). This configuration is depicted in Fig. 1. Object 1 has 

mass m1 and velocity 1, while the second body has mass m2 and velocity 

2. The distance between the centers of the two objects is r. Then 

conservation of linear momentum implies that 
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where the subscripts “i” and “f” denote initial and final instants in time, 

and G is the universal gravitational constant. 

 
Fig. 1. Geometry of two objects moving under the influence of their 

mutual gravitational attraction. Object 2 is represented as being larger 

than object 1 because we will think of 2 as being the Earth and 1 as a 

meteoroid or rocket. Since object 1 is the body whose motion is of 

primary interest, we define the relative velocity to specify its velocity 

relative to that of object 2. 

Define the relative speed  of the two objects as the magnitude of the 

relative velocity vector 
 1 2

. Then Eqs. (1) and (2) can be 

combined (see the Appendix) to find 
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where 
  
M m

1
+ m

2
 is the total mass of the system. It is worth 

emphasizing that this result is independent of the directions of the initial 

and final relative velocity vectors;1 they need not be directed one-

dimensionally along the line joining the two bodies. This angle 

independence is akin to the fact that we can use energy conservation to 

predict the landing speed of a projectile tossed off a building of known 

height with a known launch speed regardless of the launch angle. 

Also note that Eq. (3) can be generalized to the motion of particles 

under the action of other mutual inverse-square forces. For example, it can 

be applied to the electrostatic interaction of two charges q1 and q2 if we 

replace G by 
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)  where k is the Coulomb constant. 
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Three applications of Eq. (3) 

An immediate application of this result is to compute the escape speed. 

This is the minimum initial speed that enables the two objects to climb out 

of each other’s gravitational potential wells, or in other words that causes 

their relative speed to fall to zero as they approach infinite separation. 

Putting 
 f

= 0  at 
  
r
f
=  implies that the launch speed 

 i
=

esc
 is 

 
  

esc
=

2GM

R
 (4) 

where 
  
R = r

i
 is the distance between the centers of the two objects at 

launch. (In the case of a terrestrial rocket, R is the distance of the 

spacecraft from the center of the Earth after the engines have been shut off 

and the booster stages ejected. Unless one is launching off a high-orbit 

platform, R is essentially equal to Earth’s radius in this case.) Note that 

Eq. (4) differs from the usual approximate textbook expression2 in that M 

is the sum of both masses, rather than just m2 alone. This difference is of 

negligible consequence when launching a rocket off Earth, but can be 

significant in the case of two astronomical bodies of more comparable 

mass trying to escape from each other (e.g., the Moon’s original 

breakaway from the Earth, or the response of a pair of orbiting bodies after 

a third body sweeps past or collides into one of them). 

Another important application of Eq. (3) is to calculate the impact 

speed of a meteoroid (object 1) striking Earth (object 2). In that case, the 

final distance is Earth’s radius, 
  
r
f
= R

E
= 6380 km . Suppose the 

meteoroid is initially detected when it is far from the Earth, 
  
r
f

/ r
i

0 , and 

that it is then traveling at about the same speed as the Earth because of the 

Sun’s gravitational pull, 
 1i = 2i

=
E  where Earth’s orbital speed about 

the Sun is 
  E

= (Gm
S

/ R
ES

)1/2
= 29.8 km/s . (Here mS is the solar mass 

and RES is one astronomical unit or 150 million kilometers. This 

expression is derived by setting the Sun-Earth gravitational force 
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S
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E
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2  equal to the product of Earth’s mass mE and centripetal 

acceleration 
  E

2
/ R

ES
.) If we take the dot product of the expression 

 i
=

1i 2i
 with itself, we get 

 i
2
= 2

E
2 (1 cos )  where  is the angle 

between the initial directions of travel of the meteoroid and the Earth (so 

that 
  1i

i
2i
=

1i 2i
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E

2
cos ). Equation (3) now becomes 

 
 f

= 2
E

2
1 cos( ) + esc,E

2  (5) 
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where 
  esc,E

= (2Gm
E

/ R
E

)1/2
= 11.2 km/s  from Eq. (4), assuming the 

meteoroid is small. This impact speed f is plotted in Fig. 2 as a function 

of the angle . The results are in good agreement with astronomical data 

collected for actual meteoroid arrival speeds at Earth’s upper atmosphere.3 

Fig. 2. Speed relative to Earth with which a meteoroid strikes our 

atmosphere (assuming the meteoroid is much smaller in size and mass 

than the Earth). The abscissa is the angle between Earth’s orbital 

velocity (assumed fixed in direction) and the meteoroid’s initial 

velocity. Large angles imply a head-on collision (so that the relative 

impact speed is approximately 2 E), while small angles imply that 

either the asteroid strikes Earth from behind or vice-versa (so that the 

intercept along the ordinate is esc,E), as the inset diagrams suggest. 

A third important application of Eq. (3) is Solar System escape: How 

should a rocket be launched from Earth’s surface so that it escapes both 

the Earth and Sun? A solution can be obtained by separately considering 

the escape from each of these bodies. This is called the “independent 

escape” approximation and its validity has been confirmed by numerical 

solution of the exact three-body problem.4 Substitute into Eq. (3) the 

values 
  
M m

E
, 

  
r
i
= R

E
, 

  
r
f
= , launch speed 

 i
=

esc,SS
 relative to the 

Earth in order to escape from the Solar System, and final velocity esc,S 

relative to the Sun [in order to escape from it with speed 

  esc,S
(2Gm

S
/ R

ES
)1/2

= 42.1 km/s ] which implies a final speed relative 

to Earth of 
 f

=
esc,S E

, assuming the rocket is launched in the 
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direction of Earth’s orbital velocity E. (Earth’s axial velocity can also be 

included if the rocket is launched eastward from the equator, as is often 

done for deep-space satellites.) Rearranging, one thereby obtains 

 
 

esc,SS
=

esc,S E( )
2
+

esc,E

2
= 16.7 km/s , (6) 

which is only a little larger than the escape speed from Earth alone! In 

particular, this speed is much smaller than the 42.1 km/s escape speed 

from the Sun starting at rest relative to the Sun at Earth’s distance. Taking 

advantage of Earth’s motion by launching in the direction of its orbital 

velocity confers a huge assist. (Additional boosts are possible using the 

gravitational slingshot effect as the spacecraft passes other planets on its 

way out of the Solar System.) 

It is important to note that Eq. (6) cannot be obtained by assuming that 

the sum of the kinetic energy of the rocket (in Sun’s frame of reference) 

and the potential energy of the rocket relative to the Sun and Earth is 

conserved, i.e., by letting m be the rocket’s mass and writing 
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which does not agree with Eq. (6). The error is that the change in Earth’s 

kinetic energy (in Sun’s frame of reference) has been neglected. In the 

solar frame the Earth is moving, and the rocket is exerting a gravitational 

force on it in its direction of motion. Therefore work is done on the Earth, 

so that Earth’s kinetic energy must increase. To put it another way, work 

(and hence the change in kinetic energy) are dependent on the reference 

frame of the observer. (In the terrestial frame, no work is done on the 

Earth.) It is only the sum of the work that the Earth and rocket do on each 

other that is frame independent (namely it equals the decrease in 

gravitational potential energy of the Earth-rocket system), as can be seen 

from Eq. (13) in the Appendix. 

Conclusions 

In summary, calculation of the relative speed between two 

astronomical bodies resulting from their mutual gravitational interaction 

(or between two point charges interacting electrostatically) is an elegant 

and useful application of the conservation laws of energy and momentum. 

The math is considerably simplified by measuring the positions and 
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velocities of the bodies in the center-of-mass reference frame, so that an 

exact derivation is within the scope of an introductory physics course. In 

contrast, standard treatments such as Eq. (7) only consider the mechanical 

energy of a single body. The latter approach not only violates conservation 

of linear momentum, it is not even properly defined because potential 

energy is actually a property of the system of interacting bodies and not of 

one body alone. That standard approach only gives the correct answer, 

such as Eq. (4), when one body is much more massive than the other and 

the velocities are measured in the rest frame of the heavy body, as required 

by the work-kinetic-energy theorem. 

One application of the exact result given by Eq. (3) is to compute the 

escape speed of one body relative to another. It is given by Eq. (4) 

regardless of the sizes of the two objects (unlike the usual textbook 

expression). That explains why the formula is symmetric in the radii and 

masses of the two bodies. The escape speed for object 1 to escape from 2 

must be the same as for body 2 to escape from 1. 

A second application is the calculation of the speeds of meteoroids 

impacting the Earth. Most of the variation in speed here is due to the large 

range of angles between the meteoroid’s and Earth’s velocities, as can be 

seen from Eq. (5). A head-on collision approximately doubles the impact 

speed (ignoring the small boost due to Earth’s gravity described by the 

esc,E term), while a rearward collision almost cancels it, assuming the 

Earth and meteoroid have similar initial speeds relative to the Sun. 

Finally Eq. (6), describing escape from the Solar System, depends on 

three separate speeds: the escape speed from Earth’s surface, the escape 

speed from the Sun at Earth’s distance, and the orbital speed of Earth 

about the Sun. The two escape terms are added in quadrature because 

kinetic energy depends on speed squared. Meanwhile, the orbital speed is 

subtracted from the solar escape speed because Earth’s motion about the 

Sun boosts the rocket toward escape, provided one launches in the 

direction that takes advantage of this assist. In fact, Earth’s orbital speed is 

71%  (2
1/2 )  of the required escape speed from the Sun, which explains 

why Solar System escape is actually dominated by escape from the Earth. 

Appendix—Derivation of Eq. (3) 

The simultaneous solution of Eqs. (1) and (2) is simplified by wise 

choice of coordinate system. Since the two bodies 1 and 2 are isolated 

from external forces, the total linear momentum of the system is 
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conserved, and hence the center of mass has constant velocity. We can 

thus choose the origin to be fixed at the center of mass and to move with 

it, which properly defines an inertial reference frame. In that case, the total 

linear momentum of the system is always zero, and Eq. (1) implies that 

 
   
m

1 1i
= m

2 2i
= m

2 1i i( )  (8) 

since 
  i

 is the initial velocity of object 1 relative to 2. This equation can 

be rearranged to obtain 
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where M is the total mass of the system. Similar reasoning for the second 

body gives 
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m
1

M
i
. (10) 

(The minus sign here reflects the one in the definition of the relative 

velocity.) Equations (9) and (10) imply that the initial kinetic energy of the 

system is 
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where 
  
μ m

1
m

2
/ M  is called the reduced mass of the system. (The 

reason for this name is that it is a quantity with units of mass and is 

smaller than both m1 and m2. One can think of the total mass as the 

“series” sum of the individual masses, 
  
M = m

1
+ m

2
, while the reduced 

mass is the “parallel” sum, 
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2
.) In like fashion, the final 

kinetic energy is 
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Equation (2) in the main text can therefore be compactly expressed in 

terms of the relative speeds and distances as 
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Finally, noting that 
  
m

1
m

2
= Mμ , Eq. (13) can be immediately rearranged 

to give Eq. (3). 
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