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Incorrect calculation 

The partition function for translations of one atom of mass m in a box of volume V is 

 Z1 =
V (2!mkT )
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at temperature T. Here h is Planck’s constant and k is Boltzmann’s constant. But the partition 
function for N distinguishable, noninteracting particles in the classical limit is 

 ZN = Z1
N . (2) 

Therefore the entropy of the gas is 
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where the gas’s internal energy is U = 3NkT / 2 . 
The following argument shows that Eq. (3) violates the second law of thermodynamics. 

Consider two subsystems each individually in equilibrium with values {U1, V1, and N1} and {U2, 
V2, and N2}. Bring them into thermal contact but suppose they are otherwise isolated so that their 
total energy U =U1 +U2  is constant. Let the total entropy of the combined system be 
S = S1 + S2 . Then the equilibrium condition is found by solving 

 !S
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which leads to the expected result, 

 U1

N1

=
U2

N2

! T1 = T2 . (5) 

Next poke a hole in the wall between the two subsystems. The thermal equilibrium remains 
unchanged but now particles flow between them (subject to the constraint of fixed total number 
N = N1 + N2 ) until diffusive equilibrium is found from 

 !S
!N1
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which incorrectly predicts 
 V1 = V2  (7) 



instead of the expected result 

 V1

N1

=
V2

N2

. (8) 

Clearly the problem is that we should have V / N  where V appears in Eq. (3). Thus that 
expression for S cannot be correct. 
 
Correct calculation 

For particles confined to a volume V, the probability density for the location of a particle is 
1 /V . For an ideal gas, each particle is independent of the others, and hence the probability 
density for distributing N1 particles in a subvolume V1, and N2 in V2, is given by the binomial 
distribution 
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where N = N1 + N2  and V = V1 +V2  are both constants. But the logarithm can be written as 

 lnW = ln!c(V1,N1) + ln!c(V2,N2 ) " ln!c(V ,N )  (10) 

where 

 !c(V ,N ) "
V
N

N !
. (11) 

Noting that the last term in Eq. (10) is an uninteresting constant, this result suggests that we can 
identify Eq. (11) as a “configurational” multiplicity of each individual subsystem. To get the 
entire entropy, we now multiply by the usual “momentum” contribution (by integrating the 
surface area of a hypersphere), 

 !p (U,N ) =
(2"mU )

3N /2

(3N / 2)!
 (12) 

assuming  N ! 1  (so that we can drop some factors of 1). Hence in phase space we get 

 !(U,V ,N ) =
!c(V ,N )!p (U,N )

h
3N

 (13) 

for 3 spatial dimensions. Substituting in Eqs. (11) and (12), and defining 

 S = k ln!(U,V ,N )  (14) 

gives the same Sackur-Tetrode equation for distinguishable particles as for indistinguishable 
ones, namely 

 S = Nk ln
V

N

4!mU
3Nh

2

"
#$

%
&'
3/2(

)
*
*

+

,
-
-
+
5

2

.
/
0

10

2
3
0

40
 (15) 



using Stirling’s approximation. Owing to the factorial in the denominator of Eq. (11), V / N  now 
appears in the argument of the logarithm in Eq. (15), so that we will correctly predict Eq. (8) and 
the second law of thermodynamics is saved. 


