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The generalized equipartition theorem is
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provided the energy per conjugate pair of degrees of freedom q and p can be written in the form

E KE PE a p b qn n≡ + = + . (1b)

where n > 0. The absolute value bars in Eq. (1b) ensure that the energy is always positive. The
Krönecker delta functions in Eq. (1a) reduce the average energy if some degree of freedom is
either frozen out or otherwise not present. For example, three common applications of Eq. (1)
are:

• A classical free particle for which KE p m= 2 2/  and PE = 0 . In this case n = 2 and b = 0, so
that E kT= / 2.
• A photon for which KE pc=  and PE = 0 . In this case n = 1 and b = 0, so that E kT= .
• A simple harmonic oscillator for which KE p m= 2 2/  and PE k qs= 2 2/ . In this case n = 2, so
that E kT= .

A derivation of Eq. (1) is in the Appendix.
To apply this to a simple pendulum, whose geometry is sketched below, we can consider

using any of three different choices for our conjugate pair of variables.
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We see that
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and
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assuming small angle θ.
One choice of conjugate variables is θ and the angular momentum L I≡ θ̇ ,
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22˙ /θ θand , (3)

while another is x and p mxx ≡ ˙ ,

KE I p m PE mgy mgx lx= ≅ = ≅1
2

2 2 22 2˙ / /θ and . (4)

In obtaining the kinetic energy in Eq. (4), I differentiated Eq. (2c) for x and used I ml≡ 2 .
However, since

KE p m p p mx y= = +2 2 22 2/ ( ) / ,

this is equivalent to putting p myy ≡ ≅˙ 0. Hence, choosing y and py as the conjugate variables
implies

KE p m PE mgyy= ≅ =2 2 0/ and . (5)

Now applying Eq. (1) to any of Eqs. (3)–(5) in all cases gives the same answer, namely

E kT= (6)

in agreement with the third application discussed above.

Appendix—Derivation of the Generalized Equipartition Theorem

The average energy is given by
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We can convert the summations into integrals by introducing the density of states g,
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But according to Heisenberg’s Uncertainty Principle, each quantum state occupies a volume of h
in q–p phase space, so that g h=1/ . Using Eq. (1b), Eq. (7) thus becomes
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where I canceled a factor of 4/h in front of each integral. This can be further simplified to
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where I put
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by defining x a pn≡ ( ) /β 1  in the first ratio of integrals and x b qn≡ ( ) /β 1  in the second, with the
delta functions allowing for the possibilities that either a or b is zero. We now simply integrate I1

by parts,
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where I used l’Hôpital’s rule to evaluate the term at ∞  with n > 0:
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Substituting Eq. (12) into Eq. (10) gives Eq. (1a).


