Volume of a Hyperspheré] C.E. Mungan, Summer 2000

Problem: Find the voluméy,, of ann-dimensional hypersphere of radiRsThe three lowest
values ofn are well known. In one dimension, we have a line segment extending a ditance
each direction, so that its length\fs=2R. The case oh =2 corresponds to a circle, whose area
sV, = R Finally, n =3 corresponds to a sphere of voluMg= 41>/ 3. Derive a compact
formula for the general case.

Hint: (Courtesy of Bob Sciamanda.) Evidently we can write the answéy( 8 = R"v, where
U, =V, (D) is the volume of a hypersphere of unit radius. Using Cavalieri’s principle, we can
calculate the volume of any closed solid as
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whereA(2) is the cross-sectional area of a slab of thickdessit through the solid like a loaf of
bread, and we integrate frogito z; along any arbitrary axig In the present case, it is
convenient to choose= Rcosf to be the conventional polar axis, where we integrate upward
from 6 =mto 6; =0, and where the area of a slice through the sphargi$ with r = Rsiné.
Making these substitutions in Eq. (1) gives
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The reader is invited to perform this simple integral (by using the ides'mlﬁ)ﬁ =1-cos’ 6) and
check that it correctly gives 4/3, as implied in the problem statement above. Generalizing
Eg. (2) ton dimensions immediately gives
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The problem is thus reduced to performing this definite integral and then finding a non-recursive
formula foru,.

Solution: The integral is recognized as a beta function, which is easily recast in terms of gamma
functions as

N M+10.0O
_ m+110 02 000

0o O



Recall that the gamma function is a generalization of the factorial fun€ifor; 1) =nl"(n),
wherel (1) =1 andl(1/2) = /7. First consider the case wherés even. We then have
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so that

I, = Lﬁ (if neven). (6)
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Similarly, if nis odd we have
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which implies that
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Notice from this last equation tht =2. Equation (3) will now correctly reproduce the one-

dimensional valuay; =2 if we defineug =1. Next, it is left as a straightforward exercise for the
reader to verify from Egs. (6) and (8) that
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regardless of whetheris even or odd. Substituting this into Eq. (3) results in a near-miraculous
simplification,
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where | made use of the facts thgt=1 andu, =2 to terminate the even and odd recursions,
respectively. It is easy to show that both of these cases can be written in the single compact way,

nn/2
T
r 1

(11)

which completes the exercise. The first six values are tabulated below.
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