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ABSTRACT 

The equations of motion of a puck sliding frictionlessly inside a 

parabolic bowl can be straightforwardly deduced using the 

conservation laws of mechanical energy and angular momentum. But 

the solution of these equations requires that they be recast into the form 

of Newton’s second law. The simple example of a ball in vertical 

freefall illustrates why this is necessary and how to perform the 

conversion. The method is then applied to the richer problem of a puck 

gliding on a paraboloidal surface for which the nonlinear equations 

require numerical solution. A rich variety of orbital patterns of the puck 

is found. 

 

 

Introductory Example of One-Dimensional Freefall 

Consider a ball thrown straight upward (which will be designated as 

the +z direction) from the origin with an initial velocity of 0z. Let’s find 

its resulting path of motion   z(t)  in the absence of air resistance. Because 

mechanical energy is conserved (for the system of ball and earth), the sum 

of the kinetic (K) and gravitational potential (U) energies at any point on 

the ball’s path can be written as 

 
  
K +U = K

0
+U

0
, (1) 

where the subscript “0” throughout this article denotes the initial instant 

  t = 0 . Choosing the gravitational reference position to be at the origin and 

assuming the ball’s altitude never gets large compared to Earth’s radius, 

Eq. (1) becomes 
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1

2
m

z

2
+ mgz = 1

2
m

0z

2
+ 0  (2) 

where m is the mass of the ball,   g = 9.80 N/kg  is Earth’s surface 

gravitational field, and 
  z

dz / dt  is the velocity of the ball. Equation (2) 

can be rearranged as 

 

  

dz

dt

2

=
0z
2

2gz . (3) 

Unfortunately this equation is double-valued and cannot be uniquely 

solved as written. At any given height z, there are two solutions, one 

corresponding to the ball traveling upward with a positive velocity and the 

other to the ball descending with an equal-magnitude negative velocity. In 

order to circumvent this ambiguity, the time derivative of Eq. (3) can be 

taken to produce the readily solvable form 

 

  

2
dz

dt

d2z

dt2
= 2g

dz

dt
a

z
= g  (4) 

where 
  
a

z
d

2
z / dt

2  is the acceleration of the ball. The final equation is 

simply Newton’s second law with the ball’s mass divided out of both 

sides. Integrating it twice with respect to time gives the expected solution 

  
z =

0z
t 1

2
gt

2 . 

In this easy example, one could alternatively solve Eq. (3) by manually 

changing the sign of the square root of the right-hand side of the equation 

after the topmost point of the trajectory is reached by the ball. But this 

procedure becomes cumbersome if the orbit has a large number of turning 

points. In such a case, it is easier to differentiate the energy equation with 

respect to time and then solve the resulting second-order equation, as was 

done above.1 Let’s now apply this method to the richer problem of interest 

in this paper. 

Orbiting On a Frictionless Parabolic Surface 

Suppose that a puck is sliding frictionlessly about the bottom of a 

concave bowl which has cylindrical symmetry around the vertical axis z, 

described by the parabolic cross-sectional profile 
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z =

1

2
k

2  (5) 

using cylindrical coordinates, , , z, as illustrated in Fig. 1. The origin of 

the coordinate system is at the vertex of the bowl, and a factor of  has 

been included in Eq. (5) to avoid factors of 2 that otherwise arise. 

 
Fig. 1. Free-body diagram indicating the normal (N) and gravitational 

forces (mg) acting on the puck (indicated by the dot) when it is located 

at arbitrary position 
  
( , , z) . The paraboloidal surface has slope  tan  

in the radial direction. 

Energy conservation implies that 

 
  

1

2
m 2

+ mgz = constant
2
+ gk 2

= constant  (6) 

where 
  

2
=

2
+

2
+

z

2  and the first constant has been divided by a 

factor of  m to get the second constant. Here 
  

d / dt , =  

(where 
  

d / dt  is the puck’s angular velocity about the axis of 

symmetry), and 
  z

dz / dt = k d / dt . Since neither gravity nor the 

normal force exerts a vertical torque on the puck about the origin, the z-

component of the angular momentum is constant and therefore equals its 

initial value, 

 

  

L
z
= m

2
= m

0

2

0
=

0

2

0
. (7) 

Inserting this expression into the speed squared in Eq. (6) and taking the 

time derivative to eliminate the constant yields 
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d

dt
1+ k2 2( ) 2

+
0

4

0

2 2
+ gk 2

= 0 . (8) 

The derivative can be performed and a factor of 
 
2  divided out of every 

term, in analogy to how Eq. (4) was obtained from Eq. (3), to get 

 

  

a =
0

4

0

2 3 k g + k 2( )
1+ k2 2

 (9) 

where 
  
a d

2
/ dt

2 . This equation can also be obtained (but with 

considerably more effort) by finding the two orthogonal surface tangential 

components (to avoid the unknown normal force) of Newton’s second law 

in cylindrical coordinates. 

One final step is helpful before proceeding to a computer solution. 

Equation (9) can be rewritten in terms of the dimensionless variables 

 
R k  and 

  
T

0
t  as 

 

  

d
2
R

dT
2
=

R
0
4

R
4

C + (dR / dT )2

R
3 1+ R

2( )
 (10) 

where 
  
C gk /

0

2  is a dimensionless constant. This is a second-order 

differential equation to be solved with the initial conditions 

  
R(0) R

0
= k

0
 and 

  
V (0) V

0
= k

0
/

0
 where   V dR / dT . Suppose 

the initial angular velocity is chosen so that the puck travels in a stable 

counter-clockwise circular orbit around the vertex of the bowl. The puck is 

then given a quick push toward the rim of the dish. The push provides a 

radial impulse to the puck. (Note that a radial impulse does not change the 

value of Lz.) Prior to the push, R must have the constant value R0 so that 

  dR / dT  and   d
2
R / dT

2  are both zero, and Eq. (10) therefore implies that 

  C = 1 . In turn this result requires that 
  0

= (gk)1/2  regardless of the 

puck’s position on the surface. This is a special property of a parabolic 

dish and is the reason that the surface of a rotating liquid settles into a 

paraboloidal shape, a property that can be exploited to make the primary 

collecting mirror of a reflecting telescope.2 

Once Eq. (10) is solved for R(T), it can be substituted into Eq. (7) 

written in the dimensionless form 
  
d / dT = (R

0
/ R)2 . That result can 



11 

 

Summer 2007 

then be integrated to obtain   (T )  with the initial condition  (0) = 0  (by 

choosing the x-axis to point to the puck’s position at the instant of 

application of the radial impulse). The results can then be plotted 

parametrically to give an overhead view of the xy-coordinates of the puck 

in the dimensionless form 

 
  
X = Rcos and Y = Rsin . (11) 

Here is the complete code we wrote to solve and plot the motion of the 

puck using the commercial software program Maple™ for the case 

  
R

0
= 1=V

0
, as graphed in Fig. 2(a): 

R0:=1; V0:=1; 

eqR:=diff(R(T),T,T)=(R0^4-R(T)^4*(1+diff(R(T),T)^2))/R(T)^3/(1+R(T)^2); 

eqphi:=diff(phi(T),T)=(R0/R(T))^2; 

sol:=dsolve({eqR,eqphi,R(0)=R0,phi(0)=0,D(R)(0)=V0},{R(T),phi(T)},numeric); 

r:=T–>rhs(sol(T)[2]); p:=T–>rhs(sol(T)[4]); 

X:=T–>r(T)*cos(p(T)); Y:=T–>r(T)*sin(p(T)); 

plot(['X(T)','Y(T)',T=0..50*Pi],scaling=constrained); 

By varying the initial values R0 and V0 in the first line, a rich variety of 

orbital patterns result; two further examples are plotted in panels (b) and 

(c) of Fig. 2, chosen to illustrate some common patterns. Our school has a 

site license for Maple™ and students are introduced to its use in their 

introductory calculus sequence and could be given the above code with 

which to experiment. At other schools, Mathematica™ or implementation 

of Euler’s method in a spreadsheet such as Excel™ might be a better 

choice.3 However the comparative simplicity of the code above makes this 

a good example with which to introduce students to algorithmic software 

packages. 

Further insight into the puck’s motion is obtained by making the radial 

impulse very weak, so that the circular orbit is only slightly perturbed.4 In 

that case, it is easier to see the resulting small effect by jumping into a 

frame of reference that rotates with the puck’s initial angular speed of 0. 

The xy-coordinates of the puck in this rotating frame can be computed 

using Eq. (11) provided we replace  by 
  0

t T . An example is 

plotted in Fig. 2(d). The puck starts on the x-axis at 
  
(R

0
,0)  and travels5 
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clockwise with very nearly uniform circular motion of dimensionless 

diameter V0 at an angular frequency of 2 0. That is, the puck performs 

one clockwise orbit in the rotating frame during the time that the puck 

rotates counter-clockwise halfway around the bowl in the lab frame. This 

trajectory is a result of the Coriolis force which produces a rightward 

deflection of the puck in the rotating frame,6 analogous to the rotation of 

hurricanes in the northern hemisphere of the earth. The radially outward 

centrifugal force is almost perfectly canceled by the inward component of 

the normal force. 

 

 

Fig. 2. Overhead views of the trajectory of the puck (a) in the lab frame 

for 
  
R

0
= 1  and 

  
V

0
= 1  over the interval   0 T 50 ; (b) in the lab 

frame for 
  
R

0
= 1  and 

  
V

0
= 8  over the interval   0 T 150 ; (c) in the 

lab frame for 
  
R

0
= 0.05  and 

  
V

0
= 0.5  over the interval   0 T 25 ; 

(d) in the rotating frame for 
  
R

0
= 0.01  and 

  
V

0
= 0.0001  over the 

interval   0 T  (in a highly magnified view). 
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For Further Investigation 

At least two interesting lines of inquiry are left for future work, the 

first theoretical and the second experimental: 

(1) Under what circumstances is the orbital motion closed? Close 

inspection of Fig. 2(b) indicates that the orbit appears to repeat after 

tracing out 19 lobes. In contrast, the pattern in Fig. 2(a) is starting over 

(after 25 time periods of 
 
2 /

0
) at a slightly shifted angular position. By 

writing 
  
V dR / dT = (R

0
/ R)2(dR / d )  and equating it to the positive 

square root of V from Eq. (6) as the puck travels from closest to farthest 

approach from the bowl’s vertex, one can integrate to find an expression 

for  along this path. The orbit is closed if 
 

/  is a rational number. 

(In particular if that number is an integer, then the orbit never crosses 

itself.) Similarly, Eq. (10) can be recast into an orbital differential equation 

for   R( )  rather than   R(T ) . 

(2) To investigate experimentally the trajectories described in this paper, 

one could construct a parabolic “air hockey” table by drilling holes in a 

suitable dish and blowing air through them. Alternatively one could roll a 

marble on an old parabolic mirror or satellite television dish and modify 

the present theory to include frictional forces. (One could even spin the 

dish to keep the marble from slowing down.) For comparison, interesting 

effects occur when a ball rolls without slipping on the surface of a rotating 

flat plate,7 on the inner surface of a vertical cylinder such as a golf cup,8 

on the surface of an elastic membrane,9 or on the inner surface of a 

sphere.10 
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