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It is easy to derive the energy levels for three standard examples—formally solved using 
Schrödinger’s equation—by invoking a few simple quantum mechanical and classical ideas. 

The first case is a particle of mass m in an infinite one-dimensional box. If the box has length 
l, then the standing wave condition requires that there be nodes at the two walls. Therefore the 
wavelength λn of level n (where n = 1, 2, 3, …) is determined by 

 l = n
!n

2
. (1) 

Substituting the de Broglie relation in the form 

 !n =
h

m"n

, (2) 

we find !n = nh / 2ml . Finally, since the particle’s mechanical energy is purely kinetic, 
E
n
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n

2
/ 2  and we thus obtain 
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h
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2

. (3) 

The second example is Bohr’s model of the hydrogen atom. In level n (where n = 1, 2, 3, …) 
the electron orbits the proton in circles of radius rn. The standing wave condition this time 
requires that an integral number of wavelengths fit around the circumference of an orbit, 
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n
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Substituting Eq. (2), we find 
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where the reduced mass m is very nearly equal to that of the electron. But the electrostatic force 
is centripetal, so that 
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Substitution of Eq. (5) leads to 

 
 

!n =
e
2

2!
0
hn

. (7) 



The total mechanical energy of the atom is 
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Using Eq. (6) to eliminate rn gives E
n
= !m"

n

2
/ 2 , which is negative since the orbits are bound. 

Finally substituting Eq. (7) results in 
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= !13.6 eV . (9) 

The third example is a 1D simple harmonic oscillator of frequency f and mass m, whose 
motion is the one-dimensional projection of uniform circular motion where the radius equals the 
amplitude An in level n, so that Eq. (5) becomes 
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But the mechanical energy of the oscillator is En = kAn
2
/ 2  where k is the spring constant.1 

Substituting Eq. (10) and eliminating k using 2! f = k / m , we find En = nhf / 2 . The final step 
is to note that n in Eq. (4) cannot take on all positive integral values this time. We have velocity 
nodes (or equivalently displacement antinodes) at the turning points, and velocity antinodes (or 
displacement nodes) at the equilibrium point. Therefore, a quarter cycle is like an organ pipe 
with one end open and the other end closed, so that we only get odd harmonics n = 1, 3, 5, …. If 
we instead choose to label the oscillator levels by quantum numbers n = 0, 1, 2, … in the 
conventional manner, then their energies are 

 En = (n +
1

2
)hf . (11) 

Unlike the particle in a box or the hydrogen atom, the energy levels are thus equally spaced with 
a gap between adjacent states of !E = hf , which is Planck’s relation for the emitted and 
absorbed photon energies, as required in the derivation of the blackbody equilibrium distribution. 

                                                
1Equivalently, E

n
= m!

n

2
/ 2  since k = m(2! f )2  and !n = 2"An f . 


