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Consider a set of one-dimensional simple harmonic oscillators of frequency ν. Their energy
levels are nondegenerate and uniformly spaced by hν, so that the density of states is constant,

g
h

= 1
ν

(1)

where I choose to measure energies relative to the ground state, εgroundstate = 0. The total number N
of oscillators is given by
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where f is the average occupation number. In writing this as an integral rather than as a sum over
states, I have implicitly assumed that the spacing between levels is small enough that they form a
quasi-continuum; see the Appendix for a discussion of this point.

Let’s first apply this to a set of fermions. The Fermi-Dirac distribution function is
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where µ is the chemical potential. Substituting this into Eq. (2) and changing variables to
x kT≡ −( ) /ε µ  gives
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As x → ∞  note that ln( ) ln( )1 + → =e e xx x , and hence the integral evaluated at the upper limit
is equal to zero. Therefore Eq. (4) becomes
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Now evaluate this at T = 0, for which µ ε≡ F , the Fermi energy. The Fermi energy is equal to the
energy of the highest occupied level at absolute zero and is therefore necessarily positive for our
choice of the zero of energy. We get
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and hence Eq. (5) becomes
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This can be rearranged to give
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Defining the Fermi temperature as T kF F≡ ε / , Eq. (8) becomes
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Notice that µ = 0 when T TF= / ln 2 , and at higher temperatures the chemical potential becomes
negative and arbitrarily large in magnitude, as we can see from the following plot of Eq. (9).

Let’s repeat this analysis for a set of (massive) bosons. The Bose-Einstein distribution
function is
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where µ ε< ≡groundstate 0 is a necessary condition in its derivation (cf. Stowe Eq. 24.5). That is,
the chemical potential is negative at all nonzero temperatures, unlike what we found for fermions
above, as otherwise f would blow up at some (positive) energy. Note however that we must have
µ → 0 as T → 0  because otherwise the occupancy of all levels would be zero; in contrast
µ ε= groundstate  permits all N bosons to condense into the groundstate at absolute zero.
Substituting Eq. (10) into Eq. (2) and again changing variables to x kT≡ −( ) /ε µ  gives
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and the integral evaluated at the upper limit is again zero. Note that the range of integration does
not encompass x = 0 where the integral diverges, since the chemical potential is negative!
Equation (11) therefore becomes
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which can be rearranged to give

µ ν= −( )−kT e Nh kTln /1 . (13)
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Introducing the Fermi energy and temperature as before, Eq. (13) becomes
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Writing the chemical potential for fermions as µF and that for bosons as µB, this intriguing result
is

µ µ εB F FT T( ) ( )= − (15)

using Eq. (9), assuming that the product Nν (and hence εF and TF) has the same value for both
sets of particles. We thus get the same graph as above, except that we need to shift the horizontal
axis up by one unit so that µB begins at the origin. That is, the “Bose energy” is zero.

To summarize, for both fermionic and bosonic 1D simple harmonic oscillators, the chemical
potential decreases monotonically with temperature, becoming negative with an arbitrarily large
magnitude at high temperatures. At absolute zero, however, µB = 0 while µF = εF where the Fermi
energy is necessarily positive; µF = 0 only when T TF= / ln 2 , which is typically of the order of
many thousands of degrees.

Appendix: Chemical Potential at Low Temperatures

When kT becomes comparable to the spacing hν between levels, then Eq. (2) should be
replaced by
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For temperatures which are low compared to the excitation temperature, T h ke ≡ ν / , only the
groundstate is occupied for the case of bosons, so that
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assuming we have a large number of particles (N >> 1). The case of fermions is considerably
more complicated, since we are looking for small deviations in the occupation number from a
step function; the result is given for example by Pathria as
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so that

µ ε
ν

− ≈ −F
kT

Nh

0 82 2. ( )
. (19)

On the other hand, Eqs. (13) and (15) imply that
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in the limit of low temperatures. However, the difference between the right-hand side of this and
that of Eq. (17) or (19) is negligible in the limit of very large N, and hence there will be no
noticeable error in the preceding graph.


