Entropy of a Classical Ideal Gas of Distinguishable Atoms— C.E. Mungan, Spring 2011
Reference: R.H. Swendsen, J. Stat. Phys. 107, 1143 (June 2002).

Incorrect calculation
The partition function for translations of one atom of mass m in a box of volume V' is
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at temperature 7. Here & is Planck’s constant and k is Boltzmann’s constant. But the partition
function for N distinguishable, noninteracting particles in the classical limit is

Zy =277 . (2)

Therefore the entropy of the gas is
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where the gas’s internal energy is U = 3NkKT /2 .
The following argument shows that Eq. (3) violates the second law of thermodynamics.

Consider two subsystems each individually in equilibrium with values {U,, V,, and N} and {U,,
V,,and N, }. Bring them into thermal contact but suppose they are otherwise isolated so that their
total energy U = U, + U, 1is constant. Let the total entropy of the combined system be

S =S5] +S, . Then the equilibrium condition is found by solving
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which leads to the expected result,
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Next poke a hole in the wall between the two subsystems. The thermal equilibrium remains
unchanged but now particles flow between them (subject to the constraint of fixed total number
N = Ny + N, ) until diffusive equilibrium is found from
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which incorrectly predicts
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instead of the expected result
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Clearly the problem is that we should have V / N where V appears in Eq. (3). Thus that
expression for S cannot be correct.

Correct calculation

For particles confined to a volume V, the probability density for the location of a particle is
1/V . For an ideal gas, each particle is independent of the others, and hence the probability
density for distributing N, particles in a subvolume V|, and N, in V,, is given by the binomial

distribution
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where N = N;+ N, and V =V, +V, are both constants. But the logarithm can be written as
InW =mnQ_ (V;,N))+InQ_ (V;,,N,)—InQ_ (V,N) (10)
where
v
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Noting that the last term in Eq. (10) is an uninteresting constant, this result suggests that we can
identify Eq. (11) as a “configurational” multiplicity of each individual subsystem. To get the
entire entropy, we now multiply by the usual “momentum” contribution (by integrating the
surface area of a hypersphere),

Q,(U,N)= GN DL (12)

assuming N > 1 (so that we can drop some factors of 1). Hence in phase space we get

Q.(V.N)Q,(U,N)

QU,V.N)= P (13)
for 3 spatial dimensions. Substituting in Eqgs. (11) and (12), and defining
S=kInQU,V,N) (14)

gives the same Sackur-Tetrode equation for distinguishable particles as for indistinguishable
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ones, namely




using Stirling’s approximation. Owing to the factorial in the denominator of Eq. (11), V/ N now
appears in the argument of the logarithm in Eq. (15), so that we will correctly predict Eq. (8) and
the second law of thermodynamics is saved.



