
Relation between the Ampère-Maxwell and Biot-Savart Laws—C.E. Mungan, Spring 2005 
 

This document is a discussion of Michael Langham’s poster on “Maxwell’s Law” presented 
as paper AB02 on 1/10/05 at the AAPT meeting in Albuquerque. I extend his results to a charge 
distribution rather than a single point charge, allow for Ampère’s source term in the Maxwell 
law, and clarify what exactly Michael’s result proves. 

Suppose there is a charge distribution in space with (volume) charge density . Next suppose 
there is a small platform located at position r, at which we are interested in measuring the 
electric and magnetic fields, E and B, respectively. Consider three different possibilities for the 
motion of the charges and platform: 

A—The charges and platform are at rest; 
B—The platform is at rest, but the charges are all moving with the same velocity ; 
C—Both the platform and charges are moving with velocity . 

Clearly configurations A and C must be relativistically identical, so that dE / dt = 0  is measured 
at the platform in both cases. But for configuration C we can partition this time dependence of 
E(r,t)  into two parts, 
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which becomes 
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often called the “material derivative.” 
But now consider the vector identity (obtained from the BAC-CAB rule for constant vector 

field ) 
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using Gauss’ law in the second step. Solve Eq. (2) for the last term and substitute that in for the 
last term in Eq. (3) to obtain 
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Finally divide this equation by the speed of light squared to get 
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We immediately recognize this as the Ampère-Maxwell law provided that the current density is 
identified as 



 J =  (6) 

and the magnetic field produced at position r in configuration B is 
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E
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It is easy to verify that Eq. (6) correctly describes our charge distribution in uniform motion. 
Define the x-axis to be the direction of the velocity . Then, 
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as desired. Furthermore we can readily show that Eq. (7) is simply the Biot-Savart law in 
disguise, 
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using Coulomb’s law in the last step. 
To conclude, the present derivation shows that in magnetostatics the Ampère-Maxwell and 

Biot-Savart laws are equivalent (i.e., if you assume either one, you can derive the other one), in 
the same way that in electrostatics Gauss’ and Coulomb’s law are equivalent. 


