Falling Ball Puzzle—C.E. Mungan, Spring 2000

The following puzzleis due to Dr. Akaske, formerly at Hamline University. The little ball of
mass mis launched horizontally with initial velocity V from the lip of the semi-cylindrical
depression of radius R. The ball makes a perfectly elastic collision with the depression and is
observed to rise straight up. How high will it rise above the lip of the depression? Y our answer is
to be expressed in terms of R only. (Consider the ball to be a point mass.)
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Solution:
It islogical to choose a coordinate system whose origin is at the center of the cylinder with
positive x running horizontally to the right and positive y running vertically downward,
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where the fact that the bounce is elastic implies that the two angles marked 6 and that the two
speeds marked v, are equal in each case. From conservation of energy we see that the height of
interest is
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By taking the components of the final velocity just before hitting the cylinder, we get
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where | used the standard equations of kinematics to get the second equality, and a well-known
trig identity to get the last equality. On the other hand, we also see from the diagram that
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making use of the equation of a circle to deduce the second equality. Substituting Eq. (3) into the
fourth term and Eq. (1) into the third term of Eq. (2) resultsin
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Next, we consider the parabolic tragjectory to get a second expression for h. Eliminate the time of
flight t between R+x =Vt and y = gt? /2 to get y = (R+x)?/4h using Eq. (1). Again utilizing
the equation of acircle, this can be rearranged as
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Substitute this expression into the left-hand side of Eq. (4). The result is conveniently expressed
in terms of the dimensionlessvariables X = x/Rand Y=y /R,where0<X<land0<Y<1
by inspection of the diagram, as
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Since X =1-Y? fromthe equation of acircle, Eg. (6) can be simplified to
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Putting this into the quadratic formula, one finds a single solution with 0 < X < 1, namely

Xo1-1 20203 (8a)

R V2
and thus

y / _ xg : Ap\V2

R % =(~2-05) " =0.956. (8b)



This can be substituted into Eq. (5) which can be rewritten as
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i.e. the ball risesto 44% of the radius of the cylinder. This completes the solution. The angle with
which the ball strikes the cylinder relative to the radial directionis 8= tan'l(X 1Y) =17.0°, or
equivalently 55.9° relative to the horizontal.

What is remarkable about this solution is that it is independent of m, g, and V (provided all
are positive). The size R of the cylinder already incorporates the latter two factors. To look at it
from another point of view, for agiven cylinder of fixed size and assuming standard gravity of
g =9.80 m/<’, the initial velocity of the ball must be chosen to be V = 2.93/R withRinmand V
inm/s.
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