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The generalized equipartition theorem is
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provided the energy per conjugate pair of degrees of freedom g and p can be written in the form
E =KE +PE =dp|" +blq|". (1b)

where n > 0. The absolute value bars in Eq. (1b) ensure that the energy is always positive. The
Kronecker deltafunctionsin Eqg. (1a) reduce the average energy if some degree of freedom is
either frozen out or otherwise not present. For example, three common applications of Eq. (1)
are:

* A classical free particle for which KE = p2/2m and PE=0.Inthiscasen=2andb =0, s0
that E =KT/2.

« A photon for which KE = pc and PE =0. Inthiscasen=1andb=0, sothat E =KT.

» A ssimple harmonic oscillator for which KE = p2/2m and PE:ksq2/2. Inthiscasen =2, so
that E =KT.

A derivation of Eg. (1) isin the Appendix.
To apply thisto a simple pendulum, whose geometry is sketched below, we can consider
using any of three different choices for our conjugate pair of variables.
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We see that
20+6=180 0O & 9¢ 0/20 =p 90 =a 6/2 (2a)
and
z=2lsin(6/2) (2b)
so that

x=zcospl@ and y=zsngl 3l 0 Oy x*/2 (20)



assuming small angle 6. _
One choice of conjugate variablesis 8 and the angular momentum L =180,

KE=116°=1%/2I and PE=mgy 04mgl&?, ©)
while another isx and p, = nmX,
KE=116% OpZ/2m and PE= mgyd mgx?/2l. (4)

In obtaining the kinetic energy in Eq. (4), | differentiated Eq. (2c) for xand used | = mi2.
However, since

KE = p?/2m=(pZ + pZ)/2m,
thisis equivalent to putting p, = my [J0. Hence, choosing y and p, as the conjugate variables
implies

KE=pi/2mO0 and PE= mgy. (5)
Now applying Eq. (1) to any of Egs. (3)—5) in al cases gives the same answer, namely

E =KT (6)
in agreement with the third application discussed above.

Appendix—Derivation of the Generalized Equipartition Theorem

The average energy is given by
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We can convert the summations into integrals by introducing the density of states g,
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But according to Heisenberg’' s Uncertainty Principle, each quantum state occupies a volume of h
in g—p phase space, so that g=1/h. Using Eq. (1b), Eq. (7) thus becomes
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where | canceled afactor of 4/h in front of each integral. This can be further smplified to
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where | put
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by defining x = (Ba)”n p inthefirst ratio of integralsand x = (Bb)””q in the second, with the
deltafunctions alowing for the possibilities that either a or b is zero. We now simply integrate |
by parts,
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where | used I’ Hépital’ srule to evaluate the term at c with n > 0:
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Substituting Eq. (12) into Eqg. (10) gives Eq. (1a).



