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Because the concepts of kinetic and potential energy are ill-defined for light, there is not an 
obviously correct Hamiltonian for photons. Rather, one must construct a set of analogies 
between mechanical and optical quantities. This can be in several different ways, giving rise to 
different Lagrangian and Hamiltonian formulations of optics, with distinct advantages and 
disadvantages. In this paper, I will review an elegant treatment presented in D. Drosdoff and A. 
Widom, Am. J. Phys. 73, 973 (2005). 

We start by considering a ray in a homogenous medium 1 incident at angle θ1 (relative to the 
normal) onto the plane interface with a second homogeneous medium 2 into which it refracts at 
angle θ2. Since the system has translational invariance in the directions tangential to the plane, 
the components of the photon’s momentum p parallel to the plane must be conserved, 

 p1 sin!1 = p2 sin!2 . (1) 

Now one might guess that since in mechanics, momentum is proportional to speed, p !" , and 
since in optics, speed is inversely proportional to index of refraction, ! = c / n , that it should 
follow that n !1 / p . However, if we substitute this into Eq. (1), we get an immediate 
contradiction with Snell’s law 

 n1 sin!1 = n2 sin!2 . (2) 

The fix is not to be sought by introducing the photon’s relativistic mass m in the first 
proportionality, because m = E / c

2  and the photon’s energy E = hf  is a constant across the 
interface, since its frequency f is fixed by the source independent of the medium. 

Instead, Drosdoff and Widom proceed by distinguishing the phase velocity 
!phase " c / n =# / k  and group velocity !group = d" / dk  for light. Rewriting the above 
expression for the photon energy in terms of the angular frequency,  E = !! , and noting that the 
photon momentum is related to the wave vector by 

 
p = !k , we see that 

 n =
ck

!
=
cp

E
. (3) 

This reduces to the familiar expression E = cp  in vacuum. But in a medium, note that n ! p  so 
that Eqs. (1) and (2) now accord with one another. 

The velocity of light υ  is not to be identified as the phase velocity in a dispersive medium, 
however, but rather in general as the group velocity, 

 !i " !group,i =
dE

dpi
 (4) 



where i = {1,2,3}  corresponds to {x, y, z}  in the usual fashion. Dispersion implies that the 
refractive index n is a function of frequency and thus of energy E. In addition, the index is a 
function of position r as we pass across the interface discussed above, or more generally if the 
light is traveling in an inhomogeneous medium. Thus, we can rewrite Eq. (3) as 

 E =

c px
2
+ py

2
+ pz

2

n(r,E)
, (5) 

which is an implicit equation for the energy, which we identify as the Hamiltonian H (since the 
coordinates are natural). Hamilton’s equations for the motion of the photons then become 

 
 

!ri ! "i =
#H (r,p)

#pi
 (6) 

and 

 
 

!pi ! Fi = "
#H (r,p)

#ri
 (7) 

for the force F on a photon. 
Let’s see what each of these equations predicts in turn. The differentiation in Eq. (6) is to be 

performed with r held constant. We need to differentiate pi both explicitly in the numerator and 
implicitly through E = H (r,p)  in the denominator of Eq. (5), so that we get 
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which can be rearranged as 

 !H

!pi
1+

cp

n
2

!n

!E

"

#$
%

&'
=
cpi

np
( )i =

cpi / p

n +
cp

n

!n

!E

. (9) 

But 

 !phase =
c

n
p̂ =

cp

np
, (10) 

so that Eq. (9) becomes 
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n + E "n / "E
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n
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where 
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is called the group index of refraction. The second equality in Eq. (12) follows from 
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since n!phase = c = ngroup!group  according to the second equality in Eq. (11). 
We can evaluate Eq. (7) in a similar fashion, 
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where for clarity I have explicitly subscripted the variable that is to be held constant during each 
partial differentiation. I will now drop these needless subscripts and rearrange to obtain 
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or 

 
 

F =
!!

ngroup

"n . (16) 

This compactly gives the impulsive photon force normal to the plane of discontinuity between 
two media, as in the Snell’s law example at the beginning of this paper. 

As I mentioned in the introductory paragraph, there are several other Hamiltonian 
formulations of geometrical optics. As an example, one can define a Lagrangian L = ndr / ds  
(where s is the arclength along the optical path) starting from Fermat’s principle, and then 
compute the canonical momentum and perform a Legendre transformation to deduce that 
H = 0 ! Choosing the “optical mass” to be unity and replacing time by arclength, one can then 
find expressions for the “optical kinetic and potential energies” in terms of the refractive index. 
See J. Evans and M. Rosenquist, Am. J. Phys. 54, 876 (1986) and B.N. Turner, JURP 10, 23 
(1991). 

If instead we perform a Legendre transformation on the Hamiltonian in the present paper, we 
find 

 
 

L = pi! " H = p
c

ngroup
" E = "E 1" n / ngroup( )  (17) 

which is zero in the absence of dispersion. 


