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Introductory textbooks typically derive Kepler’s third law (K3L) and the energy equation for
a satellite of mass m in a circular orbit of radius r about a much more massive body M. They then
claim without proof that if the satellite is instead in an elliptical orbit of semi-major length a, one
can simply replace r by a in each of the final results to obtain

T 2 =
4π 2

GM
a3 (1)

and

E = −
GMm
2a

(2)

where T is the period and E is the total energy (for the usual reference at infinite separation). For
example, in the 7th edition of PSE, these claims appear immediately prior to Eqs. (13.8) and
(13.19). Murray Korman however points out that problem 13.11 of Anthony French’s Newtonian
Mechanics shows how one can directly derive Eqs. (1) and (2) without having to consider a
circular orbit. What is neat about his method is that it only requires algebra! I review the
derivation below.

The shape of an ellipse is completely specified by two parameters. For our purposes, let’s
agree to use the semi-major length a and the focal length c. Then the eccentricity is defined to be
e ≡ c / a , the perihelion distance is rp = a − c , the aphelion distance is ra = a + c , the semi-latus
rectum is 

 
 = (a2 − c2 ) / a , and the semi-minor length is

b = a2 − c2 . (3)

(An easy way to verify these formulae for    and b is to use the string-and-pins method of
drawing an ellipse. Push two pins into a board at two points, representing the ellipse’s foci. Tie a
string into a loop that loosely goes around the two pins. Pull the loop taut with a pencil tip, to
form a triangle. Move the pencil around while keeping the string taut. Its tip will trace out an
ellipse. The constant length of the string implies that r1 + r2 = constant  in PSE Fig. 13.4, which
in words says that the sum of the distances from any point on the ellipse to the two foci is a
constant. By putting your pencil tip at perihelion, you can see that the constant equals the major
length 2a. Next, to derive the expression for   , consider the point when your pencil is directly
above one of the foci. Finally, to get the formula for b, put your pencil directly above the
geometric center of the ellipse and use the Pythagoras theorem.)

A cross-product equals the area of the parallelogram whose two adjacent sides are given by
the two vectors being crossed. One can thereby deduce K2L,

 

dA
dt

=
L
2m

=
r × υ
2

= constant = A
T

(4)



as in PSE Eq. (13.7). Here L is the magnitude of the satellite’s angular momentum using a
coordinate system whose origin is centered on the heavy mass M. The position and velocity of
the satellite are  

r  and  

υ , respectively. The area of an ellipse is

A = πab = πa a2 − c2 (5)

using Eq. (3). (A quick way to prove the first equality is to note that A equals 4 times the area of

the ellipse in the first quadrant, I ≡ ydx
0

a
∫ . Now transform to the dimensionless coordinates

X ≡ x / a  and Y ≡ y / b , so that I becomes ab Y dX
0

1
∫ . But the rectangular equation of the ellipse

in these new coordinates is X2 +Y 2 = 1 , which is a unit circle of area π.) Finally, note that at

perihelion and aphelion, vectors  
r  and  


υ  are perpendicular to each other, so that Eq. (4)

becomes

(a + c)υa
2

=
πa a2 − c2

T
=
(a − c)υp

2
(6)

and thus the relation between the satellite’s speed at aphelion and perihelion is

υa = υp
a − c
a + c

⎛
⎝⎜

⎞
⎠⎟ . (7)

Finally, the energy of the satellite is the sum of its kinetic and potential energies, which is a
constant and can be written down at perihelion and aphelion as

1
2
mυa2 −

GMm
a + c

= E =
1
2
mυp2 −

GMm
a − c

. (8)

Substitute Eq. (7) into the first term and rearrange to obtain

υp2 =
GM
a

a + c
a − c

⎛
⎝⎜

⎞
⎠⎟ (9)

which neatly expresses the perihelion speed in terms of known parameters. Substituting it into
the right-hand sides of Eqs. (6) and (8) then gives Eqs. (1) and (2) after some algebra.

The preceding derivation is a nice illustration of the fact that properties of elliptical orbits can
be deduced in general from the two constants of the motion, namely angular momentum and
mechanical energy. In particular, Eq. (2) indicates that if one fixes E, the major length 2a of the
satellite’s orbit is determined. However the eccentricity varies with L; only for the special case
when E and L are related by E = −L2 / 2ma2  is the orbit circular. (This explains why bound
orbits are not always circular!)

Notice that Eq. (9) was key to the problem. So it’s useful to consider an alternative way of
deducing it, albeit using calculus. At perihelion, the satellite has zero tangential acceleration and
thus the acceleration is purely centripetal,



GM
rp2

=κυp2 (10)

where the curvature κ equals the reciprocal of the radius of curvature and can be calculated using
the standard formula,

κ = ′′y
(1+ ′y 2 )3/2

. (11)

To avoid an infinite slope at perihelion, let’s rotate the coordinate system 90° and consider the
negative branch of the elliptical curve,
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2
= 1 ⇒ y = −a 1− x2

b2
. (12)

From a diagram of an ellipse, it is clear that the slope ′y  is zero at perihelion (where x = 0 ) and
thus κ = ′′y (0) . Evaluating it from Eq. (12), one gets the simple result that the radius of
curvature equals the semi-latus rectum. Substituting κ = a / (a2 − c2 )  and rp = a − c  into
Eq. (10) transforms it into Eq. (9).


