
Density of Air down a Bore Hole C.E. Mungan, Summer 2000

Multiple Choice:  (A) A deep shaft is drilled into the earth starting at sea level and room
temperature. Neglecting both the geothermal gradient and the weakening of the gravitational
force with depth, and assuming air behaves like an ideal gas under all conditions, at about what
depth will the density of air equal that of water?

(i) 10 km          (ii) 50 km          (iii) 100 km          (iv) 250 km          (v) 500 km
(B) Same choices, but this time account for a typical geothermal profile for the rise in the
ambient temperature with increasing depth.

Solution:  Consider a pancake-shaped slab of air in the shaft having height dz. There are three
forces per unit cross-sectional area on the slab: pressure P downward on the top surface, a larger
pressure P+dP upward on the bottom surface, and the downward force of gravity ρgdz where ρ
is the density of the air at depth z and g = 9.8 m/s2 is the assumed constant acceleration due to
gravity. Note that the third term is the usual hydrostatic gauge pressure which arises, for
instance, in the derivation of the height of a barometric column. Since the air slab is in
mechanical equilibrium, the upward force must balance the downward forces, so that

dP gdz= ρ . (1)

On the other hand, the ideal gas law can be written in terms of mass density as

ρ ∝ P

T
(2)

where T is the absolute temperature. (The constant of proportionality is in fact the molar mass of
the gas divided by the universal gas constant, but that is irrelevant for the present purpose.)

In part (A) where the temperature is also taken to be constant, Eq. (2) becomes

P
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(3)

where P0 101=  kPa and ρ0 1 29= .  kg/m3 are the standard sea-level pressure and density of air at
room temperature. (Unit consistency is obtained if z is expressed in km.) Taking the differential
of both sides of Eq. (3) and substituting the result into the left-hand side of Eq. (1) gives
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This can easily be inverted to deduce that ρ = 1000 kg/m3 when z = 53 km. Equation (4) gives
the well-known exponential decrease in pressure with increasing altitude in an isothermal
atmosphere.

With respect to part (B), a typical assumption is that the earth’s temperature increases
linearly with depth denote this linear gradient by k in °C/km. Hence, instead of Eq. (3) we must
now write
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where room temperature is T0 300=  K . Again taking the differential of both sides and
substituting the right-hand side of Eq. (1) for dP gives
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where γ ρ≡ −0 0 0 1gT P k/ . An approximate value for the continental geothermal gradient is
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
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 K/km  for 0 -100 km depth

 K/km  thereafter.              

(See http://www.geol.umd.edu/~kaufman/ppt/lithosphere/sld016.htm and
http://bors.tamu.edu/Lec6.htm.) Consequently, using k = 11 K/km, we find the temperature,
density, and pressure at 100 km depth to be T100 1400=  K , ρ100 53 2= .  kg/m3  from Eq. (6), and
P100 19400=  kPa  from Eq. (5). Notice that the large rise in temperature is keeping the density
comparatively low despite the large increase in pressure. Equation (6) can now be inverted to
obtain
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where ′ ≡ ′ −γ ρ100 100 100 1gT P k/  with ′ =k 1 K/km . With the thermal gradient now small, the
density rises very rapidly to ρ = 1000 kg/m3; if instead k had remained at the value of 11 K/km,
the density of water would not be attained until a depth of 400 km.

Comments: At a depth of z r= ≡ −120 6380 km  km , g G rE= 4 3π ρ /  still has 6260 6380 98/ %=
of its sea-level value, assuming the density of earth, ρE, to be uniform. Hence, the neglect of the
weakening of the gravitational force with depth is reasonable. In contrast, air could not be
expected to continue to behave as an ideal gas at these high densities. A nice Mathematica
exercise might be to replace Eq. (2) with the Van der Waals equation of state. This multiple-
choice problem was motivated by a submission to PHYS-L by John Mallinckrodt.
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