
Inertia Ball—C.E. Mungan, Fall 2001

A well-known lecture demonstration consists of hanging a heavy ball from a fixed bar by a
thin string. An identical string is connected to a hook on the bottom of the mass. If the lower
string is pulled slowly, the upper string eventually breaks, because it supports both the applied
force and the hanging weight. However, if the lower string is suddenly jerked, it is the one which
breaks. The traditional explanation is that the inertia of the mass keeps it from moving and hence
from stretching the upper string. This idea is basically correct but crude. It becomes satisfying
only when supplemented by a quantitative analysis. Fortunately a simple analysis accessible to
an introductory student is not hard and is a nice exercise in numerical integration.

The upper string can be viewed as a rather stiff but massless spring of stiffness constant k.
Let the weight have mass m and a time-dependent downward acceleration a. Denote its
equilibrium position as zero before any force is applied to the lower string, and any subsequent
downward displacement as x, so that a x= ˙̇ . Therefore the tension in the upper string is

T mg kx= + . (1)

Although the two strings have identical properties, the stretch of the lower string is of no interest
and merely affects how the applied force is transmitted to the ball, which depends on how you
move your hand in any case. So for simplicity, I will disregard the elasticity of the lower string
and assume the applied force F increases linearly from zero up to the point that one of the strings
break, with a rate of increase Ḟ  that we can vary from trial to trial. A free-body diagram is thus
as follows.
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Applying Newton’s second law to the ball gives

ma F mg T F kx= + − = − (2)

using Eq. (1) in the second step. Substituting F Ft= ˙  and a x= ˙̇  gives a second-order ODE, but it
appears not to have a simple analytic solution, so I proceed to solve it numerically.



Let F ramp up from 0 to Fmax in steps of ∆F F N= max /  while t increases from 0 to tmax in
steps of ∆t t N= max / , where say N =100 is the number of iterative steps. Suppose m = 10 kg,
g = 9.8 m/s2, k = 50 kN/m (meaning the upper string stretches about 2 mm when the weight is
hung from it), and that the first string to attain a tension of 200 N will break. One can put
Fmax = 200 N, provided one keeps in mind that F will not reach this value if the upper string
breaks. The iteration sequence is now as follows and easily done in Excel:
1. Initialize F0 0= , x0 0= , a0 0= , υ0 0= , and T mg0 = . Choose some value for tmax.
2. Update the applied force to F n Fn = ∆  at step n = 1, 2, 3, ....
3. Update the spring stretch to x F t m k t m tn n n= + +−( ) / ( / )∆ ∆ ∆2 21υ  as derived below.
4. Update the acceleration of the ball to a F kx mn n n= −( ) /  according to Eq. (2).
5. Update the velocity of the ball to υ υn n na t= +−1 ∆  from basic kinematics.
6. Update the tension in the upper string to T mg kxn n= +  from Eq. (1).
The running time is not directly needed, but can be calculated for plotting purposes as n t∆ . We
now loop through steps 2–6 until either the tension in the upper string, Tn, or that in the lower
string, Fn, exceeds 200 N.

Regarding step 3, basic kinematics implies that x t a tn n n= +−υ 1
2 2∆ ∆( ) / . Substitute the

expression from step 4 for an and solve for xn.
Some results are plotted below. Each graph is labeled with the rate of application of the

force, ˙ /max maxF F t= . The curve that starts at the origin denotes the tension in the lower string
and the curve beginning at mg = 98 N refers to the upper string. We can immediately see that if
we apply the force slowly, the upper string breaks first, since its tension is always on the order of
mg larger than that in the lower string. On the other hand, as the force becomes more impulsive,
the lower curve crosses the upper one, so that the lower string does indeed break first; one can
clearly see that the tension in the upper string is fairly flat in that case, reflecting the fact that the
ball does not have sufficient time to move appreciably. For the parameters listed above, the
crossover from one regime to the other occurs when the breaking force is applied in
tmax .= 0 18 s. This seems plausible in light of with what we witnessed in the demo.
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